
Parallel algorithms for Scientific
Computations

Sparse matrices

Maya Neytcheva

PASC, November 2020

Parallel computer architectures

Architecture homogeneous / nonhomoge-
neous - accelerators, GPUs, vec-
tor units

Memory organization shared / distributed / virtual
shared

Interconnection topology mesh, thorus, hypercube, ...
Levels of parallelism bit-instruction-task level, data

level, function level, compiler
level...

Granularity Machine-algorithm match

Parallel computations require to reconsider

◮ the algorithms,
◮ the data organization,
◮ the communications,
◮ ... also how much we can trade parallelism for numerical

efficiency.

Plan of the lecture:

◮ Sparse matrices - who are those?
◮ Why are sparse matrices a topic of special interest?
◮ Handling sparse matrices. Sparse data formats

◮ Solution methods for sparse matrices
◮ Direct methods

◮ Fill-ins and can we get rid of them?
◮ Reordering strategies
◮ Sparse Cholesky factorization
◮ Sparse QR, SVD

◮ Examples

Large matrices

What has been and is considered as large through the years N(t)

1970 200
1975 1 000
1980 10 000
1985 100 000
1990 250 000
1995 500 000
2000 2 000 000

since 2005 500 000 000

What is a sparse matrix?

A(N × N), nnz(A) = kN, 2 ≤ k ≤ logN

Where do sparse matrices arise?

acoustic scattering demography network flow
air traffic control economics oceanography
astrophysics electrical eng. petroleum eng.
biochemical electric nets reactor modelling
chemical eng. climate/pollution studies statistics
chemical kinetics fluid flow structural eng
circuit physics laser optics survey data
computer simulations linear programming signal processing

Thanks to software and powerful computers on our desk, we do not
care that much about sparse-dense etc...
until we face large enough problems or we have to repeat a
computational task 100, 1000, 10000 times.

This lecture concerns storage book-keeping and programming
aspects which will help to

◮ do the computations faster
◮ save computer memory

The Top500 list, November 2019

Rank Manuf. Computer Installation
Site

PEs TFLOPS

1 IBM Summit - IBM Power
System AC922,
IBM POWER9 22C
3.07GHz, NVIDIA
Volta GV100, Dual-
rail Mellanox EDR
Infiniband , IBM
DOE/SC/

Oak Ridge 2 414 592 200795

82 Tetralith - Intel
H2204XXLRE, Xeon
Gold 6130 16C
2.1GHz, Intel Omni-
Path ClusterVision /
Hammer

Linköping 64 512 4335

The HPCG Top500 list, November 2019

Rank Manuf. Computer Installation
Site

PEs TFLOPS

1 IBM Summit - IBM Power 2 414 592 2925.75/
System AC922,
IBM POWER9 22C
3.07GHz, NVIDIA
Volta GV100, Dual-
rail Mellanox EDR
Infiniband , IBM
DOE/SC/

Oak
Ridge

200795

What is HPCG?

HPCG is a complete, stand-alone code that measures the
performance of basic operations in a unified code
https://www.hpcg-benchmark.org/

◮ Sparse matrix-vector multiplication.
◮ Vector updates.
◮ Global dot products.
◮ Local symmetric Gauss-Seidel smoother.
◮ Sparse triangular solve (as part of the Gauss-Seidel smoother).
◮ Driven by multigrid preconditioned conjugate gradient

algorithm that exercises the key kernels on a nested set of
coarse grids.

Reference implementation is written in C++ with MPI and
OpenMP support.

Interconnection network topologies

(a) linear
array

(b) ring (c) star (d) 2D
mesh

(e) 2D
toroidal
mesh

(f) systolic
array

(g) com-
pletely
connected

(h) chordal
ring

.

(i) binary
tree

(j) 3D cube (k) 3D cube

Interconnection network topologies, cont.

Behind (almost) each topology there was a physical computer:
Topology Computer Year Remark
Linear ILLIAC IV 1972 up to 64 procs
Mesh Intel Paragon 1994 No 1 in top500
Torus Cray T3D/T3E BlueGene L 5D

torus
Systolic WARP 1985 MISD, tori Carnegie

Mellon Univ., 10
Mflops

Fat tree CM-5 1991 Thinking Machines
N-cube CM2/200 1985 216 bit-processors

Ncube 1985 1024 procs

Before discussing sparse matrices...

consider first dense matrices...
because these are easier.

Dense matrix storage schemes

Given a dense matrix A(m, n).
Two main possibilities to store dense matrices:
row-wise and column-wise.

A =




a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
...

...
am1 am2 · · · amn




DCW : a11 a21 · · · am1 a12 a22 · · · am2 a1n a2n · · · amn

DRW : a11 a12 · · · a1n a21 a22 · · · a2n am1 am2 · · · amn

First row

First column

Dense matrix storage schemes and computations

What difference does the storage scheme make with respect to
computations?

Dense matrix storage schemes and computations

What difference does the storage scheme make with respect to
computations?
Matrix-vector multiplications: y = Ax,A(m, n)

yi =
n∑

j=1

aijxj , i = 1, . . . ,m.

Dense matrix storage schemes and computations

What difference does the storage scheme make with respect to
computations?
Matrix-vector multiplications: y = Ax,A(m, n)

yi =
n∑

j=1

aijxj , i = 1, . . . ,m.

A: stored row-wise (inner product scheme)
for i=1:m

y(i) = 0
for j = 1:n

y(i) = y(i) + A(i,j) * x(j)
end

end

Dense matrix storage schemes and computations

What difference does the storage scheme make with respect to
computations?
Matrix-vector multiplications: y = Ax,A(m, n)

yi =
n∑

j=1

aijxj , i = 1, . . . ,m.

for i=1:m
y(i) = 0
y(i) = y(i) + A(i,:) * x(:)

end

Dense matrix storage schemes and computations

Matrix-vector multiplications: y = Ax
A: stored column-wise (outer product scheme)

y = 0
for j=1:n

for i = 1:m
y(i) = y(i) + A(i,j) * x(j)

end
end

y = 0
for j = 1 : n

y = y + x(j) ∗ A(:, j)
end

(vector operation)

Dense matrix-matrix multiply (ijk)

A

B

C

j

k

k

i

A(m,n)*B(n,p) = C(m,p)

for i=1:m
for j=1:p

for k=1:n
C(i,j) = C(i,j) + A(i,k)*B(k,j)

end
end

C = 0

end

Scalar-product type of computation

Dense matrix-matrix multiply (ijk)

A

B

C

A(m,n)*B(n,p) = C(m,p)

end
end

C = 0

end

for j=1:p
for k=1:n

i

k

j

k

C(i,j) = C(i,j) + A(i,k)*B(k,j)

for i=1:m

Outer-product type of computation (’ikj’ - row-wise and ’jki’ -
column-wise)

Dense matrix-matrix multiply (ijk)

A

B

C

A(m,n)*B(n,p) = C(m,p)

C(i,j) = C(i,j) + A(i,k)*B(k,j)
end

end

C = 0

end

for k=1:n

for j=1:p
for i=1:m

k

i i

j

k

accumulated update form

Dense matrix storage schemes and computations

Bottom line:

◮ The storage scheme of a dense matrix affects the order how
the matrix entries are accessed in the computer memory.
This may have a significant effect on the performance of an
algorithm since the memory accesses are much slower than
arithmetic operations

◮ One storage scheme is better for some operations and not so
preferable for other operations (AT).

Factorizing symmetric marices

Factorize A = LLT , L – lower-triangular
Cholesky factorization

Major Andre-Louis Cholesky (1875-1918)

The mathematician after whom the Cholesky factorisation is
named.
He was born in France, and worked in the Geodesic section of the
Geographic service to the French army’s artillery branch.
At this time the system of triangulation used in France, and based
on the meridian line of Paris, was being revised; new methods were
needed in order to facilitate what was not yet a quick or convenient
process.
Cholesky invented computation procedures based on the method of
least squares, for the solution of certain data-fitting problems in
geodesy, to be put into practice in his triangulation of the French
and British parts of Crete, and in his work in Algeria and Tunisia.
His mathematical work was posthumously published on his behalf in
1924 by a fellow officer, Benoit.

Factorizing symmetric marices Cholesky factorization ...

% Maya’s version of Cholesky - to compare execution time
% ---
function [U]=my_chol(A)
A = triu(A);
n = size(A,1);
for k=1:n,

A(1:k-1,k) = A(1:k-1,1:k-1)’\A(1:k-1,k);
A(k,k) = sqrt(A(k,k) - A(1:k-1,k)’*A(1:k-1,k));

end
U = triu(A);
return

Cholesky factorization ...

size(A) chol chol Ratio nnz(A) nnz(U)
Matlab mine

18 0.0137 0.0337 2.46 35 41
50 0.0145 0.0788 5.42 167 406

162 0.0264 0.5941 22.50 743 4 958
578 0.5782 12.61 21.80 3143 75 237

2178 51.4146 892.286 17.35 12935 1 179 520

GAXPY Cholesky

for k = 1 : n
if k > 1

A(k : n, k) = A(k : n, k)− A(k : n, 1 : k − 1) ∗ A(k, 1 : k − 1)T

endif
A(k : n, k) = A(k : n, k)/

√
A(k, k)

end

Outer Product Cholesky

for k = 1 : n
A(k, k) =

√
A(k, k)

A(k + 1 : n, k) = A(k + 1 : n, k)− A(n : k, k − 1)/A(k, k)
for j = k + 1 : n

A(j : n, j) = A(j : n, j)− A(j : n, j)A(j , k)
end

end

put together

for k = 1 : n
if k > 1

A(k : n, k) = A(k : n, k)− A(k : n, 1 : k − 1) ∗ A(k, 1 : k − 1)T

endif
A(k : n, k) = A(k : n, k)/

√
A(k, k)

end

for k = 1 : n
A(k, k) =

√
A(k, k)

A(k + 1 : n, k) = A(k + 1 : n, k)− A(n : k, k − 1)/A(k, k)
for j = k + 1 : n

A(j : n, j) = A(j : n, j)− A(j : n, j)A(j , k)
end

end

Example of implementing Cholesky factorization

for k=1:n
xeuitb(A(1:k-1,k),A(1:k-1,1:k-1),A(1:k-1,k))
A(k,k) = sqrt(A(k,k) - A(1:k-1,k)^T*A(1:k-1,k))

end

Computes U (which overwrites A).

BLAS xeuitb(X,U,B) computes X = U−1B

Sparse matrices

Sparse matrix collections

◮ Matrix Market https://math.nist.gov/MatrixMarket/
◮ Harwell-Boeing sparse matrix collection
http://swmath.org/software/8516

◮ SuiteSparse Matrix Collection https://sparse.tamu.edu/

◮ UF Sparse Matrix Collection
https://www.cise.ufl.edu/research/sparse/

matrices/list_by_id.html

Sparse matrix storage schemes

There are more than 20 different sparse storage schemes...

Sparse matrix storage schemes

Coordinate scheme:

A =




0 1 2 0
3 4 0 0
0 0 5 0
6 0 0 0




J : 2 3 1 2 3 1

I : 1 1 2 2 3 4

V : 1 2 3 4 5 6

Advantages and disadvantages

Sparse matrix storage schemes

Diagonal-wise storage scheme:

A =




a11 a12 0 a14 0 0
a21 a22 a23 0 a25 0
0 a32 a33 a34 0 a36
0 0 a43 a44 a45 0
0 0 0 a54 a55 a56
0 0 0 0 a65 a66




V =




0 a11 a12 a14
a21 a22 a23 a25
a32 a33 a34 a36
a43 a44 a45 0
a54 a55 a56 0
a65 a66 0 0




OF : -1 0 1 3

Sparse matrix storage schemes

Sparse compressed schemes: A =




0 1 2 0
3 4 0 0
0 0 5 0
6 0 0 0




R : 1 3 5 6 7

C : 2 3 1 2 3 1

V : 1 2 3 4 5 6

(l) CSR

C : 1 3 5 7 7

R : 2 4 1 2 3 3

V : 3 6 1 4 2 5

(m) CSC

Sparse matrix-vector multiplication using CSR

A: IA, JA, VA
for i=1:m

t = 9;
for j=IA(i):IA(i+1)-1

t = t + AV(j)*x(JA(j));
end
y(i) = t;

end

Used in UMFPACK.

Sparse matrix storage schemes

Jagged diagonal storage: The Jagged Diagonal Storage format can be
useful for the implementation of iterative methods on parallel and vector
processors. Like the Compressed Diagonal format, it gives a vector length
essentially of the size of the matrix. It is more space-efficient than CDS at the
cost of a gather/scatter operation.




10 −3 0 −1 0 0
0 9 6 0 −2 0
3 0 8 7 0 0
0 6 0 7 5 4
0 0 0 0 9 13
0 0 0 0 5 −1



−→




10 −3 1
9 6 −2
3 8 7
6 7 5 4
9 13
5 −1




col_ind(:,1) 1 2 1 2 5 5
col_ind(:,2) 2 3 3 4 6 6
col_ind(:,3) 4 5 4 5 0 0
col_ind(:,4) 0 0 0 6 0 0

Jagged diagonals, cont.




10 −3 0 −1 0 0
0 9 6 0 −2 0
3 0 8 7 0 0
0 6 0 7 5 4
0 0 0 0 9 13
0 0 0 0 5 −1




→




0 6 0 7 5 4
0 9 6 0 −2 0
3 0 8 7 0 0
10 −3 0 −1 0 0
0 0 0 0 9 13
0 0 0 0 5 −1




→




6 7 5 4
9 6 −2
3 8 7
10 −3 −1
9 13
5 −1




vals 6 9 3 10 9 5; 7 6 8 -3 13 -1; 5 -2 7 1; 4;
cols 2 2 1 1 5 5; 4 3 3 2 6 6; 5 5 4 4; 6;
perm 4 2 3 1 5 6

jd_ptr 1 7 13 17

Yale data format

The Yale sparse format:
a (sparse) matrix is stored with four elements (vectors), which are:
– (1) the nonzero values row by row,
– (2) the ordered column indices of nonzero values,
– (3) the position in the previous two vectors corresponding to new
rows, given as pointers,
– (4) the column dimension of the matrix.

Block-row storage (BSR) format

Intel MKL block compressed sparse row (BSR)- four arrays: values,
columns, pointerB, and pointerE.
values: A real array that contains the elements of the non-zero blocks of
a sparse matrix. The elements are stored block-by-block in row-major
order. A non-zero block is the block that contains at least one non-zero
element. All elements of non-zero blocks are stored, even if some of them
is equal to zero. Within each non-zero block elements are stored in
column-major order in the case of one-based indexing, and in row-major
order in the case of the zero-based indexing.
columns: Element i of the integer array columns is the number of the
column in the block matrix that contains the i-th non-zero block.
pointerB: Element j of this integer array gives the index of the element in
the columns array that is first non-zero block in a row j of the block
matrix.
pointerE: Element j of this integer array gives the index of the element in
the columns array that contains the last non-zero block in a row j of the
block matrix plus 1.
The length of the values array is equal to the number of all elements in

How to multiply two sparse matrices?

◮ The number of nonzeros in the product can be larger.
◮ Two-pass algorithm, to determine how much memory to

allocate.

LU factorization for sparse matrices

Direct methods: A = LU, LUx = b, Ly = b, Ux = y

The process of triangular factorization (Gaussian elimination) for
the case of sparse matrices.
Note: In general, during factorization we have to do pivoting in
order to assure numerical stability.
The computational complexity of a direct solution algorithm is as
follows.

Type of matrix A Factor LU solve Memory
general dense 2/3n3 O(n2) n(n + 1)
symmetric dense 1/3n3 O(n2) 1/2n(n + 1)
band matrix (2q + 1) O(q2n) O(qn) n(2q + 1)

The reason to consider particularly factorizations of sparse
matrices

is the effect of fill-in, namely, obtaining nonzero entries in the LU
factors in positions where Ai ,j is zero.

a(k+1)
i ,j ←− a(k)i ,j +

a(k)i,k a(k)k,j

a(k)k,k

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

nz = 8

L
A

Effect on sparsity structure on factorization:

0 1 2 3 4 5 6 7 8 9

0

1

2

3

4

5

6

7

8

9

nz = 22

(n) Arrow matrix

0 1 2 3 4 5 6 7 8 9

0

1

2

3

4

5

6

7

8

9

nz = 36

(o) The structure of the L-factor

The arrow matrix structure - the L and U factors are full.

Effect on sparsity structure on factorization

0 1 2 3 4 5 6 7 8 9

0

1

2

3

4

5

6

7

8

9

nz = 22

(p) Arrow matrix permuted

0 1 2 3 4 5 6 7 8 9

0

1

2

3

4

5

6

7

8

9

nz = 15

(q) The structure of the L-factor

We can permute the matrix A first and then factorize!

We pose now the question to · · ·

find permutation matrices P and Q, such that when we factorize
Ã = QTAPT , the fill-in in the so-obtained L and U factors will be
minimal.
The solution algorithm takes the form:

(1) Factorize QTAPT = LU
(2) Solve PLz = b and UQx = z.

How to construct P and Q in general?

The aim of sparse matrix algorithms is to solve the system Ax = b
in time and space (computer memory requirements) proportional to
O(n) + O(nnz(A)), where nnz(A) denotes the number of nonzero
elements in A.
Even if the latter target cannot be achieved, the complexity of
sparse linear algebra is far less than that of the dense case:

Order Time in sec
of A nnz(A) Dense solver Sparse solver
680 2646 0.96 0.06

1374 8606 6.19 0.70
2205 14133 24.25 2.65
2529 90158 36.37 1.17

Time on Cray Y-MP (results taken from I. Duff)

The strive to achieve complexity O(n) + O(nnz(A)) entails very
complicated sparse codes.
Some important aspects when implementing the direct solution
techniques for sparse matrices in practice:
- sparse data structures and manipulations with those;
- computer platform related issues, such as handling of

indirect addressing; lack of locality;
difficulties with cache-based computers and parallel platforms;

short inner-most loops.

Extra difficulties come from the fact that· · ·

we have to choose a pivot element and its proper choice may contradict to the
strive to minimize fill-in.
Condition min[(n(k)

i − 1)(n(k)
j − 1)] can be seen as

- choosing a pivot which will modify the least number of coefficients in the
remaining submatrix;
- choosing a pivot that involves least multiplications and divisions;
- as a means to limit the fill-in since it will produce at most (n(k)

i − 1)(n(k)
j − 1)

new nonzero entries.
However, in general the entry a(k)

i,j has to obey some other numerical criteria
also, for example,

|a(k)
i,j | ≥ τ |a(k)

i,s |, i ≥ s,

where τ ∈ (0, 1) is a threshold parameter.

n=500;
R=sprand(n,n,5/n); I=speye(n); b=rand(n,1); A=I+R; AF=full(A);
tic,x=A\b;toc
Elapsed time is 0.006472 seconds.
tic,x=AF\b;toc
Elapsed time is 0.036819 seconds.

n=5000;
tic,x=A\b;toc
Elapsed time is 0.336134 seconds.
tic,x=AF\b;toc
Elapsed time is 1.666255 seconds.

n=10000;
tic,x=A\b;toc
Elapsed time is 1.881219 seconds.
tic,x=AF\b;toc
Elapsed time is 12.504630 seconds.

n=50000;
R=sprand(n,n,1/n);I=speye(n);b=rand(n,1);A=10*I+0.5*(R+R’);
tic,x=A\b;toc
Elapsed time is TOO MANY seconds.

tic,[x,flag,relres,iter,resvec]=pcg(A,b,1e-6,1000);toc
Elapsed time is 0.015673 seconds.
iter = 5
relres = 4.67 e-07

We are most often dealing with ’Given-the-matrix’ case

I.e., the only source of information is the matrix itself and we will
try to reorder the entries so that the resulting structure will limit
the possible fill-in.

What is the matrix structure to aim at?

Given-the-matrix strategy

0 1 2 3 4 5 6 7 8 9

0

1

2

3

4

5

6

7

8

9

nz = 8

(r) Diagonal matrix

◮ diagonal
◮ block-diagonal
◮ block-tridiagonal
◮ arrow matrix
◮ band matrix
◮ block-triangular

0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

10

nz = 21

(s) block-diagonal matrix

0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

10

nz = 18

(t) The structure of the L-factor

0 2 4 6 8 10 12 14 16 18

0

2

4

6

8

10

12

14

16

18

nz = 112

(u) Block-tridiagonal matrix

0 2 4 6 8 10 12 14 16 18

0

2

4

6

8

10

12

14

16

18

nz = 54

(v) The structure of the L-factor

Consider the case of symmetric matrices (P = Q) and three
popular methods based on manipulations on the graph
representation of the matrix.
- (generalized) reverse Cuthill-McKee algorithm (1969);
- nested dissection method (1973);
- minimum degree ordering (George and Liu, 1981) and variants.

A matrix from somewhere

0 20 40 60 80 100 120

0

20

40

60

80

100

120

nz = 4355

0 20 40 60 80 100 120

0

20

40

60

80

100

120

nz = 5574

Generalized Reverse Cuthill-McKee (RCM)

Aim: minimize the envelope (in other words a band of variable
width) of the permuted matrix.

1. Initialization. Choose a starting (root) vertex r and set v1 = r .

2. Main loop. For i = 1, ..., n find all non-numbered neighbours of vi and
number them in the increasing order of their degrees.

3. Reverse order. The reverse Cuthill-McKee ordering is w1, ...,wn, where
wi = vn+1−i .

Generalized Reverse Cuthill-McKee (RCM)

One can see that GenRCM tends to number first the vertices
adjoint to the already ordered ones, i.e., it gathers matrix entries
along the main diagonal.

The choice of a root vertex is of a special interest.

The complexity of the algorithm is bounded from above by
O(m nnz(A)), where m is a maximum degree of vertices, nnz(A) -
number of nonzero entries of matrix A.

Generalized Reverse Cuthill-McKee (RCM)

0 20 40 60 80 100 120

0

20

40

60

80

100

120

p
r
cm = symrcm(A1); A2 = A1(p

r
cm,p

r
cm);

Symmetric reverse Cuthill−McKee permutation

0 20 40 60 80 100 120

0

20

40

60

80

100

120

nz = 3375

The Quotient Minimum Degree (QMD)

Aims to minimize a local fill-in taking a vertex of minimum degree
at each elimination step. The straightforward implementation of
the algorithm is time consuming since the degree of numerous
vertices adjoint to the eliminated one must be recomputed at each
step. Many important modifications have been made in order to
improve the performance of the MD algorithm and this research
remains still active .
In many references the MD algorithm is recommended as a general
purpose fill-reducing reordering scheme. Its wide acceptance is
largely due to its effectiveness in reducing fill and its efficient
implementation.

The Quotient Minimum Degree (QMD)

0 20 40 60 80 100 120

0

20

40

60

80

100

120

nz = 4355

Symmetric minimum degree permutation

0 20 40 60 80 100 120

0

20

40

60

80

100

120

nz = 3090

The Nested Dissection algorithm

A recursive algorithm which on each step finds a separator of each
connected graph component. A separator is a subset of vertices
whose removal subdivides the graph into two or more components.
Several strategies how to determine a separator in a graph are
known. Numbering the vertices of the separator last results in the
following structure of the permuted matrix with prescribed zero
blocks in positions (2, 1) and (1, 2)




A11 0 A13
0 A22 A23

A31 A32 A33


 .

The Nested Dissection algorithm

Under the assumption that subdivided components are of equal size
the algorithm requires no more than log2 n steps to terminate.

ND is optimal (up to a constant factor) for some class of model 2D
problems originating from discretized PDEs. The Cholesky factor
contains O(m2log2m) nonzero entries. This is the
best low order bounds derived for direct elimination methods. "Given-the-problem" strategy

Given-the-problem strategy

Assume we know the origin of the linear system of equations to be
solved.
Example: the problem originates from a numerically discretized
(system of) PDEs, and we know the domain of definition of the
problem (Ω), its geometrical properties, the discretization method
(finite differences (FD), finite elements (FE), finite volumes (FV),
boundary integral (BE) method). In such cases the system matrix
enjoys a special structure.
This information can be utilized while computing the matrix so that
it will be constructed in (almost) favourable form.

In the PDE world and not only...

12 14 15 16 17 18 20

22 23 24 25 26 27 28 30

32 33 34 35 36 37 38 39

45 47 50

2 3 4 5 6 7 8 10

40

42 43 44 46 48 4941

31

21

11

1

13

9

19

29

(w) Row-wise ordering

0 5 10 15 20 25 30 35 40 45 50

0

5

10

15

20

25

30

35

40

45

50

nz = 220

(x) The structure of
the matrix A

In the PDE world and not only...

1

2

3

4

5

6

7

8

9

11

12

13

14

16

17

18

19

21

22

23

24

27

29

32

33

34

36

37

38

39

41

42

44

46

47

49

15 20 25 30 35 40 45

4843

3126

28

10 50

(y) Column-wise order-
ing

0 5 10 15 20 25 30 35 40 45 50

0

5

10

15

20

25

30

35

40

45

50

nz = 220

(z) The structure of
the matrix A

In the PDE world and not only...

Ω1 Ω2 Ω3

2

4 5 6

7 8 9

10 11 12

13 14 15

17

18 19

20 21

22 23

24 25

27 28

39 30 31

32 33 34

35 36 37

38 39 40

41

42

43

45

47

48

1

44

16 46

49

50

263

() Domain-
decomposition ordering

0 5 10 15 20 25 30 35 40 45 50

0

5

10

15

20

25

30

35

40

45

50

nz = 220

() The structure of
the matrix A

Parallel mesh partitioner PARMETIS (based on METIS)

() From PARMETIS galery

Sparse QR

A = LLT

A = QR, then ATA = RTQTQR = RTR!

Thus, if we know R , we have factorized ATA!
But: if A is sparse, we want that R is as sparse as possible.
This is achieved by performing symbolic factorization of ATA.

Sparse SVD, Matlab

The Matlab SVD implementation follows that of LINPACK,
which is for general dense matrices.
To find some of the singular values (largest or smallest) of a large
sparse matrix, one can use svds.
svds(A,k) uses eigs to find the k largest magnitude
eigenvalues and corresponding eigenvectors of

B =

[
0 A

AT 0

]

.

Sparse SVD, Matlab

Demo:

load 20.dat S=svds(AS,5);
A=X20+tril(X20,1)’; S=svds(AS,5,0.51);
S =svd(A); 0.27 s S=svds(AS,5,0.01);
AS=sparse(A);
SS=svds(AS,10); 0.09 s

Summary:

◮ There is no ’best’ method!
◮ The best code in any situation will depend on

- the solution environment;
- the computing platform;
- the structure of the matrix.

