Systematic Acceleration in Regular Model Checking

CAV 2007

Bengt Jonsson and Mayank Saksena
{bengt, mayanks}@it.uu.se

Uppsala University

July 4, 2007
Outline

1 Introduction
 - Parameterized Systems
 - Regular Model Checking
 - Related Work

2 Systematic Acceleration
 - Setting
 - Unary Actions
 - Example
 - Compositions
 - Acceleration Procedure

3 Experiments
 - Implementation
 - Results

4 Conclusion
Parameterized Systems

- **Parameterized system:**
 Family of programs $P(n)$

- **Instance:**
 n processes running same code

- **Uniform verification:**
 Does $P(n)$ satisfy property ϕ for all n?
 - Undecidable [Apt, Kozen]
Verification

How compute (repeatedly) reachable configurations of a parameterized system?

- Verify instances and generalize
- Induction over system structure
- Finite-state abstraction
- **Symbolic model checking** for infinite sets
Symbolic Model Checking

- **Symbolic representation** of infinite sets of configurations
- (Repeatedly) reachable configurations by **fixpoint**
 - Iteratively compute successors...

Making the fixpoint converge:

- **Acceleration**
 - Effect of arbitrarily many transitions
 - No overapproximation, no spurious counterexample
 - Verification of safety and liveness
Regular Model Checking

- Configuration represented as **word** over finite alphabet
- Regular set represents infinite set of configurations
- Transducers represent actions
 - Automaton accepting $\{(w, w') \mid w \xrightarrow{\alpha} w'\}$ for action α
- Suitable for uniform verification of parameterized systems
Inspiration

- Verification of Parameterized Networks with Linear or Ring Structure [Clarke, Grumberg, Jha], [Emerson, Namjoshi]
- “Use symbolic model checking paradigm with appropriate representation for parameterized and infinite-state systems.” [Kesten, Maler, Pnueli, Shahar 97]
- “Regular sets of words widely applicable.” [Boigelot, Wolper 98]
 - Unbounded FIFO channels
 - Pushdown Systems
 - Regular Hardware Structures
 - Integers and reals
Outline

1 Introduction
 - Parameterized Systems
 - Regular Model Checking
 - Related Work

2 Systematic Acceleration
 - Setting
 - Unary Actions
 - Example
 - Compositions
 - Acceleration Procedure

3 Experiments
 - Implementation
 - Results

4 Conclusion
Fixpoints and Acceleration

- Given initial configurations \mathcal{I} and transition relation \mathcal{R}
- Compute reachable configurations $\mathcal{I} \circ \mathcal{R}^*$
 - \mathcal{R}^+ not computable
 - $C_0 = \mathcal{I}$, $C_{j+1} = C_j \cup C_j \circ \mathcal{R}$ not terminate
- Exist acceleratable actions
 - Transducers α for which α^+ computable
- Standard approach for $\mathcal{R} = \bigcup_i \alpha_i$:
 - Accelerate each α_i
 - Accelerated fixpoint: $\mathcal{I} \circ (\bigcup_i \alpha_i^+)^*$
 - Iterations $C_{j+1} = C_j \cup C_j \circ \alpha_i^+$
Unary Actions

- Efficiently acceleratable (and “frequent in protocols”)

- Typical example: one process acts in isolation
Burns’ Algorithm for Mutex

1: \(\text{flag}[i] := 0 \)
2: \(\text{if } \exists j < i : \text{flag}[j] = 1 \text{ then goto 1} \)
3: \(\text{flag}[i] := 1 \)
4: \(\text{if } \exists j < i : \text{flag}[j] = 1 \text{ then goto 1} \)
5: \(\text{await } \forall j > i : \text{flag}[j] \neq 1 \)
6: \(\text{flag}[i] := 0 \)
7: \(\text{goto 1} \)

Figure: Pseudo code process \(i \) (of \(n \))

- **Sigma** local state of a process: tuple \((pc, flag)\)
- **Initial configurations**: \(\mathcal{I} = [(pc = 1, flag = 0)]^* \)
- **Actions (unary)**: \(\alpha_j \) represents line \(j \)
 - \(\alpha_5 \) is \(ld(\Sigma)^* \cdot [pc : 5 \rightarrow 6] \cdot ld(flag = 0)^* \)
- **Transition relation**: \(\mathcal{R} = \bigcup_j \alpha_j \)
Fixpoint Termination Problem

2: if $\exists j < i : \text{flag}[j] = 1$ then goto 1
3: $\text{flag}[i] := 1$
4: if $\exists j < i : \text{flag}[j] = 1$ then goto 1
5: await $\forall j > i : \text{flag}[j] \neq 1$

- Executing $\alpha_2 - \alpha_5$ blocks higher-indexed processes
- Many processes can go from 2 to 5, only in order
 - (Higher to lower index)
- Not possible with $\cup_i \alpha_i^+$!
 - Arbitrarily many iterations!
- Need “for $i \in I$ do $\alpha_2(i) \circ \alpha_3(i) \circ \alpha_4(i)$”
Fixpoint Termination Solution

- **Before:** manually added compositions as extra actions
 - Typically feasible for expert verifying safety
 - Liveness more difficult
- **Now:** automatically add acceleratable actions derived from original actions
 - Re-establish previous results with “less expertise”
 - New liveness results
 - Some we cannot, even today, verify by manual choice
Composition

- \(\alpha \circ \alpha' \) is action “\(\alpha \) followed by \(\alpha' \)”
- Composition of unary not unary
- **Keep it unary** (acceleratable)

<table>
<thead>
<tr>
<th></th>
<th>(\phi_L)</th>
<th>(\tau_0)</th>
<th>(\phi_R)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(\phi_L)</td>
<td>(\tau_1)</td>
<td>(\phi_R)</td>
</tr>
<tr>
<td>2</td>
<td>(\phi'_L)</td>
<td>(\tau'_0)</td>
<td>(\phi'_R)</td>
</tr>
<tr>
<td>3</td>
<td>(\phi'_L)</td>
<td>(\tau'_1)</td>
<td>(\phi'_R)</td>
</tr>
</tbody>
</table>
Composition

\[
\begin{array}{ccc}
\phi_L & \tau_0 & \phi_R \\
\phi_L & \tau_1 & \phi_R \\
\phi'_L & \tau'_0 & \phi'_R \\
\phi'_L & \tau'_1 & \phi'_R \\
\end{array}
\]
Composition

\[\phi_L \quad \tau_0 \quad \phi_R \]

\[\phi''_L \quad \tau'' \quad \phi''_R \]

\[\phi''_L \quad \tau'' \quad \phi''_R \]

\[\phi'_L \quad \tau'_1 \quad \phi'_R \]
Composition

<table>
<thead>
<tr>
<th>(\phi_L \cap \phi'_L)</th>
<th>(\tau_0)</th>
<th>(\phi_R \cap \phi'_R)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\phi_L \cap \phi'_L)</td>
<td>(\tau'')</td>
<td>(\phi_R \cap \phi'_R)</td>
</tr>
<tr>
<td>(\phi_L \cap \phi'_L)</td>
<td>(\tau'')</td>
<td>(\phi_R \cap \phi'_R)</td>
</tr>
<tr>
<td>(\phi_L \cap \phi'_L)</td>
<td>(\tau'_1)</td>
<td>(\phi_R \cap \phi'_R)</td>
</tr>
</tbody>
</table>
Composition

\[\phi_L \cap \phi'_L \quad \tau_0 \quad \phi_R \cap \phi'_R \]

\[\phi_L \cap \phi'_L \quad \tau'_1 \quad \phi_R \cap \phi'_R \]
 Unary composition:

\[
(\phi_L \cdot \tau \cdot \phi_R) \circ_S (\phi'_L \cdot \tau' \cdot \phi'_R) = (\phi_L \cap \phi'_L \cdot \tau \circ \tau' \cdot \phi_R \cap \phi'_R)
\]
Acceleration Goal

- Generate “sufficiently many” acceleratable actions
 - Derived from original actions
- Can generate actions complete in this sense:

For any unary $\alpha_1, \ldots, \alpha_n$ in \mathcal{R} there exists generated α with

$$(\alpha_1 \circ_s \cdots \circ_s \alpha_n)^+ \subseteq \alpha^+$$
Acceleration Procedure

For any unary $\alpha_1, \ldots, \alpha_n$ in R there exists generated α with $(\alpha_1 \circ_s \cdots \circ_s \alpha_n)^+ \subseteq \alpha^+$

- If above holds for $n \leq k$, call k composition depth
- **Intuition** behind construction:
 1. Extract unary A_0 from transducer of R so that $R = \bigcup A_0$
 2. Manipulate A_0 to obtain A_1 with composition depth 1
 3. Combine actions under **unary union** up to chosen k
 - $(\phi_L \cdot \tau \cdot \phi_R) \cup_s (\phi_L' \cdot \tau' \cdot \phi_R') = (\phi_L \cap \phi_L' \cdot \tau \cup \tau' \cdot \phi_R \cap \phi_R')$
 - Build larger τ from smaller
 4. Known **maximum depth** after step 2
 - Finite number of combinations
Outline

1 Introduction
 • Parameterized Systems
 • Regular Model Checking
 • Related Work

2 Systematic Acceleration
 • Setting
 • Unary Actions
 • Example
 • Compositions
 • Acceleration Procedure

3 Experiments
 • Implementation
 • Results

4 Conclusion
Implementation

- Verified safety and liveness of parameterized mutual-exclusion protocols
- Procedure for generating A with composition depth k
 - Known maximum value of k
 - Used with RMC model checker
- Fully automatic approaches:
 - Use maximum value for k (possibly suboptimal time)
 - Guess low value of k, increase after time-out
Safety Results

- “More automatic” and as fast as our previous work
 - No manually specified compositions
- Exact representation of the invariant
 - Forwards reachability
 - Safety for free when checking liveness
- Abstraction techniques for safety are faster
 - But do not work for liveness
Liveness Results

<table>
<thead>
<tr>
<th>Protocol</th>
<th>This work</th>
<th>[LTL(MSO)]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bakery</td>
<td>13</td>
<td>23</td>
</tr>
<tr>
<td>Burns</td>
<td>144</td>
<td></td>
</tr>
<tr>
<td>Szymanski</td>
<td>1635</td>
<td></td>
</tr>
<tr>
<td>Dijkstra</td>
<td>244</td>
<td></td>
</tr>
</tbody>
</table>

- Individual starvation freedom under weak fairness
 - Exact computation of reachable loops
 - Most general true property shown; checked others
 - **New results**: Burns and Dijkstra
Outline

1 Introduction
 - Parameterized Systems
 - Regular Model Checking
 - Related Work

2 Systematic Acceleration
 - Setting
 - Unary Actions
 - Example
 - Compositions
 - Acceleration Procedure

3 Experiments
 - Implementation
 - Results

4 Conclusion
Conclusion

- **Automatic systematic acceleration** scheme
 - Less expertise needed
 - Sometimes manual choice not feasible
 - Previously were not able to verify liveness
 - Retrospect: identified compositions sufficient for all protocols, except Dijkstra’s (tricky)

- Extends acceleration based RMC
- Works for safety and liveness
- Principle applicable to other acceleratable actions