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Abstract. In this paper the interpolation inequality of Szepessy [12, Lemma 4.2] is revisited.
The lower bound in the above reference is proven to be proportional to p−2, where p is a polynomial
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Key words. inequality, Lagrange interpolation estimates, finite elements, scalar conservation
laws, convergence

AMS subject classifications. 65M60

1. Introduction. The stabilized finite element method is one of the most in-
vestigated numerical methods for over three decades and it goes back to early work
of Brooks and Hughes [1] and Johnson et al. [8]. The finite element discretization is
stabilized by adding a residual based nonlinear term, the so-called streamline diffusion
term. This approach is then successfully applied to many problems including com-
pressible and incompressible fluid flows, see e.g. Hughes and Tezduyar [6], Johnson
and Saranen [10], Hughes et al. [4]. Soon after the introduction of this method it
was observed that the streamline diffusion method could not fully suppress the Gibbs
phenomenon. The so-called discontinuous or shock-capturing techniques have been
developed by Hughes et al. [5], Hughes and Mallet [3], Tezduyar and Park [15], John-
son and Szepessy [7], where the main idea was to introduce another dissipation in the
direction normal to the gradient of the transport quantity.

However, no theoretical justification of showing improvements of solutions from
these shock-capturing methods was available until Johnson et al. [9]. In Johnson et al.
[9] the authors proposed to construct the shock-capturing term as a certain artificial
viscosity with a residual-based viscosity coefficient. The convergence of the streamline
diffusion method augmented with a residual-based shock-capturing mechanism has
been known since the groundbreaking work of Szepessy [13, 12], Johnson et al. [9],
Szepessy [14]. Szepessy’s proof is based on the theory of measure-valued solutions
introduced by DiPerna [2]. The three ingredients of the proof are as follows: (1)
uniform boundedness in L∞; (2) weak consistency with all entropy inequalities; (3)
strong consistency with the initial data. One should remark that the nonlinear shock-
capturing term is the main term that is needed to achieve the convergence. Recently,
it has been shown by Nazarov [11] that by disregarding the streamline diffusion term
entirely and by having only residual based shock-capturing or artificial diffusion one
can prove the convergence to the unique entropy solution.

The first condition of DiPerna, the uniform boundedness in L∞, or the so-called
maximum principle, is one of the key points for the convergence of numerical methods
and analysis of nonlinear hyperbolic equations. In the above references, the L∞-bound
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is proved using interpolation estimates of Szepessy [12, Lemmas 3.4, 4.2]. The main
contribution of this paper is to improve Lemma 4.2 of Szepessy [12] and derive the
optimal estimate in terms of polynomial degree, p. The original estimate gives the
lower bound proportional to the negative square of p (p−2), which obviously goes
to zero as p increases. We prove that the lower bound proportional to the square
of logarithm of p (ln2 p), which is increasing function, moreover we show that this
lower bound is sharp. This result gives us that convergence results of finite element
discretizations of scalar conservation laws can be obtained by using less amount of
viscosity than it has been used in the literature.

The paper is organized as follows: the problem formulation and the main results
are stated in §2; the proof of the lower estimate is given in §3; and finally the proof
of the upper estimate is provided in §4.

2. Main results. Let {Th}h>0 be a shape-regular mesh family of R2, K ∈ Th
be an element of this mesh. We introduce the following finite element space

V = {v ∈ H1(R2) : v ∈ C0(R2), v|K∈ P1(K)},

where P1(K) is the set of two-variate polynomials over K of total degree at most 1.
The standard Lagrange interpolation operator in V is denoted by π.

The following lemma is an essential ingredient for the L∞-bound that is used in
the above literature:

Lemma 2.1. There is a uniform constant C > 0 such that the following inequality
holds for all p = 2m, m = 1, 2, 3, . . . and all U ∈ V :∫

Th
∇U ·∇π(Up−1) dx ≥ CM(p)

∑
K∈Th

∫
K

|∇U |2Up−2 dx, (2.1)

where M(p) is a constant depending only on p.
In Szepessy [12, Lemma 4.2], Johnson et al. [9, Lemma 4.2], and Szepessy [14,

Lemma 3.3], the function M(p) is defined to be M(p) = 1/p2, which gives a very weak
estimate, since 1/p2 goes fast to zero as p→∞. The main contribution of this paper
is to improve the estimate (2.1) significantly. It is stated as the following theorem:

Theorem 2.2. There is a uniform constant C > 0 such that the inequality (2.1)
holds for M(p) = ln2 p, p = 2m, m = 1, 2, 3, . . . and all U ∈ V .

The function M(p) = ln2 p is an increasing function. Here we formulate the
second contribution of this paper that shows that this constant is optimal:

Theorem 2.3. Assume T0 is a triangulation which consists of only one right
triangle K0. Then there exists a function U ∈ V such that∫

K0

∇U ·∇π(Up−1) dx < C0M(p)

∫
K0

|∇U |2Up−2 dx, (2.2)

for all p = 2m, m = 1, 2, 3, . . ., where C0 > 0 is a constant independent of p.
In other words Theorem 2.3 proves that the inequality (2.1) is sharp, i.e there

is no another function M(p) 6= ln2 p such that satisfies the inequality (2.1) and
limp→∞M(p)/ln2 p =∞.

We give the details of the proof of theorems in the following sections.

3. Proof of Theorem 2.2. Let us consider a right triangle K ∈ Th given as in
Fig 3.1(a), with sides of length a and b. The function U in this triangle is defined as

U = y1 +
x1
a

(y2 − y1) +
x2
b

(y3 − y1),
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(a) (b)

Fig. 3.1. The local element of the triangulation in 2D

where yi, i = 1, 2, 3 are the nodal values of the function, x1 and x2 are the coordinate
directions, (x1, x2) ∈ R2.

Since ∇U ·∇π(Up−1) and |∇U |2 are constant on K therefore it is sufficient to
prove the inequality for one triangle. For this purpose, let us define two functions
FK,p and Sp such as

FK,p(y1, y2, y3) =

∫
K
∇U ·∇π(Up−1) dx

|∇U |2
and Sp(y1, y2, y3) =

∫
K

Up−2 dx.

A simple algebra gives that ∇U =
(
1
a (y2 − y1), 1b (y3 − y1)

)
, and ∇π(Up−1) =(

1
a (yp−12 − yp−11 ), 1b (yp−13 − yp−11 )

)
,

FK,p(y1, y2, y3) =
1
a2 (y2 − y1)(yp−12 − yp−11 ) + 1

b2 (y3 − y1)(yp−13 − yp−11 )
1
a2 (y2 − y1)2 + 1

b2 (y3 − y1)2
· ab

2

By defining the constants Ca,b, C
′
a,b and the function Fp(y1, y2, y3) such as

Ca,b :=
ab

2
min

(
a2

b2
,
b2

a2

)
C ′a,b :=

ab

2
max

(
a2

b2
,
b2

a2

)
.

Fp(y1, y2, y3) :=
(y2 − y1)(yp−12 − yp−11 ) + (y3 − y1)(yp−13 − yp−11 )

(y2 − y1)2 + (y3 − y1)2
,

we get the following relation:

Ca,b · Fp(y1, y2, y3) ≤ FK,p(y1, y2, y3) ≤ C ′a,b · Fp(y1, y2, y3). (3.1)

Then, the proof of the theorem consists of minimizing the following relation

Fp(y1, y2, y3)

Sp(y1, y2, y3)
,

where |yi|≤ 1, i = 1, 2, 3, and Sp is the integral of Up−2 over the triangle K:

Sp(y1, y2, y3) =

∫
K

Up−2 dx

=

∫ b

0

∫ a(1− x2b )

0

(
y1 +

x1
a

(y2 − y1) +
x2
b

(y3 − y1)
)p−2

dx1 dx2

=
ab

p(p− 1)

1

y2 − y1

[
yp3 − y

p
2

y3 − y2
− yp3 − y

p
1

y3 − y1

]
.



4 È. MUHAMADIEV AND M. NAZAROV

Note, that the function Sp has the following symmetry property:

Sp(1, x, y) = Sp(x, 1, y) = Sp(x, y, 1), ∀x, y.

We consider two possible cases: first we consider y1 = 1 and perform the analysis,
then we continue with the case when y2 = 1.

Remark 3.1. The following proof is valid to any triangle: consider the element in
Fig 3.1(b). We can easily construct two right triangles by setting an inner altitude
and apply the following discussion for each of them.

Case 1. Let us consider the case when y1 = 1. We denote x = y2, y = y3,
F1p(x, y) := Fp(1, x, y), i.e.

F1p(x, y) =
(1− x)(1− xp−1) + (1− y)(1− yp−1)

(1− x)2 + (1− y)2
,

and Sp(x, y) = Sp(1, x, y).
The result for this case follows from the following lemma.
Lemma 3.1. The following estimate holds

F1p(x, y)

Sp(x, y)
≥ p− 1

2ab
, −1 ≤ x, y ≤ 1.

Proof. First, let us consider the case x ≤ 0 or y ≤ 0.
For any real numbers u and v the following holds

up − vp

u− v
=

p−1∑
i=0

uivp−1−i =

p−1∑
i=0

up−1−ivi. (3.2)

Now, using the fact that
∑p−2
i=0 x

i = 1−xp−1

1−x ≥ 1
2 , we easily get

F1p(x, y) =
(1− x)(1− xp−1) + (1− y)(1− yp−1)

(1− x)2 + (1− y)2

=
(1− x)2

∑p−2
i=0 x

i + (1− y)2
∑p−2
i=0 y

i

(1− x)2 + (1− y)2
≥ 1

2
.

(3.3)

On the other hand if x ≤ 0 and −1 ≤ y ≤ 1 using (3.2) and by noting that
1− xp−1−2j + y(1− xp−2−2j) ≤ 2 we obtain

Sp(x, y) =
ab

p(p− 1)

1

1− x

[
1− yp

1− y
− yp − xp

y − x

]
≤ ab

p(p− 1)

p−1∑
i=0

yi(1− xp−1−i)

=
ab

p(p− 1)

[
p/2−1∑
j=0

y2j
(
1− xp−1−2j + y(1− xp−2−2j)

)]

≤ ab

p(p− 1)
· 2 ·

p/2−1∑
j=0

y2j ≤ ab

p− 1
.

Analogously, we get the same estimate for the case when y ≤ 0 and −1 ≤ x ≤ 1.
Therefore,

Sp(x, y) ≤ ab

p− 1
, x ≤ 0 or y ≤ 0. (3.4)
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Using (3.4) and (3.3) we get the desired estimate of the proof for x ≤ 0 or y ≤ 0.
Then, let us consider the case when x ≥ 0, y ≥ 0. We have

Sp(x, y) =
ab

p(p− 1)

1

y − x

[
1− yp

1− y
− 1− xp

1− x

]
≤ ab

p(p− 1)

p−2∑
i=0

xi
p−2−i∑
j=0

yj

≤ ab

p(p− 1)

p−2∑
i=0

xi(p− 1− i) ≤ ab

p

p−2∑
i=0

xi.

Analogously, we get

Sp(x, y) ≤ ab

p

p−2∑
i=0

yi.

From the last estimates of Sp(x, y) and the formula (3.2) it follows that[
(1− x)2 + (1− y)2

]
Sp(x, y) = (1− x)2Sp(x, y) + (1− y)2Sp(x, y)

≤ ab

p

[
(1− x)2

p−2∑
i=0

xi + (1− y)2
p−2∑
i=0

yi

]

=
ab

p

[
(1− x)(1− xp−1) + (1− y)(1− yp−1)

]
=
ab

p

[
(1− x)2 + (1− y)2

]
F1p(x, y).

We get that Sp(x, y) ≤ ab
p F1p(x, y) or

F1p(x, y)

Sp(x, y)
≥ p

ab
>
p− 1

2ab
, 0 ≤ x, y < 1.

The proof of the lemma is completed here.

Case 2. Assume y2 = 1, |y1|, |y3|≤ 1. For simplicity, we denote x = y1 and
y = y3, Fp(x, y) := Fp(x, 1, y) and Sp(x, y) := Sp(x, 1, y) for the rest of the proof.
Then, the functions take the following form

Fp(x, y) =
(1− x)(1− xp−1) + (x− y)(xp−1 − yp−1)

(1− x)2 + (x− y)2
, (3.5)

Sp(x, y) =
ab

p(p− 1)

1

x− y

[
1− xp

1− x
− 1− yp

1− y

]
. (3.6)

Let us introduce the following auxiliary function:

Gp(x, y) :=
(
xp−1 − yp−1

)(1− xp

1− x
− 1− yp

1− y

)−1
; 0 ≤ x < 1, −1 ≤ y < 1, x 6= y.

(3.7)
We remark, that the function Sp(x, y) has a continuous extension on the lines

x = y, x = 1, y = 1 and at the point x = y = 1. For instance on the line y = x we
have

Sp(x, y) =
ab

p(p− 1)

d

dx

[
1− xp

1− x

]
=
−pxp−1(1− x) + (1− xp)

(1− xp)
; 0 ≤ x ≤ 1,
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and on the line y = 1

Sp(x, y) =
ab

p(p− 1)

1

x− 1

[
1− xp

1− x
− p
]

; 0 ≤ x ≤ 1,

and at the point (x, y) = (1, 1)

Sp(x, y) =
ab

p(p− 1)
p(p− 1) = ab.

The function Gp(x, y) which is defined in (3.7) is symmetric, i.e. Gp(x, y) =
Gp(y, x), and has a continuous extension at the closed unit square {(x, y) : 0 ≤ x, y ≤
1}. For instance, at points (x, 1), 0 ≤ x < 1 it is defined as

Gp(x, 1) =
(
xp−1 − 1

)(1− xp

1− x
− p
)−1

; 0 ≤ x < 1,

and at the point (1, 1)

Gp(1, 1) = (p− 1)

(
p(p− 1)

2

)−1
=

2

p
.

Using these properties, the continuous extension at points x = y, 0 ≤ x < 1 is
obtained using the relation (3.2). In fact,

Gp(x, y) =

(
(x− y)

p−2∑
j=0

xp−j−2yj

)(
p−1∑
i=0

xi −
p−1∑
i=0

yi

)−1

=

(
(x− y)

p−2∑
j=0

xp−j−2yj

)(
p−1∑
i=1

(x− y)

i−1∑
j=0

xi−1−jyj

)−1

=

(
p−2∑
j=0

xp−j−2yj

)(
p−1∑
i=1

i−1∑
j=0

xi−1−jyj

)−1
.

From this representation it follows that the function Gp has a continuous extension
at the closed unit square (x, y) : 0 ≤ x, y ≤ 1.

The following relations for the functions Fp(x, y), Sp(x, y) and Gp(x, y) are used
in the below analysis:

Fp(x, y) =
(1− x)2(1− y)

(1− x)2 + (x− y)2
p(p− 1)

ab
Sp(x, y)

+

[
1− (1− x)2(1− y)

(1− x)2 + (x− y)2

]
xp−1 − yp−1

x− y
,

and for any 0 ≤ x < 1, −1 ≤ y < 1, x 6= y

Fp(x, y)

Sp(x, y)
=
p(p− 1)

ab

{
(1− x)2(1− y)

(1− x)2 + (x− y)2

+

[
1− (1− x)2(1− y)

(1− x)2 + (x− y)2

]
Gp(x, y)

}
.

(3.8)
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The relation between the functions Fp, Sp and Gp (3.8) is important in the proof.
In some quadrants the first term of the expression inside the brackets is enough to
use, while the second term gives very crucial estimates that we are going to discuss
below.

Next, let us define another auxiliary function ψ(p) as the solution of the following
equation

ψ(p)eψ(p) = p, p > 0.

The existence of this solution comes from the monotonicity of the function ψeψ. From
the definition of ψ(p) it follows that ψ(p)→∞ as p→∞. By taking a logarithm and
then a limit from the last equation we get that

ψ(p)

ln p

(
1 +

lnψ(p)

ψ(p)

)
= 1, and lim

p→∞

ψ(p)

ln p
= lim
p→∞

(
1 +

lnψ(p)

ψ(p)

)−1
= 1,

i.e. the function ψ(p) has the same asymptotic rate as ln p. Below, we shall prove
that the lower bound that we are looking for is proportional to the square of ψ(p),
that will then complete the proof.

Let us now define a number

Cp = inf

{
Fp(x, y)

Sp(x, y)
: −1 ≤ x, y < 1

}
, p = 2, 4, . . . .

The rest of the proof studies the behavior of the sequence {Cp}∞p=2 when p→∞. To
simplify the discussion, we split the unit square −1 ≤ x, y ≤ 1 into four quadrants
and consider each of them separately.

Quadrant I: 0 ≤ x, y ≤ 1. Note that on this quadrant we have that

0 ≤ (1− x)2(1− y)

(1− x)2 + (x− y)2
≤ 1.

First, we prove the following property of the function Gp, that will be used for
the proof for this quadrant.

Lemma 3.2. The function Gp(x, y) increases with respect to y, i.e.

Gp(x, 0) ≤ Gp(x, y).

Proof. Since Gp(x, y) = (xp−1 − yp−1)
(∑p−1

i=1 (xi − yi)
)−1

, and

∂Gp
∂y

(x, y) =

(
−(p−1)yp−2

p−1∑
i=1

(xi−yi)+(xp−1−yp−1)

p−1∑
i=1

iyi−1

)(
p−1∑
i=1

(xi−yi)

)−2
,

therefore, for the proof of the lemma it is enough to establish that the numerator of
the last equality is non-negative. The numerator can be written as

p−1∑
i=1

(p− 1)yp−2(yi − xi)−
p−1∑
i=1

iyi−1(yp−1 − xp−1)
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=

p−1∑
i=1

[
(p− 1)yp−2(yi − xi)− iyi−1(yp−1 − xp−1)

]
.

Lemma A.1, presented in the Appendix A, proves that each terms of the last sum is
non-negative. The lemma is proved here.

The following lemma gives the relation between two auxiliary functions Gp(x, y)
and ψ(p).

Lemma 3.3. For every p = 2, 4, . . . and 0 ≤ x, y ≤ 1 such that either 1− ψ(p)
p < x

or 1− ψ(p)
p < y the following estimate holds:

Gp(x, y) ≥ ψ2(p)

p2
e−

ψ2(p)
2(p−ψ(p)) . (3.9)

Proof. Assume that x > 1− ψ(p)
p . According to Lemma 3.2 we obtain

Gp(x, y) ≥ Gp(x, 0) =
(1− x)xp−1

(1− xp)− (1− x)
=

(1− x)xp−1

x(1− xp−1)
.

By the symmetry of Gp(x, y) and Lemma 3.2 it follows that the function Gp(x, 0)
increases at the interval 0 ≤ x ≤ 1. Therefore,

Gp(x, 0) ≥ Gp
(

1− ψ(p)

p
, 0
)

; 1− ψ(p)

p
≤ x ≤ 1.

Let us now estimate the value

Gp

(
1− ψ(p)

p
, 0
)

=

(
ψ(p)

p

(
1− ψ(p)

p

)p−2)(
1−

(
1− ψ(p)

p

)p−1)−1
.

Using Lemma A.3 from Appendix A we obtain:(
1− ψ(p)

p

)p−2
≥
(

1− ψ(p)

p

)p
≥ e−ψ(p)[1+

ψ(p)
2(p−ψ(p)) ]

= e−ψ(p)e−
ψ2(p)

2(p−ψ(p)) =
ψ(p)

p
e−

ψ2(p)
2(p−ψ(p)) .

Thus,

Gp

(
1− ψ(p)

p
, 0
)
≥
(
ψ2(p)

p2
e−

ψ2(p)
2(p−ψ(p))

)(
1−

(
1− ψ(p)

p

)p−1)−1
≥ ψ2(p)

p2
e−

ψ2(p)
2(p−ψ(p)) .

By the symmetry of Gp, the same estimate is true for y < 1− ψ(p)
p .

We now formulate the main result for this quadrant.
Theorem 3.4. For the sequence of the numbers

C ′p = inf

{
Fp(x, y)

Sp(x, y)
: 0 ≤ x, y ≤ 1

}
, p = 2, 4, . . .
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there exists a constant d > 0 independent of p such that the following estimate holds

C ′p ≥ d · ψ2(p), p = 2, 4, . . . . (3.10)

Proof. Consider two possible situations for the terms of the relation (3.8)

(a)
(1− x)2(1− y)

(1− x)2 + (x− y)2
≥ ψ2(p)

2p2
; (b)

(1− x)2(1− y)

(1− x)2 + (x− y)2
<
ψ2(p)

2p2
.

In case (a), form (3.8) it easily follows that

Fp(x, y)

Sp(x, y)
≥
(

1− 1

p

) 1

2ab
ψ2(p). (3.11)

In case (b), let us consider two sets of points y ≤ x and x < y.
(i) {(x, y) : 0 ≤ y ≤ x ≤ 1}. Since

(1− x)2(1− y)

(1− x)2 + (x− y)2
≥ (1− x)2(1− y)

(1− x)2 + (1− y)2

=
(1− x)2 · 1

1−y(
1−x
1−y

)2
+ 1

≥ 1

2

(1− x)2

1− y
≥ (1− x)2

2
,

we get that 1− x < ψ(p)
p , i.e. x > 1− ψ(p)

p .

(ii) {(x, y) : 0 ≤ x < y ≤ 1}. For this set the following inequality holds

(1− x)2(1− y)

(1− x)2 + (x− y)2
≥ 1− y

2
,

which gives us 1
2 (1− y) < ψ2(p)

2p2 and therefore y > 1− ψ(p)
p .

Thanks to Lemma 3.3 for either x > 1− ψ(p)
p or y > 1− ψ(p)

p we have

Fp(x, y)

Sp(x, y)
≥ p(p− 1)

ab

(
1− ψ2(p)

2p2

)
Gp(x, y)

≥ p(p− 1)

ab

(
1− ψ2(p)

2p2

)
e−

ψ2(p)
2(p−ψ(p))

ψ2(p)

p2
.

(3.12)

The desired inequality (3.10) is obtained from the inequalities (3.11) in case (a),
and (3.12) in case (b), and by setting

d = min
p=2,4,...

{(
1− 1

p

) 1

2ab

(
1− ψ2(p)

2p2

)
e−

ψ2(p)
2(p−ψ(p))

}
. (3.13)

Now, we continue with the remaining quadrants. Below, the estimates on Quad-
rants II and III are obtained easily, while it is rather technical for Quadrant IV.

Quadrants II and III: x ≤ 0.
For these quadrants we easily get

Fp(x, y) =
(1− x)(1− xp−1) + (x− y)(xp−1 − yp−1)

(1− x)2 + (x− y)2
≥ (1− 0)(1− 0) + 0

22 + 22
=

1

8
,
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and by (3.4) we have

Fp(x, y)

Sp(x, y)
≥ p− 1

8ab
.

Quadrant IV: 0 ≤ x ≤ 1;−1 ≤ y ≤ 0.
Let us consider the following set

E = {(x, y) : 0 ≤ x ≤ 1;−1 ≤ y ≤ 0}.

Note, that for x = 1 the desired result follows from Lemma 3.1 in Case 1. The idea is
now to split the set E into the following subsets and consider each subset separately:

E1 =

{
(x, y) : 0 ≤ x ≤ 1

2
;−1 ≤ y ≤ 0

}
,

E1p =

{
(x, y) :

1

2
< x ≤ 1− ψ(p)

p
;−1 ≤ y ≤ 0

}
,

E2p =

{
(x, y) : 1− ψ(p)

p
< x < 1;−1 ≤ y ≤ 0

}
.

It turns out that
Fp(x,y)
Sp(x,y)

minimizes at the region 1
2 < x < 1. Therefore, for this

region we discuss each term of the expression inside the brackets of (3.8) and take
advantage of the properties of Gp(x, y).

I. Assume (x, y) ∈ E1. From the inequality

1

2
≤ (1− x)2 + (x− y)2 ≤ 4, (x, y) ∈ E (3.14)

we get that

Fp(x, y) =
(1− x)(1− xp−1) + (x− y)(xp−1 − yp−1)

(1− x)2 + (x− y)2

≥ 1

4
(1− x)(1− xp−1) ≥ 1

16
,

and by (3.4) we get:

Fp(x, y)

Sp(x, y)
≥ p− 1

16ab
, (x, y) ∈ E1. (3.15)

II. Assume (x, y) ∈ E1p. Using the inequality (3.14) we get

(1− x)2

4
≤ (1− x)2(1− y)

(1− x)2 + (x− y)2
≤ 4(1− x)2, (x, y) ∈ E. (3.16)

It follows that

(1− x)2(1− y)

(1− x)2 + (x− y)2
≤ 1, (x, y) ∈ E1p. (3.17)

By using the last inequality (3.17) and the fact that Gp(x, y) ≥ 0, for p = 2, 4, . . .,
(x, y) ∈ E, from the relation (3.8) we get the following estimate

Fp(x, y)

Sp(x, y)
≥ p(p− 1)

ab

(1− x)2(1− y)

(1− x)2 + (x− y)2
≥ p(p− 1)

ab

1

4
(1− x)2
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≥ p(p− 1)

4ab
· ψ

2(p)

p2
=
(

1− 1

p

)
· 1

4ab
ψ2(p).

Thus, we obtain that

Fp(x, y)

Sp(x, y)
≥
(

1− 1

p

) 1

4ab
ψ2(p), (x, y) ∈ E1p. (3.18)

III. Assume (x, y) ∈ E2p. Let us consider the region 0 < 1−x ≤ ψ(p)
p , −1 ≤ y ≤ 0.

First of all, let us show that for every p = 4, 6, . . .

1− xp

1− x
− 3

2
≥ 0, (x, y) ∈ E2p. (3.19)

Since the function 1−xp
1−x = 1 + · · ·+ xp−1, 0 ≤ x ≤ 1, is increasing, it is sufficient

to show that

1− xpp
1− xp

≥ 3

2
, xp = 1− ψ(p)

p
.

By virtue of the inequality (1− ψ(p)
p )p < e−p

ψ(p)
p = e−ψ(p) = ψ(p)

p , we obtain that
1−xpp
1−xp ≥ (1 − ψ(p)

p )/(ψ(p)p ) = p
ψ(p) − 1, and hence, if p

ψ(p) − 1 ≥ 3
2 , p = 4, 6, . . . , then

(3.19) holds. In fact, note that p
ψ(p) ≥

5
2 when p ≥ 4. Therefore, (3.19) is true.

By virtue of (3.19) for all (x, y) ∈ E2p we have the following inequalities:

(1− y)(1− xp)− (1− x)(1− yp) > 0,

(1− x)(1− y)(xp−1 − yp−1) ≥ (1− x)(1− y)xp−1,

(1− y)(1− xp)− (1− x)(1− yp) ≤ (1− y)(1− xp).
(3.20)

Next, let us show that the following inequality holds:

Gp(x, y) ≥ 1

3
Gp(x, 0), (x, y) ∈ E2p. (3.21)

When p = 2 the inequality (3.21) passes into 1 ≥ 1
3 . Consider the case when

p ≥ 4. Using the inequalities (3.20) we get

Gp(x, y)− 1

3
Gp(x, 0) =

(1− x)(1− y)(xp−1 − yp−1)

(1− y)(1− xp)− (1− x)(1− yp)
− 1

3

(1− x)xp−2

1− xp−1

≥ (1− x)xp−1

1− xp
− 1

3

(1− x)xp−2

1− xp−1

=
2

3

(1− x)2xp−2

(1− xp−1)(1− xp)
·
(1− xp

1− x
− 3

2

)
.

From here and the inequality (3.19) we get (3.21).

Let us come back to our main question which is estimating the function
Fp(x,y)
Sp(x,y)

in the set E2p. From the inequality (3.16) we have

(1− x)2(1− y)

(1− x)2 + (x− y)2
≤ 4

ψ2(p)

p2
, (x, y) ∈ E2p,
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and therefore

Fp(x, y)

Sp(x, y)
≥ p(p− 1)

ab

[
1− (1− x)2(1− y)

(1− x)2 + (x− y)2

]
Gp(x, y)

≥ p(p− 1)

ab

(
1− 4

ψ2(p)

p2

)1

3
Gp(x, 0).

On the other hand Lemma 3.3 gives us that for all x > 1 − ψ(p)
p we have that

Gp(x, 0) ≥ ψ2(p)
p2 e−

ψ2(p)
2(p−ψ(p)) . So,

Fp(x, y)

Sp(x, y)
≥
(

1− 1

p

) 1

3ab

(
1− 4

ψ2(p)

p2

)
e−

ψ2(p)
2(p−ψ(p)) · ψ2(p). (3.22)

Let us define the number

d1 = min

{
min

p=2,4,...

p− 1

16ab
· 1

ψ2(p)
, min
p=2,4,...

(
1− 1

p

) 1

3ab

(
1− 4

ψ2(p)

p2

)
e−

ψ2(p)
2(p−ψ(p))

}
.

(3.23)
The following theorem follows from estimates (3.15), (3.18) and (3.22)
Theorem 3.5. The sequence of numbers

C ′′p = inf

{
Fp(x, y)

Sp(x, y)
: 0 ≤ x ≤ 1, −1 ≤ y ≤ 0

}
, p = 2, 4, . . .

satisfies the following estimate

C ′′p ≥ d1 · ψ2(p), p = 2, 4, . . . , (3.24)

where d1 is defined in (3.23).
Here we complete the proof of Theorem 2.2.

4. Proof of Theorem 2.3. The idea consists in constructing a piecewise linear
function such that the inequality in Theorem 2.3 is satisfies. Let us construct a

function Up by setting y1 = 1− ψ(p)
p , y2 = 1 and y3 = 0:

Up = 1− ψ(p)

p
+
x1
a

ψ(p)

p
− x2

b

(
1− ψ(p)

p

)
.

Next we recall, that

Fp(x, 0)

Sp(x, 0)
=
p(p− 1)

ab

1

(1− x)2 + x2

{
(1− x)2 +

1− x
1− xp−1

xp
}
.

For the points xp = 1− ψ(p)
p the following limits hold:

lim
p→∞

1

(1− xp)2 + x2p
=

1

0 + (1− 0)2
= 1;

lim
p→∞

p(p− 1)

ψ2(p)
(1− xp)2 = lim

p→∞

(
1− 1

p

)
= 1;
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and

lim
p→∞

p(p− 1)

ψ2(p)

1− xp
1− xp−1p

· xpp

= lim
p→∞

p− 1

p

p

ψ(p)

(
1− ψ(p)

p

)p
· lim
p→∞

(
1−

(
1− ψ(p)

p

)p−1)−1
= 1.

Note that, the second limit in the last equality is 1, which is the result of the formula
limu→∞(1− 1

u )u = e−1. For the first limit we have used:

p

ψ(p)

(
1− ψ(p)

p

)p
= eψ(p) · ep ln(1−ψ(p)

p ) = eψ(p) · e
−p

{
ψ(p)
p +

ψ2(p)

2p2
+
ψ3(p)

3p3
+...

}

= eψ(p) · e
−
{
ψ(p)+

ψ2(p)
2p +

ψ3(p)

3p2
+...

}
= e
−
{
ψ2(p)

2p +
ψ3(p)

3p2
+...

}
.

The following equality follows by using the last relation and properties of the function

ψ(p): ψ(p)
p → 0, ψ2(p)

p → 0 as p→∞:

lim
p→∞

p

ψ(p)

(
1− ψ(p)

p

)p
= 1.

Thus, we finally obtain

lim
p→∞

1

ψ2(p)

Fp(xp, 0)

Sp(xp, 0)
=

2

ab
,

that means that there exists p0 such that for all p > p0

1

ψ2(p)

Fp(xp, 0)

Sp(xp, 0)
≤ 3

ab
or Fp(xp, 0) ≤ 3ψ2(p)

ab
Sp(xp, 0).

Coming back to the inequality (3.1) we get

1

C ′a,b
FK,p(xp, 1, 0) ≤ Fp(xp, 1, 0) ≤ 3ψ2(p)

ab
Sp(xp, 1, 0), ∀p > p0.

By defining

C0 = max

{
3C ′a,b
ab

, max
p=2,4,...,p0

{ Fp(xp, 1, 0)

ψ2(p)Sp(xp, 1, 0)

}}
,

we get

FK,p(xp, 1, 0) ≤ C0ψ
2(p)Sp(xp, 1, 0), p = 2, 4, . . . .

Since ψ2(p) ≤M(p) = ln2 p, we finally get

FK,p(xp, 1, 0)

Sp(xp, 1, 0)
≤ C0M(p), p = 2, 4, . . . .

That shows that for the function Up the inequality of Theorem 2.3 is satisfied.
Here the proof of Theorem 2.3 is completed.
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4.1. Final remarks. The estimates on Theorems 3.4 and 3.5 provide the fol-
lowing corollary:

Corollary 4.1. For any γ > 0, the sequence {C ′p}∞p=2 satisfies the following
condition

lim
p→∞

p−γC ′p = 0.

Note, that Cp ≤ C ′p, therefore Corollary 4.1 is also true for Cp. In other words,
Corollary 4.1 shows that the lower bound M(p) cannot be proportional to any positive
power of p.

Acknowledgments. The authors are thankful to Jean-Luc Guermond and Bo-
jan Popov to helpful discussions and remarks.

Appendix A.
Lemma A.1. The following equality holds

(p− 1)yp−2(yi − xi)− iyi−1(yp−1 − xp−1) ≡
p−2∑
l=i

i−1∑
j=0

yp−3+i−lxj(yl−j − xl−j)(y − x),

for any 0 ≤ x, y ≤ 1 and p = 2, 4, . . ..
Proof.

(p− 1)yp−2(yi − xi)− iyi−1(yp−1 − xp−1)

=

p−2∑
l=0

yp−2(y − x)

i−1∑
j=0

xjyi−1−j −
i−1∑
j=0

yi−1(y − x)

p−2∑
l=0

xlyp−2−l

= (y − x)

(
p−2∑
l=0

i−1∑
j=0

xjyp−3+i−j −
i−1∑
j=0

p−2∑
l=0

xlyp−3+i−l

)

= (y − x)

(
p−2∑
l=i

i−1∑
j=0

xjyp−3+i−l(yl−j − xl−j)

)

=

p−2∑
l=i

i−1∑
j=0

xjyp−3+i−l(yl−j − xl−j)(y − x).

Lemma A.2. The following inequality holds

xp < e−p(1−x), 0 < x < 1, p > 0.

Proof. From the decomposition of eu we get

eu = 1 +
u

1!
+
u2

2!
+ . . .+

uk

k!
+ . . . < 1 + u+ u2 + . . .+ uk =

1

1− u
, 0 < u < 1,

or we can rewrite it as 1 − u < e−u. From this inequality by setting x = 1 − u,
u = 1 − x we obtain x < e−(1−x), 0 < x < 1. By raising the last inequality to the
power p > 0 we obtain the desired estimate.
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Lemma A.3. The following inequality holds

x > e−(1−x)(1+
1−x
2x ), 0 < x < 1.

Proof. Since ln(1− u) = −
(
u+ u2

2 + u3

3 + . . .
)

, 0 < u < 1, and

u+
u2

2
+
u3

3
+ . . . < u

(
1 +

u

2
+
u2

2
+
u3

2
. . .

)
= u

(
1 +

u

2(1− u)

)
,

that is

ln(1− u) > −u
(

1 +
u

2(1− u)

)
or 1− u > e−u(1+

u
2(1−u) ).

Here by substituting 1− u = x, u = 1− x we obtain the desired estimate.
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