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Abstract. This paper presents a novel counter-example guided abstrac-
tion refinement algorithm for the automatic verification of concurrent
programs. Our algorithm proceeds in different steps. It first constructs
an abstraction of the original program by slicing away a given subset of
variables. Then, it uses an external model checker as a backend tool to
analyze the correctness of the abstract program. If the model checker
returns that the abstract program is safe then we conclude that the orig-
inal one is also safe. If the abstract program is unsafe, we extract an
“abstract” counter-example. In order to check if the abstract counter-
example can lead to a real counter-example of the original program,
we add back to the abstract counter-example all the omitted variables
(that have been sliced away) to obtain a new program. Then, we call
recursively our algorithm on the new obtained program. If the recursive
call of our algorithm returns that the new program is unsafe, then we
can conclude that the original program is also unsafe and our algorithm
terminates. Otherwise, we refine the abstract program by removing the
abstract counter-example from its set of possible runs. Finally, we repeat
the procedure with the refined abstract program. We have implemented
our algorithm, and run it successfully on the concurrency benchmarks in
SV-COMP15. Our experimental results show that our algorithm signifi-
cantly improves the performance of the backend tool.

1 Introduction

Leveraging concurrency effectively has become key to enhancing the performance
of software, to the degree that concurrent programs have become crucial parts of
many applications. At the same time, concurrency gives rise to enormously com-
plicated behaviors, making the task of producing correct concurrent programs
more and more difficult. The main reason for this is the large number of pos-
sible computations caused by many possible thread (or process) interleavings.
Unexpected interference among threads often results in Heisenbugs that are dif-
ficult to reproduce and eliminate. Extensive efforts have been devoted to address
this problem by the development of testing and verification techniques. Model
checking addresses the problem by systematically exploring the state space of a
given program and verifying that each reachable state satisfies a given property.
Applying model checking to realistic programs is problematic, due to the state
explosion problem. The reason is that we need (1) to exhaustively explore the
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entire reachable state space in all possible interleavings, and (2) to capture and
store a large number of global states.

Counter-Example Guided Abstraction Refinement (CEGAR) (e.g.,
[5,15,4,11,17]) approach is one of the successful techniques for verifying
programs. This approach consists in four basic steps:

– Abstraction step: Construct a finite-state program as an abstraction of the
original program using predicate abstraction (with a set of predicates) and
go to the Verification step.

– Verification step: Use a model checker to check if the constructed finite state
program satisfies the desired property. If it is the case, then the original
program satisfies also the property and the verification algorithm terminates;
otherwise extract a counter-example and go to the Analysis step.

– Analysis Step: Check if the retuned counter example is spurious or not. If it
is not, then we have a real bug in the original program and the verification
algorithm terminates; otherwise go to the Refinement step.

– Refinement Step: If the counter-example is spurious, refine the set of used
predicates in the Abstraction step to eliminate the counter example. Return
to the Abstraction step with this new refined set of predicates.

The CEGAR approach has been successfully implemented in tools, such as
SLAM [4], BLAST [5], MAGIC [8] and CPAchecker [6]. However, CEGAR
may also suffer from the state-space exploring problem in the case of concurrent
programs due to the large number of possible interleavings.

In this paper we present a variant of the CEGAR algorithm (called Counter-
Example Guided Program Verification (CEGPV)) that addresses the state-space
explosion problem encountered in the verification of concurrent programs. The
work-flow of our CEGPV algorithm is given in Fig. 1. The algorithm consists
of four main modules, the abstraction, the counter-example mapping, the recon-

struction and the refinement. It also uses an external model checker tool.
The abstraction module takes as input a concurrent program P and a subset

V0 of its shared variables. It then constructs an over-approximation of the pro-
gram P , called P ′, as follows. First, it keeps variables in the set V0 and slices
away all other variables of the program P . Occurrences of the sliced variables are
replaced by non-deterministic values. Second, some instructions, where the sliced
variables occur, in the program P can be removed. Then, themodel checker takes
as input P ′, and checks whether it is safe or not. If the model checker returns
that P ′ is safe, then P is also safe, and our algorithm terminates. If P ′ is unsafe,
then the model checker returns a counter-example π′.

The counter-example mapping module takes the counter-example π′ as its
input. It transforms the run π′ to a run π of the program resulting of the ab-

straction module (using V0 as its set of shared variables).
The reconstruction module takes as input the counter-example π of P ′. It

checks whether π can lead to a real counter-example of P . In particular, if P ′ is
identical to P , then the algorithm concludes that P is unsafe, and terminates.
Otherwise, the reconstruction adds back all omitted variables and lines of codes
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to create a program P1 while respecting the flow of the instructions in π and the
valuation of the variables in V0. Hence, P1 has as its set of variables only the
omitted ones. Then, CEGPV algorithm then recursively calls itself to check P1

in its next iteration. If the iteration returns that P1 is unsafe, then the run π
leads to a counter-example of the program P . The algorithm concludes that P is
unsafe and terminates. Otherwise, the run π cannot lead to a counter-example
of P . Then the algorithm needs to discard the run π from P ′.

The refinement adds π to the set of spurious counter-examples of P ′. It then
refines P ′ by removing all these spurious counter-examples from the set of runs
of P ′. The new resulting program is then given back to the model checker tool.

Our CEGPV algorithm has two advantages. First, it reduces the number of
variables in the model-checked programs to prevent the state-space explosion
problem. Second, all modules are implemented using code-to-code translations.

In order to evaluate the efficiency of our CEGPV algorithm, we have imple-
mented it as a part of an open source tool, called CEGPV, for the verification
of C/pthreads programs. We used CBMC version 5.1 as the backend tool [10].
We then evaluated CEGPV on the benchmark set from the Concurrency cate-
gory of the TACAS Software Verification Competition (SV-COMP15) [2]. Our
experimental results show that CEGPV significantly improve the performance
of CBMC, showing the potential of our approach.

CEGPV Algorithm

Abstraction

Model Checker Refinement

Counter-example
Mapping

Reconstruction CEGPV Algorithm

V0 : V0 ⊆ VP

P

P ′

“Unsafe” π′

π

π“Safe”
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P1,V1 :
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(V0 = VP)“Unsafe” “Unsafe”

Fig. 1: An overview of the CEGPV algorithm.

Related Work. CEGAR is one of the successful techniques used in program
verification. Our CEGPV algorithm can be seen as a new instance of the CEGAR
algorithm that can be implemented on the top of any verification tool. In contrast
with the classical CEGAR algorithms (e.g., [9,5,11,18,12]) where the programs
are abstracted using a set of predicates, our CEGPV algorithm uses variable
slicing techniques to obtain the abstract program.

Variable slicing is also one of the verification guided approaches to address
the state-space exposing problem. In [18], an analysis tool for detecting memory
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leaks is presented based on slicing some of the program variables. Each generated
abstract program is then checked by a backend tool. RankChecker [7] is a testing
tool based on an assumption that most concurrency bugs have a small number of
variables involved. To reduce the search space, it forces processes in a concurrent
program to interleave at certain points that access a subset of variables. Corral
[15] abstracts the input program by only keeping track of a subset of variables. If
the counter-example of the abstract program is spurious, Corral then refines the
abstraction by decreasing the set of omitted variables. The algorithm terminates
once the counter-example corresponds to a run of the original program. Our
CEGPV algorithm also abstract programs by slicing away some variables (as
it is also done by the localization reduction techniques [13,14]). However, our
CEGPV algorithm has the feature to recursively call itself in order to check if
the counter-example can lead to a real one while trying to keep the number of
variables of the model-checked programs as small as possible.

2 Motivating Example

In this section, we informally illustrate the main concepts of our algorithm.

x = y = z = t1 = t2 = 0

process P:

p1: x = y?z?0:1:1;

p2: y = z;

p3: z = 0;

p4: t1 = x;

p5: assert t1+t2 != 1;

process Q:

q1: x = y?0:z?0:1;

q2: y = !z;

q3: z = 1;

q4: t2 = x;

(a) A simple program P

x = y = z = 0

process P:

p1: x = *;

p2: y = z;

p3: z = 0;

p4: t1 = x;

p5: assert t1+t2 != 1;

process Q:

q1: x = *;

q2: y = !z;

q3: z = 1;

q4: t2 = x;

(b) Abstract program P1

Fig. 2: A toy example and its abstraction

x

t1 t2

y z

Fig. 3: Dependency
graph of P .

Fig. 2a is a simplified version of a program in the con-
current C benchmark in SVCOMP [2]. The program P has
two processes, called P and Q, running in parallel. Pro-
cesses communicate through five shared variables which
are x, y, z, t1 and t2, ranging over the set of integers. All
variables are initialized to 0. The behavior of a process is
defined by a list of C-like instructions. Each instruction is
composed of a unique label and a statement. For example,
in process P, the instruction p1: x = y ? z ? 0 : 1 : 1 has p1
as a label, and x = y ? z ? 0 : 1 : 1 as a statement. That
statement is a ternary assignment in which it assigns 0 to
x if both y and z are equal to 1, and assigns 1 to x otherwise. The assertion
labeled by p5 holds if the expression t1 + t2 is different from 1, and in that case
the program is declared to be safe. Otherwise, the program is unsafe.
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In order to apply our algorithm, we first need to determine a subset of pro-
gram variables that will be sliced away. To that aim, we construct a dependency
graph between variables. The dependency graph consists of a number of vertices
and directed edges. Each vertex corresponds to a variable of the program. The
edges describe the flow dependency between these variables. The dependency
graph of the program P is given in Fig. 3. For instance, x depends on both y and
z due to the two assignments labeled by p1 and q1. Similarly, the assignment
labeled by p2 creates a dependency between the variables y and z. We use the
dependency graph to decide the first set of variables to be sliced away. In general,
we keep variables that influence the safety of the program. In the settings of the
example, the variables t1 and t2 are used in the assertion at p5 and therefore we
keep track of the variables t1 and t2. Furthermore, we keep also track of x since
t1 and t2 are dependent on x.

ρ:

p1 (x = 0)

p4 (t1 = 0)

q1 (x = 1)

q4 (t2 = 1)

p5 (assert false)

ϕ:

q1 (x = 1)

q4 ( t2 = 1)

p1 (x = 0)

p4 (t1 = 0)

p5 (assert false)

Fig. 4: Counter-examples of P1

Once we have the subset of variables {t1,
t2, x} to be preserved, we need to slice away
the variables {y, z}. To do that, we abstract
the program by replacing occurrences of the
variables y and z by a non-deterministic
value *. Assignments labeled by p1 and q1
are transformed to x = * ? * : 0 ? 1 ? 1 and
x = * ? 0 : * ? 0 ? 1, respectively. We make a
further optimization to transform these as-
signments to x = *. Since we are not any-
more keeping track of the variables y and z,
instructions which are assignments to these
variables can be removed. In this case, we re-
move the instructions labeled by p2, p3, q2
and q3 from the abstract program. All the
other instructions remain the same. Result-
ing abstract program, called P1, is given in Fig. 2b. P1 has only three variables
t1, t2 and x, and five instructions.

The next step of our algorithm is to feed the abstract program to a model
checker. The model checker checks whether the program is safe or not. If the
program is unsafe, the model checker returns a counter-example. In our case,
since P1 is unsafe, we assume the model checker returns a counter-example, called
ρ, given in Fig. 4. In the obtained counter-example ρ, the process P executes the
instruction labeled by p1. At that instruction, the non-deterministic symbol *
returns the value 0, and therefore x is assigned to 0. Then the process P executes
the instruction labeled by p4 and sets the value of t1 to 0. The control then
switches to the process Q which executes the instructions labeled by q1 and q4.
They evaluate both x and t1 to 1. Then, the assertion in the instruction labeled
by p5 is checked. The expression in the assertion, t1 + t2 != 1, is evaluated to
false, so the program is unsafe.

Although ρ is the counter-example of P1, ρ is not identified to be a counter-
example of P since P1 is an abstraction of P . In order to check whether ρ
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can lead to a counter-example of P , we need to add back some of the omitted
variables and lines of codes. Adding back this information to ρ will result in a
new program, called Sρ. In this case, we add y and z to ρ.

y = z = 0

process P:

p1: assume 0 == y?z?0:1:1;

p2: y = z;

p3: z = 0;

p4: assume 0 == 0

process Q:

q1: assume 1 == y?0:z?0:1;

q2: y = !z;

q3: z = 1;

q4: assume 1 == 1;p5: assert false;

Fig. 5: The program Sρ

The program Sρ is
given in Fig. 5. When
adding back variables, sev-
eral instructions are re-
stored such as the in-
structions labeled by p2,
p3, q2 and q3. Vari-
ables, which appear in the
counter-example, can be
discarded since their val-
ues are known. For exam-
ple, x at p1 in ρ is 0. We replace the occurrence of x in q1 by 1. We also trans-
form the assignment in the instruction labeled by p1 to an assumption to check
whether the value of x is equal to the value of right hand side of assignment,
i.e. assume 0 == y ? z ? 0 : 1 : 1. The assumption blocks the execution until
the expression in the assumption is evaluated to true. Similarly, the instruction
labeled by p4 is transformed to assume 0 == 0. Then, we remove assumptions
that are trivially true such as assume 0 == 0. Since Sρ needs to respect the
order of instructions in ρ, the instruction labeled by p1 is only executed after
the instruction labeled by q3.

x = t1 = t2 = 0

process P:

p1: x = *;

p4: t1 = x;

p5: assert (t1+t2 != 1);

observer :

if x == 0 then

if t1 == 0 then

if x == 1 then

if t2 == 1 then

assume false;

process Q:

q1: x = *;

q4: t2 = x;

Fig. 6: The refined program P2

The model checker
checks Sρ and returns
that Sρ is safe. This
means ρ can not lead to
a counter-example of P .
We then need to refine
P1 to exclude ρ from its
set of runs. Therefore,
we create a refinement of
P1, called P2 and given
in Fig. 6, as follows. We
use an observer to check whether the actual run is identical to the run ρ. Two
runs are identical if (1) their orders of executed instructions are the same, and
(2) valuations of variables after each instruction are the same in both runs. If
the actual run is identical to the run ρ, then that run is safe. For the sake of
simplicity, we model the observer as a sequence of conditional statements. After
each instruction in the run ρ, except the assertion at the end of ρ, we create a
conditional statement to re-evaluate values of variables. For instance, if x ==
0 follows the assignment x = * at p1, where 0 is the value of x at instruction
labeled by p1 in ρ. If if x == 0 is passed, then the execution can check if t1 ==
0 after running assignment t1 = x at p4. Otherwise, the execution is no longer
followed by the observer. If an execution passes all conditional statements of the
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observer, then the actual run is identical to ρ. The assumption assume false at
the end of observer is to prevent the execution of the assertion at p5. Hence, P2

excludes ρ from its runs.

y = z = 0

process P:

p1: assume 1 == y?z?0:1:1;

p2: y = z;

p3: z = 0;

p4: assume 1 == 1;

process Q:

q1: assume 0 == y?0:z?0:1;

q2: y = ! z;

q3: z = 1;

q4: assume 1 == 1;

p5: assert false;

Fig. 7: The program Sϕ

The model checker
checks P2. It returns a
counter-example, called
ϕ, as given in Fig. 4.
In ϕ, the instructions of
the process Q, which are
labeled by q1 and q4, are
issued first. After that, the
instructions of P, which
are labeled by p1, p4 and
p5, are performed. Similar
to the way we verify ρ, we add y and z back to ϕ and construct a new program
to simulate ϕ, called Sϕ. Sϕ is presented in Fig 7. In the counter-example Sϕ,
the variables x, t1 and t2 are replaced by their values in ϕ. Then, instructions
labeled by p4 and q4 are removed due to the optimization. We also force Sϕ to
respect the flow of the counter-example ϕ. For instance, the instruction labeled
by p1 only runs after the instruction labeled by q3.

π:

q1(assume true)

q2(y = 1)

q3(z = 1)

p1 (assume true)

p2 (y = 1)

p3 (z = 0)

p5 (assert false)

Fig. 8: Counter-example of Sϕ

The model checker checks Sϕ. It then
concludes that Sϕ is unsafe with a proof
by a counter-example, called π, given in
Fig. 8. We need to verify whether π can
lead to a counter-example of P by adding
more variables and lines of codes, and
then constructing a new program that re-
spects the flow of instructions in π. How-
ever, all variables of the program P are
used, so π is a counter-example of P .
Thus, P is unsafe and the algorithm stops.

3 Concurrent programs

In this section, we describe the syntax and semantics of programs we consider
but before that we will introduce some notations and definitions.

For A a finite set, we use |A| to denote its size. Let A and B be two sets, we
use f : A 7→ B to denote that f is a function that maps any element of A to an
element of B. For b ∈ B, we use b ∈ f to denote that there is an a ∈ A such
that f(a) = b. For a ∈ A and b ∈ B, we use f [a ←֓ b] to denote the function f ′

where f ′(a) = b and f ′(a′) = f(a′) for all a′ 6= a.

Syntax. Fig. 9 gives the grammar for a C-like programming language that we
use for defining concurrent programs. A concurrent program P starts by defining
a set of shared variables. Each shared variable is defined by the command var
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followed by a unique identifier. We assume that the variable ranges over some
(potentially infinite) domain D. Then the program P defines a set of processes
(or threads). Each process has a unique identifier p and its code is a sequence
consists of instructions (which is placed between begin and end). An instruction
ins is of the form “loc: stmt”, where loc is a label (or control location), and stmt
is a statement. We use label (ins) to denote the label loc of the instruction ins
and stmt(loc) to denote the statement stmt. We use VP to denote the set of
variables, ProcP to denote the set of processes of the program P . For a process
P ∈ ProcP , let IP be the set of instructions in the code of P and QP be the set
of labels appearing in its code. We assume w.l.o.g. that each instruction has a
unique label. Let IP := ∪P∈ProcP IP , and QP := ∪P∈ProcPQP . We assume that
we dispose of a function init : Proc 7→ QP that returns the label of the first
instruction to be executed by each process.

〈c-prog〉 ::= 〈var〉+ 〈process〉+

〈var〉 ::= var x ;
〈process〉 ::= process p begin 〈inst〉∗ end

〈inst〉 ::= loc:〈stmt〉;
〈stmt〉 ::= skip

| x := 〈expr〉
| goto loc1, . . . locn
| assume 〈expr〉
| assert 〈expr〉
| if 〈expr〉
then 〈inst〉else 〈inst〉 fi

〈expr〉 ::= 〈expr〉|*

Fig. 9: Syntax of concurrent programs

A skip statement corresponds to the
empty statement that leaves the pro-
gram state unchanged. A goto state-
ment of the form “goto loc1, . . . locn”
jumps nondeterministically to an in-
struction labeled by loct for some t ∈
{1, . . . , n}. An assignment statement
(asg for short) of the form “x := expr”
assigns to the variable x the current
value of the expression expr. An as-
sumption statement (asp) of the form
“assume expr” checks whether the ex-
pression expr evaluates to true and if
not, the process execution is blocked
till that the value of expr is true. An assertion statement (asr) of the form
“assert expr” checks whether the expression expr evaluates to true, and if not
the execution of the program is aborted. A conditional statement (cnd) of the
form “ if 〈expr〉 then inst1 else inst2 fi” executes the instruction inst1, if the
expression expr evaluates to true. Otherwise, it executes the instruction inst2.
We assume w.l.o.g. that the label of inst1 is different from the label of inst2.
We assume a language of expressions expr interpreted over D. Furthermore, in
order to allow nondeterminism, expr can receive the non-deterministic value *.
We use Expr to denote the set of all expressions in P . Let Varexpr : Expr 7→ 2VP

be a function that returns the set of variables appearing in a given expression
(e.g., Varexpr(y + z + 1) = {y, z}).

Semantics. We describe the semantics informally and progressively. Let us
first consider the case of a (sequential) program Ps that has only one process
P (i.e., ProcPs

={P}). A sequential configuration c is then defined by a pair
(loc, state) where loc ∈ QP is the label of the next instruction to be executed
by the process P , and state : VP 7→ D is a function that defines the valuation
of each shared variable. The initial sequential configuration cinit(Ps) is defined
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by (init(P ), stateinit) where stateinit(x) = 0 for all x ∈ VPs
. In other words,

at the beginning of the program, all variables have value 0 and the process P
will execute the first instruction in its code. The transition relation −→Ps

on
sequential configurations is defined as usual: For two sequential configurations
c, c′, we write c−→Ps

c′ to denote that the program Ps can move from c to c′.
Now, we consider the case of the concurrent program P that has at least

two processes (i.e., |ProcP | ≥ 2). For every P ∈ ProcP , let PP be the sequen-
tial program constructed from P by deleting the code of any process P ′ 6= P
(i.e., PP contains only the instructions of the process P ). We define a function
label definition q̄ : ProcP 7→ QP that associates for each process P ∈ ProcP ,
the label q̄(P ) ∈ QP of the next instruction to be executed by P . A concur-
rent configuration (or simply configuration) c is a pair (q̄, state) where q̄ is a
label definition, and state is a memory state. We use LabelOf(c), StateOf(c) to
denote q̄ and state respectively. The initial configuration cinit(P) is defined by
(q̄init, stateinit) where q̄init(P ) = init(P ) for all P ∈ ProcP , and stateinit(x) = 0
for all x ∈ VP . In other words, at the beginning, each process starts at the
initial label, and all variables have value 0. We use C(P) to denote the set of
all configurations of the program P . Then, the transition relation between con-
figurations is defined as follows: For two given configurations c = (q̄, state) and

c′ = (q̄′, state′) and a label loc ∈ QP of some process P , we write c loc−−→P c′ to
denote that program P can move from the configuration c to the configuration
c′ by executing the instruction labeled by loc of the process P . Formally, we

have c
loc
−−→P c′ iff (q̄(P ), state)−→PP

(q̄′(P ), state′) , q̄(P ) = loc, and for every
P ′ ∈ (ProcP \ {P}), we have q̄(P ′) = q̄′(P ′).

A run π of P is a finite sequence of the form c0 · loc1 · c1 · loc2 · · · locm ·

cm, for some m ≥ 0 such that: (1) c0 = cinit(P) and (2) ci
loci+1
−−−−→P ci+1 for

all i ∈ {0, . . . ,m − 1}. In this case, we say that π is labeled by the sequence
loc1loc2 . . . locm and that the configuration cm is reachable by P . We use Trace(π)
and Target(π) to denote the sequence loc1·loc2 . . . locm in π and the configuration
cm, respectively. We use ΠP to denote the set of all runs of the program P .
The program P is said to be safe if there is no run π reaching a configuration
c = (q̄, state) (i.e., Target(π) = c) such that q̄(P ), for some process P ∈ ProcP ,
is the label of an assertion statement of the form “assert expr” where the
expression expr can be evaluated to false at the configuration c.

4 Counter-Example Guided Program Verification

In this section, we present our Counter-Example Guided Program Verification
(CEGPV) algorithm. The CEGPV algorithm takes a program P as its input and
returns whether P is safe or not. The work-flow of the algorithm is given in Fig.
1. The algorithm consists of four modules, the abstraction, the counter-example

mapping, the reconstruction and the refinement. It also uses an external model

checker as a back-end tool. Recall that VP denotes the set of variables of the
program P . The algorithm starts by selecting a subset of variables V0 ⊆ VP

using a dependency graph (not shown in Fig. 1 for sake of simplicity).
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The abstraction takes P and V0 as its input. It then constructs an over-
approximation of P , called P ′, as follows. First, it keeps variables in V0 and slices
away all other variables of P . Occurrences of the sliced variables are replaced by
a non-deterministic value. Second, some instructions, where the sliced variables
occur, in P can be discarded. After that, P ′ is given to a model checker. Observe
that P ′ has V0 as its set of shared variables.

Then, the model checker takes as input P ′, generated by the abstraction

module or the refinement module, and checks whether it is safe or not. If the
model checker returns that the program is safe, then P is also safe, and our
algorithm terminates. If the program is unsafe, then the model checker returns
a counter-example π′ of the form c0 · loc1 · c1 · loc2 · · · locm · cm.

The counter-example mapping takes the counter-example π′ as its input. It
transforms the run π′ to a run of the program resulting of the abstraction module.

The reconstruction takes always as input a counter-example π of P ′ (which
results from the application of the abstraction module to the program P). It
then checks whether π can lead to a real counter-example of P . In particular,
if V0 = VP , i.e. no variable was sliced away from P , then P ′ is identical to P .
Therefore, π is also a counter-example of P . The algorithm concludes that P is
unsafe, and then terminates. Otherwise, the reconstruction adds back all omitted
variables (i.e., VP \ V0) and lines of codes to create a program P1. The program
P1 also needs to respect the flow of the instructions in π. In other words, the
instruction labeled by loci, for some i ∈ {1, . . . ,m}, in P1 can only be executed
after executing all the instructions labeled by locj for all j ∈ {1, . . . , i − 1}.
For each run of the program P1, let c

′
i be the configuration after executing the

instruction labeled by loci. The configuration c′i needs to satisfy StateOf(c′i)(x) =
StateOf(ci)(x) for all x ∈ V0, i.e. each value of variable in the set V0 at the
configuration c′i is equal to its value in the configuration ci.

Then CEGPV recursively calls itself to check P1 in its next iteration. Inputs
of the next iteration are P1, and a subset of variables V1 ⊆ VP1

= (VP \ V0),
which is selected using the dependency graph. If the iteration returns that P1 is
unsafe, then the run π leads to a counter-example of P . The algorithm concludes
that P is unsafe and terminates. Otherwise, π cannot lead to a counter-example
of P . Then the algorithm needs to discard π from the set of runs of P ′.

The refinement adds π to the set of spurious counter-examples of P ′ (result-
ing from the application of the abstraction module to P). It then refines P ′ by
removing all these spurious counter-examples from the set of runs of P ′. The
new resulting program is then given back to the model checker.

In the following, we explain in more details each module of our CEGPV
algorithm. The counter-example mapping module is described at the end of the
subsection dedicated to the explanation of the refinement module (Section 4.3).

4.1 The Abstraction

The abstraction transforms P into a new program P ′ by slicing away all variables
in VP \V0 and some lines of codes. In particular, we define a map function [[.]]ab
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that rewrites P into P ′. The formal definition of the map [[.]]ab is given in Fig.
10. In the following, we informally explain [[.]]ab.

The map [[.]]ab keeps only the variables in V0 and removes all other variables
of P . The map [[.]]ab also keeps the same number of processes as in P , and
transforms the code of each process of P to a corresponding process in P ′.

[[〈c-prog〉]]ab
def
= [[〈var x〉]]+ab[[〈process〉]]

+

ab

[[〈var x〉]]ab
def
=

{

var x; if x ∈ V0

✭
✭
✭✭❤

❤
❤❤var x; otherwise

[[〈process〉]]ab
def
= process p begin [[〈inst〉]]

∗

ab end

[[〈inst〉]]ab
def
= loc: [[〈stmt〉]]ab;

[[skip]]ab
def
= skip

[[goto loc1, . . . , locn]]ab
def
= goto loc1, . . . , locn

[[〈x := 〈expr〉]]ab
def
=

{

skip if x /∈ V0

x := [[〈expr〉]]ab otherwise

[[assume〈expr〉]]ab
def
= assume [[〈expr〉]]ab

[[assert〈expr〉]]ab
def
= assert [[〈expr〉]]ab

[[if 〈expr〉 then 〈inst1〉
else 〈inst2〉 fi]]ab

def
=

if [[〈expr〉]]ab then [[〈inst1〉]]ab
else [[〈inst2〉]]ab fi

[[〈expr〉]]ab
def
=

{

∗ if Varexpr(expr) ∩ (VP0
\ V0) 6= ∅

expr otherwise

Fig. 10: Translation map [[.]]ab

For each instruction in a
process, the map [[.]]ab keeps
the label and transforms the
statement in that instruction.
The map [[.]]ab replaces oc-
currences of sliced variables
in the statement by the non-
deterministic value *. First,
the skip and goto statements
remain the same since they
do not make use of any vari-
able. Second, for an assign-
ment statement of the form
“x := expr”, if the variable x
is not in V0, then that state-
ment is transformed to the skip statement. If at least one discarded variable oc-
curs in the expression expr, then the assignment is transformed to “x := ∗”. Oth-
erwise, the assignment remains the same. Third, for both an assumption state-
ment of the form “assume expr” and an assertion of the form “assert expr”,
the map [[.]]ab replaces the expression expr by the nondeterministic value *, if
at least one discarded variable occurs in expr. Otherwise, the assumption and
assertion remain the same. For a conditional statement, the map [[.]]ab trans-
forms its guard to be non-deterministic if it makes use of one of the discarded
variables. The consequent instruction and alternative instruction are also trans-
formed in a similar manner by the map [[.]]ab. Finally, we remove any instruction
that trivially does not affect the behaviors of [[P ]]ab.

Lemma 1. If [[P ]]ab is safe, then P is safe.

4.2 The Reconstruction

Let π be a counter-example of the program [[P ]]ab of the form c0 · loc1 · c1 ·
loc2 · · · locm · cm. The reconstruction transforms P to a new program P1 by
forcing P to respect the sequence of configurations and labels in π. In particular,
we define a map function [[.]]co to rewrite the program P into the program P1.
The formal definition of the map [[.]]co is given in Fig 11. For a label loc, let
IndexOf(loc) = {i ∈ {1, . . . ,m} | loci = loc} be the set of positions where the
label loc occurs in the run π. Let newloc be a function that returns a fresh label
that has not used so far. The map [[.]]co starts by adding a new variable cnt. The
variable cnt is used to keep track of the execution order of the instructions in π.
All variables in V0 are removed by the map [[.]]co since their values is determined
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[[〈c-prog〉]]
co

def
= var cnt;[[〈var x〉]]+

co
[[〈process〉]]+

co

[[〈var x〉]]
co

def
=

{

var x; if x /∈ V0

✘
✘
✘✘❳

❳
❳❳

var x; otherwise

[[〈process〉]]
co

def
= process p begin [[〈inst〉]]

co
end

[[〈inst〉]]
co

def
=

{

[[loc : 〈stmt〉]]
co,ab

if loc ∈ I[[P]]
ab

[[loc : 〈stmt〉]]
co,oth

; otherwise

[[loc : 〈stmt〉]]
co,oth

def
=















loc: if (cnt == 0) then [[〈stmt〉]]0
co,oth

; else

. . .
if (cnt == m) then [[〈stmt〉]]m

co,oth
;

else skip; fi; . . . fi;

[[loc : 〈stmt〉]]
co,ab

def
=































loc: if (cnt + 1 ∈ IndexOf(loc) ∧ cnt == 0) then

[[〈stmt〉]]0
co,ab

; else

. . .
if (cnt+ 1 ∈ IndexOf(loc) ∧ cnt == m− 1) then

[[〈stmt〉]]m−1

co,ab; else assume false; fi; . . . fi;

newloc : cnt := cnt+ 1;

[[skip]]i
co,−

def
= skip where − ∈ {ab, oth}

[[goto loc1, . . . , locn]]
i

co,−

def
= goto loc1, . . . , locn where − ∈ {ab, oth}

[[assume 〈expr〉]]i
co,−

def
= assume [[〈expr〉]]c

co
where − ∈ {ab, oth}

[[assert 〈expr〉]]ico,−
def
= assert [[〈expr〉]]cco where − ∈ {ab, oth}

[[x := 〈expr〉]]i
co,ab

def
= assume StateOf(ci+1)(x) == [[〈expr〉]]i

co

[[x := 〈expr〉]]i
co,oth

def
= x := [[〈expr〉]]i

co

[[if 〈expr〉 then 〈inst1〉

else 〈inst2〉 fi]]i
co,ab

def
=

{

assume [[〈expr〉]]i
co

== true; [[〈inst1〉]]co if label(inst1) ∈ LabelOf(ci+1)

assume [[〈expr〉]]i
co

== false; [[〈inst2〉]]co otherwise
[[if 〈expr〉 then 〈inst1〉

else 〈inst2〉 fi]]ico,oth

def
=

if [[〈expr〉]]i
co

then [[〈inst1〉]]co
else [[〈inst2〉]]co fi

[[〈expr〉]]i
co

def
= 〈expr〉[∀x ∈ V0 : x ←֓ StateOf(ci)(x)]

Fig. 11: Translation map [[.]]co

by π. The map [[.]]co also keeps the same number of processes as in the program
P , and transforms the code of each process.

The map [[.]]co transforms instructions in each process as follows. Instructions
that occur in [[P ]]ab, are transformed by the map [[.]]co,ab, while other instructions
are transformed by the map [[.]]co,oth. For an instruction of the form “loc : stmt”,
the map [[.]]co,oth keeps the label loc and creates m + 1 copies of the statement
stmt. The i-th copy of stmt, with i ∈ {0, . . . ,m}, is executed after reaching the
configuration ci in the run π. Therefore, the i-th copy only can be only executed
under the condition “cnt == i”. Then, the statement stmt is transformed based
on the configuration ci in the run π, denoted by [[.]]ico,oth. Similarly, the map
[[.]]co,ab keeps the label loc and creates m copies of the statement stmt (which
corresponds to number of instructions in the run π). The i-th copy of stmt,
with i ∈ {1, . . . ,m}, is executed if the label loc appears at position i in the
run π. Therefore, the i-th copy can be executed under the condition “cnt +
1 ∈ IndexOf(loc)” (i.e., the label loc appears at the position cnt + 1) and that
cnt = i − 1 (i.e., after reaching the configuration ci−1). Then, the map [[.]]co,ab
transforms the statement stmt based on the configurations ccnt−1 and ccnt (i.e,
the configurations before and after executing the instruction labeled by loc) in
the run π, denoted by [[.]]

cnt

co,ab. The variable cnt is then increased by one to denote
that one more instruction in the run π has been executed.



Counter-Example Guided Program Verification 13

In general, the map [[.]]
i

co,ab, for some i ∈ {0, . . . ,m− 1} rewrites all expres-
sions in statements. The skip and goto statement remain the same. For both an
assertion of the form “assert expr” and assumption “assume expr”, [[.]]

c

co,ab

transforms their expressions expr. For an assignment of the form “x := expr”,
it rewrites that assignment by an assumption checking that, the value of x in
the configuration ci+1 is equal to the value of expr at the configuration ci. For a
conditional statement of the form if 〈expr〉 then inst1 else inst2 fi”, [[.]]cco,ab,
we first check which branch has been taken in the run π. To do that, we check
the labels appearing in the configuration ci+1. After that, we add an assumption
to check whether the branch has been correctly selected in the counter-example.
if expr is evaluated to true at the configuration ci and the label of inst1 appears
at the configuration ci+1, then it executes the instruction [[inst1]]

i
co,ab. Otherwise,

it executes the instruction [[inst2]]
i

co,ab. Finally, all occurrences of variables in V0

in any expressions expr are replaced by their values in the configuration ci.
The map [[.]]

i

co,oth, for some i ∈ {0, . . . ,m}, transforms statements as follows.
The skip and goto statement remain the same. For assignment, assumption, and
assertion, [[.]]

i

co,oth rewrites expressions in these statements. For a conditional
statement, it also rewrites the guards, the consequent instruction and the al-
ternative instruction. The expression is transformed by replacing occurrences of
variables in V0 in that expression by their values in the configuration ci.

Lemma 2. If [[P ]]co is unsafe, then P is unsafe.

4.3 The Refinement

Given a set of runs R of [[P ]]ab, the refinement module constructs a program P ′

from [[P ]]ab by discarding the set of runs in R from the set of runs of [[P ]]ab. Before
giving the details of this module, we introduce some notations and definitions.

For a run π of the form c0 · loc1 · c1 . . . locm · cm, let Loc(π) = {loc1, . . . , locm}
be the set of all labels occurring in π, and Con(π) = {c0, c1, . . . , cm} be the set
of all configurations in π. Let Rloc =

⋃

π∈R
Loc(π) and Rcon =

⋃

π∈R
Con(π). Let

Prefix(π) = {c0 · loc1 · c1 . . . loci · ci|i ∈ {0, . . . ,m− 1}} be the set of prefixes of
π and Rprefix =

⋃

π∈R
Prefix(π) be the set of all prefixes of all runs in R.

Then, we construct a graph (or a tree) GR to represent in concise manner
the set of runs in R. The graph GR = (V,E) consists of a number of vertices
V and directed edges E where V = Rprefix and E = {(v, v′)|∃loc ∈ Rloc, c ∈
Rcon and v′ = v · loc · c}. In other words, each vertex corresponds to a prefix in
Rprefix , and each edge describes the transition from one prefix to another one.

Let v ∈ V , P ∈ Proc[[P]]
ab

, and loc ∈ QP . Let Next(v, loc) = {c|c ∈ Rcon :

v · loc · c ∈ (V ∪ R)} be the function that returns the set of configurations
which can be reached from v through executing the instruction labeled by loc.
Let Reach(v, P ) = {loc|loc ∈ QP , ∃c ∈ C([[P ]]ab) and ∃v

′ ∈ Π([[P ]]ab) : (v′ =
v · LabelOf(Target(v))(P ) · c) ∧ (v′ /∈ (V ∪ R)) ∧ (loc = LabelOf(c)(P ))} be
the function that returns the set of all possible labels loc of the process P that
can be reached by a run v′ /∈ R ∪ V which is an extension of the prefix v by
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executing an instruction of the process P . In order to force the execution of
[[P ]]ab to perform a different run than the ones in R, we make sure that [[P ]]ab
follows the prefix v ∈ Rprefix , and then performs the instruction of the process P
that leads to a new prefix p′ which was not part of Rprefix or R. Then, we create
the output program P ′ of the refinement module from [[P ]]ab by adding (1) an
observer process to simulate the execution of the prefix v′, and (2) a controller

per process to continue execution of each process from the reached location
after executing the prefix v′. We add a new variable, called label, used by the
observer to communicate to each controller where the execution will resume for
each process after leaving the observer.

start: goto v1, v2, . . . , vn;
. . .
vi: for all x ∈ V0: x := StateOf(Target(vi))(x);

goto (vi, P1), . . . , (vi, Pm);
. . .
(vi, Pj): if Reach(vi, Pj) 6= ∅ then

loc := LabelOf(Target(vi))(Pj);
if stmt(loc) of the form “x := *” then

x := *;
assume x /∈ {StateOf(c)(x)|c ∈ Next(vi, loc)};

else assume false ; fi;
label := ∗;
assume label ∈ Reach(vi, Pj);
flag := 1;
for all P ∈ Proc[[P]]

ab

\ {Pj}

label := LabelOf(Target(vi)) (P );
fi;
assume false ;
. . .

. . .

Fig. 12: Pseudocode of Observer with V =
{v1, . . . , vn} and Proc[[P]]

ab

= {P1, . . . , Pm}

We construct an observer as
given in Fig. 12. The observer

is executed before any processes
in [[P ]]ab. It starts by non-
deterministically jumping to a
node vi (representing a prefix of
a run in R), where vi represents
a vertex of GR. At the node vi,
values of variables are updated
to the valuation at Target(vi).
Then, the observer decides, in non-
deterministic manner, to execute
an instruction of a process Pj ∈
[[P ]]ab. If the execution of an in-
struction of Pj , from the prefix vi,
does not lead a new prefix which is
not in R∪Rprefix (i.e., Reach(v, Pj)
is empty), then the execution of
the observer terminates (and so of
the program P ′). If Reach(v, Pj) is not empty, we first distinguish the case where
the next instruction to be executed by Pj is a non-deterministic assignment to
some variable x. Then, the observer ensures that the new value assigned to x is
different from its value in any configuration which can be reached from vi through
executing this non-deterministic assignment by Pj . After that, the observer com-
municates the new label of Pj by setting the variable label to it. Finally, it sets
the variable flag to one to enable the execution of other processes and commu-
nicates to them their starting instruction by setting the variable label.

assume flag == 1;
if label ∈ QP then goto label;
else assume false ;
. . .

Fig. 13: Pseudocode of Con-
troller of the process P

Each process P in [[P ]]ab is controlled by a
controller, given in Fig. 13. The controller is
placed at the top of the code of P . The con-
troller then checks if the label stored in the vari-
able label is in indeed belongs to P , if it is the
case, it jumps to that label. Otherwise, P needs
to wait until one of its label is written.
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Finally, we can easily define a mapping map that maps any run of P ′ to a run
of [[P ]]ab. This mapping map is used in the Counter-example mapping module.
We can also extend the definition of the mapping map to sets of runs in the
straightforward manner.

Lemma 3. map(Π(P ′)) = Π([[P ]]ab) \ R.

5 Optimizations

In this section, we present two optimizations of our CEGPV algorithm. The
first optimization concerns the reduction of the number of iterations of our
GEGPV algorithm by considering several counter-examples instead of one at
each iteration. The second optimization concerns an efficient implementation of
the reconstruction and refinement modules when considering SMT/SAT based
model-checkers such as CBMC [10].

Combining counter-examples. Our reconstruction module takes as input a
counter-example π of the form c0 · loc1 ·c1 · loc2 · · · locm ·cm of the program [[P ]]ab,
and construct the program P1 which needs to respect the flow of the instructions
in π and also the evaluation of the set of shared variables in V0. To do so effi-
ciently, we drop the constraint that the program P1 should follow the valuations
of the shared variables in V0 in our code-code translation [[.]]co. This means that
the constructed program P1 should only make sure to execute the instruction
labeled by loci, for some i ∈ {1, . . . ,m}, after executing all the instructions la-
beled by locj for all j ∈ {1, . . . , i− 1}. We also modify the refinement module to
discard all the runs π′ in the set of runs of [[P ]]ab such that Trace(π′) = Trace(π)
in case that the program P1 is declared safe by model-checker.

We can furthermore optimize our CEGPV algorithm by not imposing any
order on the execution of two instructions labeled by loci and locj if they can be
declared to be independent (as done in stateless model-checking techniques [3])

SMT based optimization. The CEGPV algorithm can be integrated into
SMT/SAT based model-checkers such as CBMC [10]. Recall that in Section 4.2,
we force a program running in a specific order of instructions, and in Section
4.3, we forbid that order of instructions in a program. These operations can be
easily done performed using clock variables [16]. Indeed, for each label loc in
the program, we associate to a clock variable clockloc ranging over the naturals.
The clock variable clockloc is assigned 0 if the instruction labeled by loc is not
executed. Given labels loc1 and loc2, in order to force the execution of the in-
struction labeled by loc1 before the execution of the instruction labeled by loc2,
we need only to make sure that 0 < clockloc1 and clockloc1 < clockloc2 . In the
similar way, we can write a formula to force the SMT/SAT based model checker
to return a counter-example different from the already encountered ones.
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CBMC 5.1 CEGPV
sub-catergory #programs pass fail time pass fail time

pthread-wmm-mix-unsafe 466 466 0 40301 466 0 1076
pthread-wmm-podwr-unsafe 16 16 0 286 16 0 21
pthread-wmm-rfi-unsafe 76 76 0 958 76 0 141
pthread-wmm-safe-unsafe 200 200 0 12578 200 0 917
pthread-wmm-thin-unsafe 12 12 0 252 12 0 15
pthread-unsafe 17 12 5 441 17 0 302
pthead-atomic-unsafe 2 2 0 2 2 0 2
pthread-ext-unsafe 8 4 4 7 8 0 7
pthread-lit-unsafe 3 2 1 3 2 1 2

pthread-wmm-rfi-safe 12 12 0 3154 12 0 138
pthread-wmm-safe-safe 104 102 2 352 104 0 114
pthread-wmm-thin-safe 12 12 0 28 12 0 12
pthread-safe 14 7 7 124 13 1 63
pthead-atomic-safe 8 7 1 76 8 0 10
pthread-ext-safe 45 19 26 938 31 14 569
pthread-lit-safe 8 3 5 8 3 5 5

Table 1: Performance of CEGPV in comparison to CBMC on benchmarks of the SV-
COMP15 Concurrency category [2]. Each row corresponds to a sub-category of the SV-
COMP15 benchmarks, where we report the number of checked programs. The column
pass gives the number of correct answers retuned by each tool. An answer is considered
to be correct for a (un)safe program if the tool return “(un)safe”. The columns fail
report the number of unsuccessful analyses performed by each tool. An unsuccessful
analysis includes crashes, timeouts. The columns time gives the total running time in
seconds for the verification of each benchmark. Observe that we do not count, in the
total time, the time spent by a tool when the verification fails.

6 Experiment Results

In order to evaluate the efficiency of our CEGPV algorithm, we have imple-
mented it as a part of an open source tool, called CEGPV [1], for the verification
of C/pthreads programs. We used CBMC version 5.1 as a backend tool [10]. We
then evaluated CEGPV on the benchmark set from the Concurrency category of
the TACAS Software Verification Competition (SV-COMP15) [2]. The set con-
sists of 1003 C programs. We have performed all experiments on an Intel Core
i7 3.5Ghz machine with 16GB of RAM. We have used a 10GB as memory limit
and a 800s as timeout parameter for the verification of each program.

In the following, we present two sets of results. The first part concerns the
unsafe programs and the second part concerns safe ones. In both parts, we com-
pare CEGPV results to the ones obtained using CBMC 5.1 tool [10]. To ensure
a faire comparison between the two tools, we use the same loop-unwinding and
thread duplication bounds for each program. Table 1 shows that CEGPV is
highly competitive. We observe that, for unsafe programs, CEGPV significantly
outperforms CBMC. CEGPV is more than 10 times faster (on average) than
CBMC, except for few small programs. CEGPV also manages to verify almost
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all the unsafe benchmarks (except one) while CBMC fails in the verification of
10 programs due to timeout. For safe benchmarks, CEGPV still outperforms
CBMC in the running time. In many programs, CEGPV succeeds to prove the
safety of several programs (except 20 programs), while CBMC fails to prove the
safety of 41 programs. Finally, we observe that, for the benchmark pthread− lit,
the results of both tools are almost the same. The reason is that the programs in
that benchmark only use few variables. Therefore, CEGPV does not slice away
variables in these programs.
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