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Nature is non-linear. Many fundamental physical principles such as conservation of mass, mo-
mentum, and energy are mathematically modeled by non-linear time dependent partial differential
equations (PDEs). Such non-linear conservation laws describe a broad range of applications in
science and engineering, e.g., the prediction of noise and drag from aircrafts, the build up and prop-
agation of tsunamis in oceans, the behavior of gas clouds, and propagation of non-linear acoustic
waves in different materials.

Solutions of non-linear conservation laws contain many complex phenomena such as discontinu-
ities, singularities, and turbulence. These phenomena are all time dependent and feature multiple
scales in space and time. Because of the multi-scale nature of such problems, no general framework
for analytical solutions is available. Further, in many cases, experimental studies are either too
costly, too dangerous, or impossible to perform. However, knowledge of such solutions is important
for modern industry, science, and medicine. Therefore, we consider the numerical simulation of
solutions to time dependent non-linear conservation laws as a key technology.

A wide variety of low-order and high-order numerical methods have been developed over many
decades. There is, however, a balancing act when applying either type of method to a given problem:

• Low-order methods offer remarkable robustness but require a very large number of degrees of
freedom (DOFs) to properly capture multi-scale non-linear phenomena.

• High-order methods offer great capabilities to accurately capture non-linear phenomena while
requiring a moderate number of DOFs. However, they often lack robustness.

In general, when the grid resolution parameter, h, is small a high-order method will always outrun
low-order variants due to the favorable asymptotic behavior of the discretization errors. However,
the ability to have simulations with small h (i.e. well-resolved approximations) is typically only
something that academia can afford.

In practice, marginally resolved simulations of non-linear conservation laws, such as the com-
pressible Navier-Stokes equations or the ideal magnetohydrodynamics (MHD) equations, reveal that
high-order methods are prone to aliasing instabilities. This can lead to total failure and breakdown
of the algorithms. Aliasing issues are introduced and intensified by a combination of insufficient
discrete integration precision, collocation of non-linear terms, polynomial approximations applied to
rational functions, and, again, by insufficient grid resolution.

The aim of this talk is to discuss a remedy for such aliasing issues and present its connection to
discrete variants of the product and chain rules. As such, we construct nodal high-order numerical
methods for non-linear conservation laws that are entropy stable. To do so, we focus on particular
approximate derivative operators used to mimic steps from the continuous well-posedness PDE
analysis on the discrete level and enhance the robustness of the high-order numerics.


