
Block-preconditioned iterative methods
on multicore computer systems and GPU

Performance study

Maya Neytcheva and Ali Dorostkar

together with Dimitar Lukarski and Yvan Notay

PMAA, Lugano, July 2-5, 2014



The concept
citing Prof. Dr. Wolfgang Bangerth:

• Solving realistic, large scale applied problems with the most
modern numerical methods can be seen as a multidimensional
optimization problem, with many levels of complexity that have to
be simultaneously taken into account.



The concept
citing Prof. Dr. Wolfgang Bangerth:

• Solving realistic, large scale applied problems with the most
modern numerical methods can be seen as a multidimensional
optimization problem, with many levels of complexity that have to
be simultaneously taken into account.
• The code that enables such large scale computer simulations

requires a whole collection of algorithms:

◮ unstructured, adaptive or moving meshes;

◮ time-dependent processes, repeated solution of (non)linear
systems;

◮ inner-outer solution procedures, preconditioners utilizing
internal algebraic structures,

◮ methods that have a recursive nature.



The concept
citing Prof. Dr. Wolfgang Bangerth:

• Solving realistic, large scale applied problems with the most
modern numerical methods can be seen as a multidimensional
optimization problem, with many levels of complexity that have to
be simultaneously taken into account.
• The code that enables such large scale computer simulations

requires a whole collection of algorithms:
• All this has to work efficiently on modern computer architectures.



The concept
citing Prof. Dr. Wolfgang Bangerth:

• Solving realistic, large scale applied problems with the most
modern numerical methods can be seen as a multidimensional
optimization problem, with many levels of complexity that have to
be simultaneously taken into account.
• The code that enables such large scale computer simulations

requires a whole collection of algorithms:
• All this has to work efficiently on modern computer architectures.
• Codes at this level of complexity can no longer be written from

scratch.



Outline of the talk

Performance study of a complex numerical solution procedure on
CPU and GPU

◮ Target problem from Geophysics

◮ The algebraic problem

◮ Numerical solution procedure - preconditioned inner-outer
iterations, implemented using several packages for scientific
computations

◮ Performance results - CPU&GPU

◮ ... if time permits: describe a high-quality Schur complement
approximation

◮ Conclusions, to-do list



Faults in Scandinavia

Pärvie fault, Sweden, a wave in the Earth

"...Pärvie is an old Lappish word meaning roughly wave in the ground. ...
a 150-km-long slash across the land, which at its maximum resembles a
tsunami crest frozen in the rock.
How did it get there?"
Arch C. Johnston, seismologist at the University of Memphis, Science,
Vol 274, 1996



The applied problem - Glacial isostatic adjustment (GIA)

Click here to view the movie



The mathematical model

∇ · σ︸ ︷︷ ︸
(A)

−∇(ρ0u · ∇Φ0)︸ ︷︷ ︸
(B)

− ρ1∇Φ0︸ ︷︷ ︸
(C)

− ρ0∇Φ1︸ ︷︷ ︸
(D)

= f in Ω ⊂ R
3

∇·(∇Φ1)− 4π G ρ1 = 0,

ρ1 + ρ0∇·u + u·
∂ρ0

∂r
= 0.

(A) - force due to spatial gradients in stress

(B) - so-called advection of pre-stress - crucial for the model

(C ) - internal buoyancy

(D) - self-gravitation effects

The density ρ1 is determined by the linearized continuity equation.



The mathematical model, cont.

In addition, we need appropriate constitutive relations, describing
stress-strain-displacement relations:

σ(x, t) = σE (x)− σI (x, t),

where σE (x) = C (x, 0)εE is the instantaneous stress due to elastic
(reversible) response to load and σI (x, t) = C (x, t)εI is the
contribution due to inelastic response (viscoelastic).

σ(x, t) = C (x, 0)εE −

t∫

0

γ̇C (x, t)R dτ.



The simplified problem

2D model, often used in the geophysics community.
Self-gravitation is excluded and due to the latter, the Earth is
modelled as incompressible.

−∇ · (2µε(u))−∇(u · ∇p0) + (∇ · u)∇p0 − µ∇p = f in Ω

µ∇ · u −
µ2

λ
p = 0 in Ω

µ, λ - the Lamé coefficients, ε is the strain tensor,
u is the displacement vector,
p0 is the so-called pre-stress,
p = λ

µ
∇ · u is the so-called kinematic pressure, introduced in order

to be able to simulate fully incompressible materials,i.e., λ = ∞.



Weak form and discretization

In this talk: ONLY elastic response!

a(uh, vh) + b(vh, p) = (vh, g) + (vh, γ)

b(uh, qh)−
µ2

λ
m(ph, qh) = 0

The model is discretized using a stable finite element pair of
spaces, Taylor-Hood Q2-Q1 on quadrilateral mesh.
It gives raise to algebraic systems of equations that are
large, sparse, nonsymmetric and indefinite, with a saddle point
structure, [

F BT

B −M

]

The pivot block F is nonsymmetric.



The efficiency of solving one system of the above type is crucial as

it is to be embedded in a time-evolution procedure, where systems

with matrices with similar characteristics have to be solved

repeatedly.



Description of the numerical algorithm - very
classical

The matrix [
F BT

B −M

]
,

is preconditioned by [
[F ] 0

B −[S̃ ]

]
,

where
- S̃ is an approximation of the (negative) Schur complement matrix
S = M + BF−1BT ,
- [∗] means a (preconditioned) inner solver with a given matrix.



Numerical efficiency

What numerical efficiency to expect from the preconditioner

[
[F ] 0

B −[S̃ ]

]
?

The theory says: very few (outer) iterations if
→ we solve accurately with F ,
→ S̃ is a very good approximation for S .

Computational efficiency
The inner solvers with F and S̃ must be very efficient.



Software used - commercial and publicly available

◮ ABAQUS (ABAQUS FEA) - software suite for finite element
analysis and computer-aided engineering, released in 1978.

General-purpose FE analysis program, most suited for numerical
modelling of structural (static and dynamic) response.
– Ease of use on complex problems
– Simple input language
– Comprehensive data checking
– Wide range of preprocessing and post-processing options
– MANY man-years efforts providing, among the many features,
efficient numerical solvers.



ABAQUS- ’howevers’

→ enhanced numerical simulations of GIA problems are not
straightforwardly performed with ABAQUS since important terms in
the continuous model, such as prestress advection, cannot be added
directly, leading to the necessity to modify the model in order to be
able to use the package.
→ ABAQUS cannot handle purely incompressible materials -
Poisson’s ratio ν cannot be set to 0.5 but to some closer value,
such as 0.4999, for instance.
→ ABAQUS is a commercial software.



Software used - commercial and publicly available

◮ ABAQUS (ABAQUS FEA)

◮ Deal.ii (Differential Equations Analysis Library)
◮ First public version in 2000
◮ Our main toolbox
◮ We utilize the interfaces to other packages, in particular,

Trilinos.



Software used - commercial and publicly available

◮ ABAQUS (ABAQUS FEA)

◮ Deal.ii (Differential Equations Analysis Library)

◮ Trilinos

◮ Vast collection of algorithms
◮ Object oriented
◮ Used through deal.ii wrappers. Packages used:

◮ Epetra for sparse matrix and vector storage,
◮ Teuchos for passing parameters to solver and preconditioner,
◮ ML for multigrid preconditioning,
◮ AZTEC for the iterative solver (GMRES, FGMRES).



Software used - commercial and publicly available

◮ ABAQUS (ABAQUS FEA)

◮ Deal.ii (Differential Equations Analysis Library)

◮ Trilinos

◮ PARALUTION (D. Lukarski) - sparse linear algebra library
◮ First public version in 2013 - http://www.paralution.com
◮ Focus on fine-grained parallelism (multicore CPU and GPU)
◮ Goal: to provide a portable library containing iterative methods

and preconditioners for linear systems with sparse matrices, to
be run on state of the art hardware.

◮ Run-time decision where to run the application - on CPU or
GPU.

◮ build-in plug-in to deal.ii
◮ The plug-in exports and imports data from deal.ii to

PARALUTION.

http://www.paralution.com


Software used - commercial and publicly available

◮ ABAQUS (ABAQUS FEA)

◮ Deal.ii (Differential Equations Analysis Library)

◮ Trilinos

◮ PARALUTION (D. Lukarski)

◮ AGMG (Y. Notay, A. Napov)
◮ implements an aggregation-based algebraic multigrid method.
◮ http://homepages.ulb.ac.be/~ynotay/AGMG/
◮ solve algebraic systems of linear equations
◮ expected to be efficient for large systems arising from the

discretization of scalar second order elliptic PDEs.
◮ purely algebraic
◮ written in FORTRAN 90

http://homepages.ulb.ac.be/~ynotay/AGMG/


Three different AMG implementations
◮ Trilinos/AMG

Deal.ii configures the algebraic Multigrid (AMG) preconditioner from

Trilinos using the following default settings:

◮ Chebyshev smoother with two pre- and post-smoothing steps.
◮ Uncoupled aggregation with threshold of 0.02
◮ One Multigrid cycle



Three different AMG implementations
◮ PARALUTION/AMG

◮ Coarse grid size - 2000
◮ Coupling strength - 0.001
◮ Coarsening type - smoothed aggregation
◮ Multi-colored Gauss-Seidel smoother with relaxation parameter

set to 1.3
◮ Pre-smoothing steps - 1
◮ Post-smoothing steps - 2
◮ One multigrid cycle
◮ Smoother matrix format - as in ELLPACK (ELL)
◮ Operator matrix format - compressed sparse row (CSR)



Three different AMG implementations, cont.

◮ AGMG

An aggregation-based algebraic multigrid method. Uses double
pairwise aggregation algorithm which makes the coarsening
faster. It uses ’pure’ aggregation-based prolongation and
K-cycle multigrid to circumvent the relatively bad scalability of
the standard V-cycle.



Description of the computer facilities

(C1) CPU: Intel(R) Xeon(R) 1.6GHz 12 cores

(C2) ◮ CPU: Intel(R) Core(TM) i5-3550 CPU 3.30GHz 4 cores
◮ GPU: NVIDIA K40, 12G, 2880 cores

Performance results for ABAQUS and deal.ii/Trilinos- on (C1)
PARALUTION CPU version of the solver - on both (C1) and (C2)
PARALUTION GPU - on (C2)

Parallelism - via built-in functionality of the packages to use OpenMp.
The maximum number of threads equals the number of cores available.
No hyperthreading.



Numerical tests:

The geometry of the problem



Numerical tests:

[
F BT

B −M

]
,

[
[F ] 0

B −[S̃ ]

]

Inner iterations, AMG-preconditioned FGMRES



Deal.ii/Trilinos/AMG vs ABAQUS/sparse-direct on (C1)

No. of Deal.II/Trilinos ABAQUS
thr. DOF Iterations Setup Solve (2/3) DOFs Setup Solve

1 19(5, 1) 5.63 51.7 (34.46) 7.44 59

4 1 479 043 19(5, 1) 5.42 35.2 (23.46) 986 626 7.49 33

8 19(5, 1) 5.41 31.9 (21.26) 7.51 28

1 19(5, 1) 23.2 243 (162) 29.72 269

4 5 907 203 19(5, 1) 22.3 157 (104) 3 939 330 29.93 145

8 19(5, 1) 22.1 136 (90) 29.94 122



Deal.ii/Trilinos/AMG vs ABAQUS/sparse-direct on (C1)

No. of Deal.II/Trilinos ABAQUS
thr. DOF Iterations Setup Solve (2/3) DOFs Setup Solve

1 19(5, 1) 5.63 51.7 (34.46) 7.44 59

4 1 479 043 19(5, 1) 5.42 35.2 (23.46) 986 626 7.49 33

8 19(5, 1) 5.41 31.9 (21.26) 7.51 28

1 19(5, 1) 23.2 243 (162) 29.72 269

4 5 907 203 19(5, 1) 22.3 157 (104) 3 939 330 29.93 145

8 19(5, 1) 22.1 136 (90) 29.94 122

Factor 4!



Deal.ii/Trilinos/AMG vs ABAQUS/sparse-direct on (C1)

No. of Deal.II/Trilinos ABAQUS
thr. DOF Iterations Setup Solve (2/3) DOFs Setup Solve

1 19(5, 1) 5.63 51.7 (34.46) 7.44 59

4 1 479 043 19(5, 1) 5.42 35.2 (23.46) 986 626 7.49 33

8 19(5, 1) 5.41 31.9 (21.26) 7.51 28

1 19(5, 1) 23.2 243 (162) 29.72 269

4 5 907 203 19(5, 1) 22.3 157 (104) 3 939 330 29.93 145

8 19(5, 1) 22.1 136 (90) 29.94 122

Both do not scale across threads.



Trilinos vs PARALUTION on (C1), CPU only

Threads DOFS Trilinos PARALUTION
Iterations Setup Solve Iterations Setup Solve

1 19(4, 1) 1.41 11.83 25(5, 5) 1.710 8.777

4 370 883 19(4, 1) 1.35 8.243 25(5, 5) 1.031 3.624

8 19(4, 1) 1.35 7.637 25(5, 5) 0.917 3.743

12 19(4, 1) 1.34 6.893 25(5, 5) 0.893 3.299

1 19(5, 1) 5.63 51.77 25(5, 5) 6.958 35.376

4 1 479 043 19(5, 1) 5.42 35.17 25(5, 5) 4.071 14.640

8 19(5, 1) 5.41 31.97 25(5, 5) 3.629 15.724

12 19(5, 1) 5.37 29.67 25(5, 5) 3.465 13.013

1 19(5, 1) 23.2 243 26(5, 5) 27.913 153.34

4 5 907 203 19(5, 1) 22.26 158 26(5, 5) 16.478 67.242

8 19(5, 1) 22.16 139 26(5, 5) 14.287 66.428

12 19(5, 1) 21.93 127 26(5, 5) 13.680 60.180



PARALUTION: CPU vs GPU on (C2)

DOF Outer Time on CPU (s) Time on GPU (s)
iter. Setup Solve Setup Solve

23 603 24 0.04 0.39 0.16 2.8
93 283 24 0.18 1.14 0.27 2.0

370 883 25 0.75 4.88 0.9 4.0
1 479 043 25 2.98 20.86 3.7 5.8
5 907 203 26 15.83 92.85 out of memory



Time distribution for Trilinos/AMG

DOF Solution with M Solution with S̃ Total solution time

23 603 0.625 (90%) 0.0286 (10%) 0.69
93 283 3.49 (93%) 0.0983 (7%) 3.72

370 883 15.3 (93%) 0.441 (7%) 16.3
1 479 043 77.2 (94%) 2.22 (6%) 81.8
5 907 203 350 (94%) 10.3 (6%) 370

[
M 0
B −C

]
,



Trilinos/AMG vs AGMG on (C1), CPU, serial mode

Trilinos/AMG AGMG

DOFs Itr. Setup Solve Itr. Setup Solve

23 603 18(3, 1) 0.0986 0.504 19(3, 1) 0.029 0.394
93 283 19(4, 1) 0.349 2.81 19(3, 1) 0.128 1.68

370 883 19(4, 1) 1.4 11.8 19(4, 1) 0.515 7.42
1 479 043 19(5, 1) 5.63 51.7 18(4, 1) 2.09 30.9
5 907 203 19(5, 1) 23.2 243 19(5, 1) 8.69 147

Inner stopping criterion: relative 0.1, for both blocks.



Trilinos/AMG vs AGMG on (C1), CPU, serial mode

Trilinos/AMG AGMG

DOFs Itr. Setup Solve Itr. Setup Solve

23 603 18(3, 1) 0.0986 0.504 19(3, 1) 0.029 0.394
93 283 19(4, 1) 0.349 2.81 19(3, 1) 0.128 1.68

370 883 19(4, 1) 1.4 11.8 19(4, 1) 0.515 7.42
1 479 043 19(5, 1) 5.63 51.7 18(4, 1) 2.09 30.9
5 907 203 19(5, 1) 23.2 243 19(5, 1) 8.69 147



The quality of the outer preconditioner »> O

High quality Schur approximation »> S



Conclusions:



Conclusions:

The major outcomes of the performance study are as follows:

(i) Large-scale coupled problems can be successfully implemented
using publicly available numerical linear algebra software.
Compared with highly specialized and optimized commercial
software, the open source libraries, included in this study, allow
to enhance the mathematical model and make it more
realistic, adding features that are not straightforwardly
incorporated when using commercial software.



Conclusions:

The major outcomes of the performance study are as follows:

(i) Large-scale coupled problems can be successfully implemented
using publicly available numerical linear algebra software.
Compared with highly specialized and optimized commercial
software, the open source libraries, included in this study, allow
to enhance the mathematical model and make it more
realistic, adding features that are not straightforwardly
incorporated when using commercial software.

(ii) For large enough problem sizes that fit into the memory of the
GPU, the PARALUTION-GPU implementation performs
noticeably faster than the other tested CPU implementations.



Conclusions, cont.

The major outcomes of the performance study are as follows:

(iii) Open source numerical libraries successfully compete with
highly efficient commercial packages in terms of overall
simulation time and show better price-performance ration.



Conclusions, cont.

The major outcomes of the performance study are as follows:

(iii) Open source numerical libraries successfully compete with
highly efficient commercial packages in terms of overall
simulation time and show better price-performance ration.

(iv) None of the tested OpenMp-based CPU implementations
shows satisfactory scalability. This makes it necessary to
extend the performance tests using MPI, which is a subject of
future work.



Thank you for your attention!
Looking forward to your comments and questions.



The quality of the Schur complement
approximation - numerical observation

Text text text

«< conclude



The Schur complement approximation

S̃ – the so-called element-by-element approach:
We notice, that for any finite element pair of spaces, chosen to
approximate u and p, the system matrix A can be assembled from
element matrices that are also of saddle point form. Namely,

A =
m∑

i=1

RT
i A

(e)
i

Ri , where A
(e)
i

=

[
F
(e)
i

(B
(e)
i

)T

B
(e)
i

−M
(e)
i

]
,

Ri are Boolean matrices that define local-to-global mapping of the
degrees of freedom and m is the number of the finite elements in
the discretization mesh.
«< conclude



The Schur complement approximation, cont.

S
(e)
i

= M
(e)
i

+ B
(e)
i

(
F
(e)
i

+ h2I (e)
)
−1

(B
(e)
i

)T ,

i = 1, 2, · · · ,m, where h is the characteristic size of the spatial
mesh.

S̃ =
m∑

i=1

R̃T
i S

(e)
i

R̃i

«< conclude



Explaining the convergence of the inner solvers

We can show the following estimates (for the case when no
convection terms are included)

S ≤ S̃ ≤ βS

where β does not depend on h. «< conclude


	Introduction: the problem

