
Parallel algorithms for Scientific
Computations

Iterative methods and preconditioning

Maya Neytcheva

PASC, November 2020

Plan of the lecture:

◮ The Conjugate Gradient method
◮ CG in a distributed memory setting
◮ Recall the GMRES method
◮ Preconditioning techniques - ILU, approximate inverses,

(A)MG
◮ Examples

Standard CG

Given A, b and an initial guess x(0) .

r(0) = Ax(0) − b,
δ0 = (r(0), r(0))

d(0) = −r
for k = 0, 1, · · · until convergence
(1) h = Ad(k)

(2) τ = δ0/(h,d(k))
(3) x(k+1) = x(k) + τd(k)

(4) r(k+1) = r(k) + τh,
(5) δ1 = (r(k+1), r(k+1))
(6) β = δ1/δ0, δ0 = δ1
(7) d(k+1) = −r(k+1) + βd(k)

endfor

Convergence rate, computational cost per iteration

DD-parallel CG, Distributed memory

�
�
�
�

�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�

�
�
�
�

��������������

����

����

��������������

3

1

Ω2

Ω

Ω

(a)

2
P

3
P

1
P

0
P

1 2 3 4 5

7 8 9 11

13 14 16 17 18

19 20 22 23 24

25 26 28 29 30

31 32 33 34 3635

10

6

12

15

21

27

(b)

Grid-wise (’pointwise non-overlapping’) mapping of a discrete
problem onto distributed memory computer

DD-parallel CG, Distributed memory

P1
P0

1 2 3

5 6 7 8

9 11

4

1210

1 2 3

4

7

5 6

98

P
2

P3
1 2 3 4 1 2 3

Grid-wise (’pointwise overlapping’) mapping of a discrete problem
onto distributed memory computer

DD-parallel CG

Assume A and b are distributed and an initial guess x(0) is given, which is
replicated.

r(0) = b − Ax(0)

r = replicate(r(0))
d(0) = −r
δ0 = (r(0), r(0))

for k = 0, 1, · · · until convergence
(1) h = Ad(k)

(2) τ = δ0/(h,d(k))
(3) x(k+1) = x(k) + τd(k)

(4) r(k+1) = r(k) + τh
(5) r = replicate(r(k+1))
(6) δ1 = (r(k+1), r)
(7) β = δ1/δ0, δ0 = δ1
(8) d(k+1) = r + βd(k)

endfor

FEM-DD-PCG & ’distributed’ (SPAI) preconditioner

Assume A, B and b are distributed and the initial guess x(0) is replicated.

r(0) = Ax(0) − b, r(0) = replicate(r(0))
h = Br(0)

δ0 = (r(0), h) h = replicate(h)
d(0) = −h

for k = 0, 1, · · · until convergence
(1) h = Ad(k)

(2) τ = δ0/(h, d(k))

(3) x(k+1) = x(k) + τd(k)

(4) r(k+1) = r(k) + τh, r(k+1) = replicate(r(k+1))

(5) h = Br(k+1),
(6) δ1 = (r(k+1), h) h = replicate(h)
(7) β = δ1/δ0, δ0 = δ1

(8) d(k+1) = −h + βd(k)

endfor

Basic GMRES

Compute r(0) = b − Ax(0), β = ‖r(0)‖2 and v(1) = r(0)/β
for k = 1, 2, · · · ,m

(1) w(k) = Av(k)

(2) for i = 1, 2, · · · , k
(3) hik = (w(k), v(i))
(4) w(k) = w(k) − hikv(i)

(5) endfor
(6) hk+1,k = ‖w(k)‖2; if hk+1,k = 0, set m = k, goto 11
(7) v(k+1) = w(k)/hk+1,k

(8) endfor
(9) Define the (m + 1)× m Hessenberg matrix Hm = {hik},

1 ≤ i ≤ m + 1, 1 ≤ k ≤ m
(10) Compute y(m) as the minimizer of ‖βe1 − Hmy‖2 and x(m) = x(0) + Vmy(m)

GMRES:

◮ No breakdown of GMRES
◮ As m increases, storage and work per iteration increase fast.

Remedies:
◮ Restart (keep m constant)
◮ Truncate the orthogonalization process

◮ The norm of the residual in the GMRES method is
monotonically decreasing. However, the convergence may
stagnate. The rate of convergence of GMRES cannot be
determined so easy as that of CG.

◮ The convergence history depends on the initial guess.

GMRES: convergence

Theorem: Let A be diagonalizable, A = X−1ΛX where
Λ = diag{λ1, · · · , λn} contains the eigenvalues of A. Define

ǫm = min
p∈Π1

m

max
i=1,···n

|p(λi)|.

Then, the residual norm at the mth step of GMRES satisfies

‖r(m)‖ ≤ κ(X)ǫm‖r(0)‖,

where κ(X) = ‖X‖ ‖X−1‖.

Preconditioners, suitability for efficient parallelization

◮ Classical preconditioners
◮ Approximate inverses, finite-element based ideas
◮ Multigrid, algebraic multigrid

Classical preconditioners - ILU (IC)

Conventional sparse ILU factorization

for i = 2 to n do
for k = 1 to i-1 and (i,k) in S do

a_ik = a_ik/a_kk
for j = k+1 to n and (i,j) in S do

a_ij = a_ij - a_ik*a_kj
end

end
end

The preconditioner is in factored form and we have to solve systems
with two sparse triangular systems.

Classical preconditioners - ILU (IC)

◮ The preconditioner and the matrix should have the same data
distribution, or?

◮ Always control the fill-in.
◮ Show existence of the ILU algorithm.

Not very recent reference:
David Hysom and Alex Pothen
A scalable parallel algorithm for incomplete factor preconditioning,
SISC, 22 (2001), 2194-2215

D. Hysom and A. Pothen - the algorithm

Input: A coefficient matrix, its adjacency graph, and the number of processors p.

Output: The incomplete factors of the coefficient matrix.

1. Partition the adjacency graph of the matrix into p subgraphs (subdomains), and map each
subgraph to a processor. The objectives of the partitioning are that the subgraphs should have
roughly equal work, and there should be few edges that join the different subgraphs.

2. On each subgraph, locally order interior nodes first, and then order boundary nodes.

3. Form the subdomain intersection graph corresponding to the partition, and compute an
approximate minimum vertex coloring for it. Order subdomains according to color classes.

4. Compute the incomplete factors in parallel.
a Factor interior rows of each subdomain.
b Receive sparsity patterns and numerical values of the nonzeros of the boundary rows of

lower-numbered subdomains adjacent to a subdomain (if any).

c Factor boundary rows in each subdomain and send the sparsity patterns and numerical

values to higher-numbered neighboring subdomains (if any).

D. Hysom and A. Pothen - results

Tests on diffusion and convection-diffusion problems:
Citation: Page 2209:

Table 4.5 Iteration comparisons for the 646464 grid. U denotes
unconstrained, C denotes constrained, and B denotes block Jacobi
ILU(k) preconditioners. The starred entries (*) indicate that, since
there is a single subdomain, the factor is structurally and
numerically identical to the unconstrained PILU(k). Dashed entries
(-) indicate the solutions either diverged or failed to converge after
200 iterations. For Problem 2, when ε = 1/500 the level zero
preconditioners did not reduce the relative error in the solution by a
factor of 10−55 at termination; when ε = 1/1000, the level one
preconditioners did not do so either.

D. Hysom and A. Pothen - results

Tests on diffusion and convection-diffusion problems:
Citation: Page 2209:

D. Hysom and A. Pothen - results

Tests on diffusion and convection-diffusion problems:
Citation: Page 2211:

D. Hysom and A. Pothen - results

Tests on diffusion and convection-diffusion problems:
Citation: Page 2207:

Classical preconditioners - ILU (IC)

An idea from 2015:
Edmond Chow and Aftab Patel
Fine-grained parallel incomplete LU factorization
SISC, 37 (2015), C169-C193

"All nonzeros in the incomplete factors can be computed in parallel
and asynchronously, using one or more sweeps that iteratively
improve the accuracy of the factorization. Unlike existing parallel
algorithms, the amount of parallelism is large irrespective of the
ordering of the matrix, and matrix ordering can be used to enhance
the accuracy of the factorization rather than to increase parallelism.
Numerical tests show that very few sweeps are needed to construct
a factorization that is an effective preconditioner."

Classical preconditioners - ILU (IC)

Reformulation of the algorithm: not-so-far-observed constraint:

(LU)ij = aij

We have also
lij , i > j , (i , j) ∈ S
uij , i ≤ j , (i , j) ∈ S

The total number of unknowns is equal to the number of elements
in the sparsity pattern S and using the constraint we have

min(i ,j)∑

k

= aij , (i , j) ∈ S .

Classical preconditioners - ILU (IC)

Fine-grained sparse ILU factorization (fixed point iteration)

Set unknowns l_ij and u_ij to initial values
for sweep = 1,2,... until convergence do

parallel for (i,k) in S do
if i>j then

l_ij = (a_ij-\sum_{k=1}^{j-1} l_ik*u_kj)/u_jj
else

u_ij = a_ij - \sum_{k=1}^{i-1} l_ik*u_kj
end

end
end

Parallelism across all elements in S!
Show the article.

Classical preconditioners - ILU (IC)

Current developments:
Thomas Huckle
Parallel approximate LU factorizations for sparse matrices
2019, preprint
Main idea: Newton method instead of fixed point iterations

Sungwoo Kang, Long Cu Ngo, Hyounggwon Choi, Wanjin Chung,
Yo-Han Yoo, Jung Yul Yoo
Performance comparison of parallel ILU preconditioners for the
incompressible Navier-Stokes equations
Journal of Mechanical Science and Technology 34 (3) 2020
... show the article.

Sparse approximate inverses

Approximate inverses

◮ Kolotilina, L. Yu.; Yeremin, A. Yu. Factorized sparse
approximate inverse preconditionings. I. Theory. SIAM J.
Matrix Anal. Appl. 14 (1993), 45-58

◮ Kolotilina, L. Yu.; Nikishin, A. A.; Yeremin, A. Yu. Factorized
sparse approximate inverse preconditionings. IV. Simple
approaches to rising efficiency. Numer. Linear Algebra Appl. 6
(1999), 515-531

◮ Grote, Marcus J.; Huckle, Thomas Parallel preconditioning
with sparse approximate inverses. SIAM J. Sci. Comput. 18
(1997), 838-853.

◮ Benzi, Michele; Meyer, Carl D.; Tuma, Miroslav A sparse
approximate inverse preconditioner for the conjugate gradient
method. SIAM J. Sci. Comput. 17 (1996), 1135-1149

Approximate inverses

Given a sparse matrix A = [aij] ∈ Rn×n.
Let S be a sparsity pattern. We want to compute G ∈ S, such that

(GA)ij = δij , (i , j) ∈ S,

i.e. ∑

k:(i ,k)∈S

gikakj = δij , (i , j) ∈ S.

Some observations:
⊕ the elements in the ith row of G can be computed inde-

pendently;
⊖ even if A is symmetric, G is not necessarily symmetric,

because gij and gji are, in general, not equal.

Approximate inverses I

Choose S to be the tridiagonal part of A,
S = {(1, 1), (1, 2), {(i , i − 1), (i , i), (i , i + 1)}n

i=1, (n, n − 1), (n, n)}.
Then, when computing the ith row of G we need only the entries of
the matrix A, namely,

Ai =




ai−1,i−1 ai−1,i ai−1,i+1
ai ,i−1 ai ,i ai ,i+1

ai+1,i−1 ai+1,i ai+1,i+1




Given A ∈ Rn×n and S

Approximate inverses II

for i=1:n,
Extract from A the small matrix Ai , needed to compute
the entries of G (i , :)
Solve with Ai

Store row G (i , :)
end

For all rows, the steps can be performed fully in parallel!

Approximate inverses

Frobenius norm minimization

‖A‖I =

√
n∑

i=1

n∑
i=1

a2
ij =

√
tr(AAH)

Let a sparsity pattern S be given. Consider the functional

FW (G) = ‖I − GA‖2
W = tr(I − GA)W (I − GA)T ,

where the weight matrix W is spd If W ≡ I then ‖I − GA‖I is the
Frobenius norm of I − GA.
Clearly FW (G) ≥ 0. If G = A−1 then FW (G) = 0. Hence, we want
to compute the entries of G in order to minimize FW (G), i.e. to
find Ĝ ∈ S , such that

‖I − ĜA‖W ≤ ‖I − GA‖W , ∀G ∈ S .

Use the following properties of tr(.):

Approximate inverses

FW (G) = tr(I − GA)W (I − GA)T

= tr(W − GAW − W (GA)T + GAW (GA)T)
= trW − trGAW − tr(GAW)T + trGAWATGT .

(1)

Minimize FW w.r.t. G , consider the entries gi ,j as variables. The
necessary condition for a minimizing point are

∂FW (G)

∂gij
= 0, (i , j) ∈ S. (2)

From (1) and (2) we get −2(WAT)ij + 2(GAWAT)ij = 0, or

(GAWAT)ij = (WAT)ij , (i , j) ∈ S. (3)

The equations (3) may or may not have a solution, depending on
the particular matrix A and the choice of S and W .

Approximate inverses in parallel

Choice 1: Let A be spd. Choose W = A−1 which is also spd

=⇒ (GA)ij = δij , (i , j) ∈ S ,

i.e. the formula for the explicit method can be seen as a special
case of the more general framework for computing approximate
inverses using weighted Frobenius norms.

Choice 2: Let W = (ATA)−1.

=⇒ (G)ij = (A−1)ij , (i , j) ∈ S ,

which is the formula for the implicit method. In this case the
entries of G are the corresponding entries of the exact inverse.

Approximate inverses in parallel

1996 Marcus J. Grote, Thomas Huckle, Parallel Preconditioning with Sparse Approximate Inverses
(SPAI), SISC

2018 H. Anztab, T.Huckle, J. Bräckle, J. Dongarra, Incomplete Sparse Approximate Inverses for
Parallel Preconditioning (ISAI), Parallel Computing

2019 M. Bernaschi, M. Carrozzo, A. Franceschini, C. Janna, A Dynamic Pattern Factored Sparse
Approximate Inverse Preconditioner on Graphics Processing Units, SISC (FSAIPACK)

SPAI: Finite element setting

A =
M∑

k=1

RT
k AkRk ,

with Rk being the Boolean matrices which prescribe the
local-to-global correspondence of the numbered degrees of freedom.
Is this of interest?

B−1 =
M∑

k=1

RT
k A−1

k Rk .

B−1 and A−1 are spectrally equivalent, namely, for some
0 < α1 < α2 there holds

α1A−1
11 ≤ B−1

11 ≤ α2A−1
11 ,

SPAI: Finite element setting

Consider spd matrices.

min
M

(λmin(Ak)) ≤ λ(A) ≤ pmax
M

(λmax(Ak)),

where p is the maximum degree of the graph representing the
discretization mesh. Similarly, there holds

min
M

(λmin(Ak)
−1) ≤ λ(B−1) ≤ pmax

M
(λmax(Ak)

−1).

Then we obtain
min(λmin(Ak))

max(λmax(Ak))
≤ xTB−1x

xTA−1x
≤ max(λmax(Ak))

min(λmin(Ak))

Thus, the spectral equivalence constants do not depend on the
mesh parameter h but they are in general robust neither with
respect to problem and mesh-anisotropies, nor to jumps in the
problem coefficients as the eigenvalues of Ak depend on those.

Finite element based approximate inverse

FEM-SPAI: Scalability figures: Constant problem size

#proc nfine tB−1
11
/tA trepl [s] tsolution [s] # iter

4 197129 0.005 0.28 7.01 5
16 49408 0.180 0.07 0.29 5
64 12416 0.098 0.02 0.03 5

Problem size: 787456
Solution method: PCG

Relative stopping criterium: < 10−6

FEM-SPAI: Scalability figures: Constant load per processor

#proc tB−1
11
/tA trepl [s] tsolution [s] # iter

1 0.0050 - 0.17 5
4 0.0032 0.28 7.01 5
16 0.0035 0.24 4.55 5
64 0.0040 0.23 12.43 5

Local number of degrees of freedom: 197129
Solution method: PCG

Relative stopping criterium: < 10−6

What is usually done in practice

◮ We rely on libraries.
◮ Need to discover some structure in the matrix, for instance, a

block structure.
◮ Come up with a block preconditioner and call ready solvers for

the blocks.
◮ If no structure is discovered, then rely on ready

preconditioners, but we need to know something on their
performance, to choose a good one.

A solver that scales (I-AMLI)

Coarsest Number of PEs
Grid level No Time
size (total no. 4 8 16 32 64 (sec)

of levels)
2562 10(16) 403.49 189.06 93.86 49.18 28.71 outer

5.31 5.93 5.58 4.62 3.89 comm.
632.60 304.24 154.65 total

5122 12(18) 629.44 302.71 153.81 outer
14.28 12.14 10.14 comm.

1662.73 829.71 total
10242 12(20) 1655.73 826.22 outer

29.89 22.26 comm.

Stokes problem: Performance results on the Cray T3E-600 computer

3D Multiphase flow simulations (PRESB)

Size 549250 4293378 33949186 270011394
No. cores 1 8 64 512

(i1)
N1/N2/N3 3 / 11 / 5 3 / 10 / 6 3 / 9 / 6 3 / 9 / 6

T 35.36 91.02 145.66 275.20
R 2.57 1.60 1.89

(i2)
N1/N3 20/5 17/5 17/6 14/6

T 31.45 67.53 136.56 140.59
R 2.15 2.02 1.03

Weak scalability test, PCG with AMG preconditioner used for systems with
M + ε

√
βK . Average iteration counts N1, N2, and N3, average wall time T in

seconds and factor R of increase of T after one refinement of the mesh

Multigrid, software packages

http://homepages.ulb.ac.be/ ynotay/AGMG/

http://mfem.org/parallel-tutorial/

http://glaros.dtc.umn.edu/gkhome/metis/parmetis/overview

Some references:

P. R. Amestoy, T. A. Davis and I. S. Duff. An approximate minimum degree
ordering algorithm. SIAM J. Matr. Anal. Appl., 17, 886-905, 1996.
C. Ashcraft and J.W.H. Liu. Robust ordering of sparse matrices using
multisection. SIAM J. Matrix Anal. Appl., 19, 816-832, 1998.
E. Cuthill, J. McKee. Reducing the bandwidth of sparse symmetric matrices.
Proc. 24th Nat. Conf. Assoc. Comput. Mach., 157-172, 1969.
J.W.H. Liu, A. H. Sherman. Comparative analysis of the Cuthill-McKee and
the reverse Cuthill-Mckee ordering algorithms for sparse matrices. SIAM J.
Numer. Anal., 13, 198-213, 1975.
J. Dongarra, I. Duff, Sorensen and H. van der Vorst, Numerical Linear Algebra
for High Performance Computers, SIAM Press.
I. Duff, Direct methods, Technical report TR/PA/98/28, July 29, 1998,
CERFACS.
H.W. Berry and A. Sameh (1988), Multiprocessor schemes for solving block
tridiagonal linear systems, The International Journal of Supercomputer
Applications, 12, 37-57.

Some references:

I. S. Duff, A. M. Ersiman and J. K. Reid, Direct Methods for Sparse Matrices,
Oxford University Press, 1986. Reprinted 1989.
I. S. Duff, R. G. Grimes and J. G. Lewis. Sparse matrix test problems. ACM
Trans. Math. Software, 15, 1-14, 1989.
J.A. George and J.W.H. Liu. Computer solution of large sparse positive definite
systems. Prentice-Hall, Englewood Cliffs, New Jersey, 1981.
K.A. Gallivan, R.J. Plemmons, and A.H. Sameh (1990), Parallel algorithms for
dense linear algebra computations, SIAM Review, 32, 54-135.
J. George and J.W.H. Liu. The evolution of the minimum degree ordering
algorithm. SIAM Rev., 31, 1-19, 1989.
F.-C. Lin and K.-L. Chung (1990), A cost-optimal parallel tridiagonal system
solver, Parallel Computing, 15, 189-199.
E. Rothberg and S.C. Eisenstat. Node selection strategies for bottom-up sparse
matrix ordering. SIAM J. Matr. Anal. Appl., 19, 682-695, 1998.
H. van der Vorst and K. Dekker, Vectorization of linear recurrence relations,
SIAM Sci. Stat. Comp., 10 (1989), 27–35.

