
TDB − NLA Parallel Algorithms for Scientific Computing

Multigrid methods

Algebraic Multigrid methods
Algebraic Multilevel Iteration

methods

– p. 1/25

Residual correction

Ax = b,xexact, e
(k) = xexact − x(k)

r(k) = b−Ax(k)

Residual equation: Ae(k) = r(k)

Residual correction: x(k+1) = x(k) + e(k)

Recall: x(k+1) = x(k) + C−1(b−Ax(k))

Error propagation: e(k+1) = (I − C−1A)e(k)

– p. 2/25

TDB − NLA Parallel Algorithms for Scientific Computing

Run Jacobi demo...

student/NLA/Demos/Module3/L5

– p. 3/25

High and low frequencies - nonsmooth, smooth

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

– p. 4/25

Main idea: R. Fedorenko (1961), N.S. Bakhvalov (1966)

Reduce the error e(k) = xexact − x(k) on the given (fine) grid by successive
residual corrections on a hierarchy of (nested) coarser grids.

– p. 5/25

TDB − NLA Some contributors:

Years MG matches AMG matches

1966-1986 384 9
1987-1996 1108 41
1997-2006 1251 156
2007-2013 823 178

Archi Brandt Jan Mandel Tom Manteiffel
Wolggang Hackbusch Steve McCormick Yvan Notay
Jurgen Ruge Petr Vanec Irad Yavneh
Klaus Stüben Piet Hemker Panayot Vassilevski

Ruge, J. W.; Stüben, K. Algebraic multigrid. Multigrid methods, 73-130, Frontiers
Appl. Math., 3, SIAM, Philadelphia, PA, 1987.

– p. 6/25

Multilevel preconditioning methods: MG

Procedure MG: u(k) ←MG
(
u(k), f (k), k, {ν

(k)
j }

k
j=1

)
;

if k = 0, then solve A(0)u(0) = f (0) exactly or by smoothing,
else

u(k) ←
s1
S
(k)
1

(
u(k), f (k)

)
, perform s1 pre-smoothing steps,

Correct the residual:
r(k) = A(k)u(k) − f (k); form the current residual,

r(k−1) ← R
(
r(k)

)
, restrict the residual on the next coarser grid,

e(k−1) ←MG
(
0, r(k−1), k − 1, {ν

(k−1)
j }k−1

j=1

)
;

e(k) ← P
(
e(k−1)

)
; prolong the error from the next coarser to the

current grid,
u(k) = u(k) − e(k); update the solution,

u(k) ←
s2
S
(k)
2

(
u(k), f (k)

)
, perform s2 post-smoothing steps.

endif

end Procedure MG

– p. 7/25

post-smoothing steps

pre-smoothing steps

exact solving

restriction prolongation

One MG step (V -cycle)

The MG W -cycle

– p. 8/25

Nested iteration

Procedure NI : u(ℓ) ← NI
(
u(0),

{
f (k)

}(ℓ)
k=1

, ℓ, {ν(k)}ℓk=1

)
;

u(0) = A(0)−1
f (0),

for k= 1 to ℓ do

u(k) = P
(
u(k−1)

)
;

u(k) ←MG
(
u(k), f (k), k, {ν

(k)
j }

k
j=1

)
;

endfor

end Procedure NI

The so-called full MG corresponds to Procedure NI(·, ·, ℓ, {1, 1, · · · , 1})

The full MG (V -cycle)

– p. 9/25

A compact formula presenting the MG procedure in terms of a recursively
defined iteration matrix:
(i) Let M(0) = 0,
(ii) For k = 1 to ℓ, define

M(k) = S(k)
s2
(
A(k)−1

− Pk
k−1

(
I −M(k−1)ν

)
A(k−1)−1

Rk−1
k

)
A(k)S(k)

s1
,

where S(k) is a smoothing iteration matrix (assuming S1 and S2 are the same),
Rk−1

k
and Pk

k−1 are matrices which transfer data between two consecutive
grids and correspond to the restriction and prolongation operators R and P ,
respectively, and ν = 1 and ν = 2 correspond to the V - and W -cycles.

It turns out that in many cases the spectral radius of M(ℓ), ρ
(
M(ℓ)

)
, is

independent of ℓ, thus the rate of convergence of the NI method is optimal.
Also, a mechanism to make the spectral radius of M(ℓ) smaller is to choose s1

and s2 larger. The price for the latter is, clearly, a higher computational cost.

– p. 10/25

MG ingredients

smoothers (many different)

Jacobi, weighted Jacobi (ωdiag(A), GS, SOR, SSOR, SPAI

restriction and prolongation operators

coarse level matrix (approximation properties)

– p. 11/25

47 of 119

1D Interpolation (Prolongation)

Ωh

Ω2h

• Values at points on the coarse grid map unchanged
to the fine grid

• Values at fine-grid points NOT on the coarse grid
are the averages of their coarse-grid neighbors

52 of 119

1D Restriction by injection
• Mapping from the fine grid to the coarse grid:

• Let , be defined on , . Then

 where .

vh v2h Ωh Ω2h

vv h
i

h
i 2
2 =

I hhh
h

22 Ω→Ω:

vvI hhh
h

22 =

53 of 119

1D Restriction by full-weighting

• Let , be defined on , . Then

 where

vh v2h Ωh Ω2h

vvvv h
i

h
i

h
i

h
i 12212
2)++(= 2

4
1

+−

vvI hhh
h

22 =

55 of 119

Prolongation and restriction are
often nicely related

• For the 1D examples, linear interpolation and full-
weighting are related by:

• A commonly used, and highly useful, requirement is
that

 for c in ℜIcI 2
2

Th
h

h
h)(=

I2
h
h

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

=

1
2
11

2
11

2
1

2
1 I h

h
2 �

�
�

�
�
�

=
121

121
121

4
1

56 of 119

2D Prolongation

vv 2
22

h
ji

h
ji, =

vvv 1
2

212
h

ji
h
ji

h
ji ,+,+)+(=

2
1

vvv 1
2

122
h

ji
h
ji

h
ji +,+,)+(=

2
1

vvvvv 1111
2

1212
h

ji
h

ji
h

ji
h
ji

h
ji +,++,,++,+)+++(=

4
1 4

1
2
1

4
1

2
1

1
2
1

4
1

2
1

4
1

We denote the operator by
using a “give to” stencil,] [.
Centered over a c-point, ,
it shows what fraction of

the c-point’s value is
contributed to neighboring

f-points, .

57 of 119

2D Restriction (full-weighting)

We denote the operator by
using a “give to” stencil, [].
Centered over a c-point, ,
it shows what fractions of

the neighboring () f-points’
value is contributed to the

value at the c-point.

61
1

8
1

61
1

8
1

4
1

8
1

61
1

8
1

61
1

87 of 119

The variational properties
• The definition for that resulted from the

foregoing line of reasoning is useful for both
theoretical and practical reasons. Together with
the commonly used relationship between
restriction and prolongation we have the following
“variational properties”:

IAIA 2
22 h

h
hh

h
h =

IcI 2
2

Th
h

h
h)(=

(Galerkin Condition)

for c in ℜ

A 2h

MG: Rate of convergence and computational complexity

– p. 12/25

TDB − NLA Algebraic Multigrid

– p. 13/25

AMG demo ...
AGMG http://homepages.ulb.ac.be/~ynotay/AGMG/

.../Projects/ComplexSymmetric

– p. 14/25

http://homepages.ulb.ac.be/~ynotay/AGMG/
.../Projects/ComplexSymmetric

11

Lawrence Livermore National Laboratory

Approach for parallelizing multigrid is straightforward

data decomposition

 Basic communication pattern is “nearest neighbor”
• Relaxation, interpolation, & Galerkin not hard to implement

 Different neighbor processors on coarse grids

 Many idle processors on coarse grids (100K+ on BG/L)
• Algorithms to take advantage have had limited success

Level 1

Level 2

Level L

12

Lawrence Livermore National Laboratory

Straightforward parallelization approach is optimal for

V-cycles on structured grids (5-pt Laplacian example)

 Standard communication / computation models

 Time to do relaxation

 Time to do relaxation in a V(1,0) multigrid cycle

 For achieving optimality in general, the log term is unavoidable!

 More precise:

(communicate m doubles)

(compute m flops)

nn grids

13

Lawrence Livermore National Laboratory

Additional comments on parallel multigrid

 W-cycles scale poorly:

 Lexicographical Gauss-Seidel is too sequential

• Use red/black or multi-color GS
• Use weighted Jacobi, hybrid Jacobi/GS, L1
• Use C-F relaxation (Jacobi on C-pts then F-pts)
• Use Polynomial smoothers

 Parallel smoothers are often less effective

 Recent survey on parallel multigrid:
• “A Survey of Parallelization Techniques for Multigrid Solvers,” Chow, Falgout, Hu, Tuminaro, and

Yang, Parallel Processing For Scientific Computing, Heroux, Raghavan, and Simon, editors,
SIAM, series on Software, Environments, and Tools (2006)

 Recent paper on parallel smoothers:
• “Multigrid Smoothers for Ultra-Parallel Computing,” Baker, Falgout, Kolev, and Yang, SIAM J. Sci.

Comput., submitted. LLNL-JRNL-435315

C-pts F-pts

14

Lawrence Livermore National Laboratory

Example weak scaling results on Dawn (an IBM BG/P

system at LLNL) in 2010

 Laplacian on a cube; 403 = 64K grid points per processor;

largest problem had 3 billion unknowns!

 PFMG is a semicoarsening multigrid solver in hypre

 Still room to improve setup implementation (these results already employ the

assumed partition algorithm described later)

10 10 10 10 10

11 11 11 11
11

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

64 512 1728 4096 8000 13824 21952 32768 46656 64000

Ti
m

e
(s

ec
o

n
d

s)

Processors (problem size)

PFMG-CG on Dawn (40x40x40)

setup

solve

cycle

iterations

15

Lawrence Livermore National Laboratory

Basic multigrid research challenge

 Optimal O(N) multigrid methods don‟t exist for some
applications, even in serial

 Need to invent methods for these applications

 However …

 Some of the classical and most proven techniques used
in multigrid methods don‟t parallelize
• Gauss-Seidel smoothers are inherently sequential

• W-cycles have poor parallel scaling

 Parallel computing imposes additional restrictions on
multigrid algorithmic development

25

Lawrence Livermore National Laboratory

Choosing the coarse grid

 In C-AMG, the coarse grid is a subset of the fine grid

 The basic coarsening procedure is as follows:

• Define a strength matrix As by deleting weak connections in A

• First pass: Choose an independent set of fine-grid points based

on the graph of As

• Second pass: Choose additional points if needed to satisfy

interpolation requirements

 Coarsening partitions the grid into C- and F-points

26

Lawrence Livermore National Laboratory

C-AMG coarsening

select C-pt with
maximal measure

select neighbors
as F-pts

update measures
of F-pt neighbors

3 5 5 5 5 5 3

5 8 8 8 8 8 5

5 8 8 8 8 8 5

5 8 8 8 8 8 5

5 8 8 8 8 8 5

5 8 8 8 8 8 5

3 5 5 5 5 5 3

27

Lawrence Livermore National Laboratory

C-AMG coarsening

select C-pt with
maximal measure

select neighbors
as F-pts

update measures
of F-pt neighbors

3 5 5 5 5 5 3

5 8 8 8 8 8 5

5 8 8 8 8 8 5

5 8 8 8 8 8 5

5 8 8 8 8 8 5

5 8 8 8 8 8 5

3 5 5 5 5 5 3

28

Lawrence Livermore National Laboratory

C-AMG coarsening

select C-pt with
maximal measure

select neighbors
as F-pts

update measures
of F-pt neighbors

3 5 5 5 5 5 3

5 8 8 8 8 8 5

5 8 8 8 8 8 5

5 8 8 8 8 8 5

8 8 8 5

8 8 8 5

5 5 5 3

29

Lawrence Livermore National Laboratory

C-AMG coarsening

select C-pt with
maximal measure

select neighbors
as F-pts

update measures
of F-pt neighbors

3 5 5 5 5 5 3

5 8 8 8 8 8 5

5 8 8 8 8 8 5

7 11 10 9 8 8 5

10 8 8 5

11 8 8 5

7 5 5 3

30

Lawrence Livermore National Laboratory

C-AMG coarsening

select C-pt with
maximal measure

select neighbors
as F-pts

update measures
of F-pt neighbors

3 5 5 5 5 5 3

5 8 8 8 8 8 5

5 8 8 8 8 8 5

7 11 10 9 8 8 5

10 8 8 5

8 8 5

7 5 5 3

11

31

Lawrence Livermore National Laboratory

C-AMG coarsening

select C-pt with
maximal measure

select neighbors
as F-pts

update measures
of F-pt neighbors

3 5 5 5 5 5 3

5 8 8 8 8 8 5

5 8 8 8 8 8 5

7 11 10 9 8 8 5

8 5

8 5

5 3

32

Lawrence Livermore National Laboratory

C-AMG coarsening

select C-pt with
maximal measure

select neighbors
as F-pts

update measures
of F-pt neighbors

3 5 5 5 5 5 3

5 8 8 8 8 8 5

5 8 8 8 8 8 5

7 11 11 11 10 9 5

10 5

11 5

6 3

33

Lawrence Livermore National Laboratory

C-AMG coarsening

select C-pt with
maximal measure

select neighbors
as F-pts

update measures
of F-pt neighbors

3 5 5 5 5 5 3

5 8 8 8 8 8 5

5 8 8 8 8 8 5

7 11 11 11 11 11 7

34

Lawrence Livermore National Laboratory

C-AMG coarsening

select C-pt with
maximal measure

select neighbors
as F-pts

update measures
of F-pt neighbors

3 5 5 5 5 5 3

7 11 10 9 8 8 5

10 8 8 5

13 11 11 7

35

Lawrence Livermore National Laboratory

C-AMG coarsening is inherently sequential

select C-pt with
maximal measure

select neighbors
as F-pts

update measures
of F-pt neighbors

44

Lawrence Livermore National Laboratory

Parallel Coarsening Algorithms

 C-AMG coarsening algorithm is inherently sequential

 Several parallel algorithms (in hypre):
• CLJP (Cleary-Luby-Jones-Plassmann) – one-pass approach with

random numbers to get concurrency (illustrated next)

• Falgout – C-AMG on processor interior, then CLJP to finish

• PMIS – CLJP without the „C‟; parallel version of C-AMG first pass

• HMIS – C-AMG on processor interior, then PMIS to finish

• CGC (Griebel, Metsch, Schweitzer) – compute several coarse grids on

each processor, then solve a global graph problem to select the grids

with the best “fit”

• …

 Other parallel AMG codes use similar approaches

45

Lawrence Livermore National Laboratory

CLJP coarsening is fully parallel

select C-pts with
maximal measure
locally

 remove neighbor
edges

update neighbor
measures

3.7 5.3 5.0 5.9 5.4 5.3 3.4

5.2 8.0 8.5 8.2 8.6 8.9 5.1

5.9 8.1 8.9 8.9 8.4 8.2 5.9

5.7 8.6 8.3 8.8 8.3 8.1 5.0

5.3 8.7 8.3 8.4 8.3 8.9 5.9

5.0 8.8 8.5 8.6 8.7 8.9 5.3

3.2 5.6 5.8 5.6 5.9 5.9 3.0

46

Lawrence Livermore National Laboratory

CLJP coarsening is fully parallel

select C-pts with
maximal measure
locally

 remove neighbor
edges

update neighbor
measures

3.7 5.3 5.0 5.9 5.4 5.3 3.4

5.2 8.0 8.5 8.2 8.6 8.9 5.1

5.9 8.1 8.9 8.9 8.4 8.2 5.9

5.7 8.6 8.3 8.8 8.3 8.1 5.0

5.3 8.7 8.3 8.4 8.3 8.9 5.9

5.0 8.8 8.5 8.6 8.7 8.9 5.3

3.2 5.6 5.8 5.6 5.9 5.9 3.0

47

Lawrence Livermore National Laboratory

CLJP coarsening is fully parallel

select C-pts with
maximal measure
locally

 remove neighbor
edges

update neighbor
measures

3.7 5.3 5.0 5.9 2.4

5.2 8.0 5.5 3.2 1.6

5.9 8.1 3.9 1.4 3.2 2.9

5.7 8.6 5.3 3.8 5.3 8.1 5.0

2.3 3.7 5.3 8.4 5.3 3.9 2.9

3.5 8.6 3.7

2.8 5.6 2.9

48

Lawrence Livermore National Laboratory

CLJP coarsening is fully parallel

select C-pts with
maximal measure
locally

 remove neighbor
edges

update neighbor
measures

3.7 5.3 5.0 5.9 2.4

5.2 8.0 5.5 3.2 1.6

5.9 8.1 3.9 1.4 3.2 2.9

5.7 8.6 5.3 3.8 5.3 8.1 5.0

2.3 3.7 5.3 8.4 5.3 3.9 2.9

3.5 8.6 3.7

2.8 5.6 2.9

49

Lawrence Livermore National Laboratory

CLJP coarsening is fully parallel

select C-pts with
maximal measure
locally

 remove neighbor
edges

update neighbor
measures

3.7 5.3 2.0

5.2 8.0 3.5

2.9 3.1 1.9

1.3 3.8 1.3

1.3 3.4 1.3

50

Lawrence Livermore National Laboratory

CLJP coarsening is fully parallel

select C-pts with
maximal measure
locally

 remove neighbor
edges

update neighbor
measures

3.7 5.3 2.0

5.2 8.0 3.5

2.9 3.1 1.9

1.3 3.8 1.3

1.3 3.4 1.3

51

Lawrence Livermore National Laboratory

CLJP coarsening is fully parallel

10 C-points
selected

Standard AMG
selects 9 C-points

52

Lawrence Livermore National Laboratory

Parallel coarse-grid selection in AMG can produce

unwanted side effects

 Non-uniform grids can lead to increased operator
complexity and poor convergence

 Operator “stencil growth” reduces parallel efficiency

 Currently no guaranteed ways to control complexity

 Can ameliorate with more aggressive coarsening

 Requires long-range interpolation approaches

56

Lawrence Livermore National Laboratory

Parallel AMG in hypre now scales to 130K processors

on BG/L … and beyond

 Largest problem above: 2B unknowns

 Largest problem to date: 26B unknowns on 98K processors of BG/L

 Most processors to date: 16B unknowns on 196K cores of Jaguar

(Cray XT5 at ORNL)

0

5

10

15

20

0K 25K 50K 75K 100K 125K

Ti
m

e
(s

ec
o

n
d

s)

Processors (problem size)

AMG on BG/L (25x25x25)

Fal
PMIS
Ag2Fal
Ag1HMIS

59

Lawrence Livermore National Laboratory

SA builds interpolation by first chopping up a global

basis, then smoothing it

 Tentative interpolation is constructed from “aggregates”

(local QR factorization is used to orthonormalize)

 Smoothing adds basis overlap and

improves approximation property

=

60

Lawrence Livermore National Laboratory

SA coarsening (5-pt Laplacian)

Phase 1:

a) Pick root pt not
adjacent to agg

b) Aggregate root and
neighbors

Phase 2:

Move pts into nearby

aggs or new aggs

61

Lawrence Livermore National Laboratory

SA coarsening (5-pt Laplacian)

Phase 1:

a) Pick root pt not
adjacent to agg

b) Aggregate root and
neighbors

Phase 2:

Move pts into nearby

aggs or new aggs

62

Lawrence Livermore National Laboratory

SA coarsening (5-pt Laplacian)

Phase 1:

a) Pick root pt not
adjacent to agg

b) Aggregate root and
neighbors

Phase 2:

Move pts into nearby

aggs or new aggs

63

Lawrence Livermore National Laboratory

SA coarsening (5-pt Laplacian)

Phase 1:

a) Pick root pt not
adjacent to agg

b) Aggregate root and
neighbors

Phase 2:

Move pts into nearby

aggs or new aggs

64

Lawrence Livermore National Laboratory

SA coarsening (5-pt Laplacian)

Phase 1:

a) Pick root pt not
adjacent to agg

b) Aggregate root and
neighbors

Phase 2:

Move pts into nearby

aggs or new aggs

65

Lawrence Livermore National Laboratory

SA coarsening (5-pt Laplacian)

Phase 1:

a) Pick root pt not
adjacent to agg

b) Aggregate root and
neighbors

Phase 2:

Move pts into nearby

aggs or new aggs

66

Lawrence Livermore National Laboratory

SA coarsening (5-pt Laplacian)

Phase 1:

a) Pick root pt not
adjacent to agg

b) Aggregate root and
neighbors

Phase 2:

Move pts into nearby

aggs or new aggs

67

Lawrence Livermore National Laboratory

SA coarsening (5-pt Laplacian)

Phase 1:

a) Pick root pt not
adjacent to agg

b) Aggregate root and
neighbors

Phase 2:

Move pts into nearby

aggs or new aggs

68

Lawrence Livermore National Laboratory

SA coarsening (5-pt Laplacian)

Phase 1:

a) Pick root pt not
adjacent to agg

b) Aggregate root and
neighbors

Phase 2:

Move pts into nearby

aggs or new aggs

69

Lawrence Livermore National Laboratory

SA coarsening (5-pt Laplacian)

Phase 1:

a) Pick root pt not
adjacent to agg

b) Aggregate root and
neighbors

Phase 2:

Move pts into nearby

aggs or new aggs

70

Lawrence Livermore National Laboratory

SA coarsening is traditionally more aggressive than

C-AMG coarsening (5-pt Laplacian example)

SA Seed Points (10) C-AMG Grid (25)

Operator complexities are usually smaller, too

71

Lawrence Livermore National Laboratory

Additional comments on SA…

 Usual prolongator smoother is damped Jacobi

 Strength of connection is usually defined differently

 Special care must be taken for anisotropic problems to

keep complexity low

• Thresholded prolongator smoothing

• Basis shifting approach

 Parallel SA coarsening has issues similar to C-AMG

AMG: The ideal prolongation and restriction

Reference: Wiesner, Tuminaro, Wall, Gee
Multigrid transfers for nonsymmetric systems based on Schur complements and
Galerkin projections, NLA, 2013
AMG and the Schur complement

(
Aff Afc

Acf Acc

)(
xf

xc

)
=

(
bf

bc

)
.

Assuming Aff to be invertible, A has the corresponding LDU decomposition

(
Aff Afc

Acf Acc

)
=

(
I 0

AcfA
−1
ff

I

)(
Aff 0

0 S

)(
I A−1

ff
Afc

0 I

)

where S = Acc −AcfA
−1
ff

Afc and is referred to as the Schur complement.

– p. 15/25

Define

Ropt =
(
−AcfA

−1
ff

I
)
, Popt =

(
−A−1

ff
Afc

I

)
and Î =

(
I

0

)
.

One can easily verify that S = RoptAPopt,

(
I 0

AcfA
−1
ff

I

)
−1

=

(
ÎT

Ropt

)
and

(
I A−1

ff
Afc

0 I

)
−1

=
(
Î Popt

)
.

Application of the inverses of the three operators in the exact factorization is
equivalent to restriction at the c-points , followed by solution of two systems:
Aff which can be interpreted as relaxation and RoptAPopt which is the coarse
correction. Finally, the coarse correction is interpolated and added to the
relaxation solution. As this procedure is exact, it converges in one iteration.

– p. 16/25

Further work:
how to approximate Ropt, Popt and S, or rather the coarse correction

RoptAPopt, which is nothing but AcfA
−1
ff

Afc.

We enter the full block factorized preconditioning framework, that can be seen as
purely algebraic and not related to MG.

– p. 17/25

TDB − NLA Algebraic Multilevel Iteration Methods (AMLI)

The so-called AMLI methods have been developed by Owe Axelsson and
Panayot Vassilevski in a series of papers betwee 1989 and 1991.
These methods were originally developed for elliptix problems and spd matrices,
and are the first regularity-free optimal order preconditioning methods.

Sequence of matrices
{
A(k)

}ℓ
k=k0

Nk0
⊂ Nk0+1 ⊂ . . . ⊂ Nℓ

A(k) =

A

(k)
11 A

(k)
12

A
(k)
21 A

(k)
22

} Nk\Nk−1

} Nk−1

.

– p. 18/25

A(k) has to approximate S
A(k+1) in some way. For instance,

A(k) = A
(k+1)
22 −A

(k+1)
21 B

(k+1)
11 A

(k+1)
12 .

where B
(k+1)
11 is some sparse, positive definite, nonnegative and symmetric

approximation of A(k+1)−1

11 .

How to split Nk+1 into two parts: the order nk of the matrices A(k) should
decrease geometrically:

nk+1

nk

= ρk ≥ ρ > 1.

– p. 19/25

M(k0) = A(k0),

for k = k0, k0 + 1, . . . ℓ− 1

M(k+1) =

A
(k+1)
11 0

A
(k+1)
21 S̃(k)

I
(k+1)
1 A

(k+1)−1

11 A
(k+1)
12

0 I
(k+1)
2

 ,

endfor

where S̃(k) can be, for instance:

S̃(k) = A(k)
[
I − Pν(M

(k)−1
A(k))

]
−1

,

Pν(t) denotes a polynomial of degree ν.

We could use some other way of stabilization.

– p. 20/25

Forward sweep:

Solve

A
(k+1)
11 0

A
(k+1)
21 S̃(k)

w1

w2

 =

y1

y2

 , i.e.

(F1) w1 = A
(k+1)−1

11 y1,

(F2) w2 = S̃(k)−1
(
y2 −A

(k+1)
21 w1

)
.

Backward sweep:

Solve

I
(k+1)
1 A

(k+1)−1

11 A
(k+1)
12

0 I
(k+1)
2

x1

x2

 =

w1

w2

 , i.e.

(B1) x2 = w2,

(B2) x1 = w1 −A
(k+1)−1

11 A
(k+1)
12 x2.

– p. 21/25

Procedure AMLI : u(k) ← AMLI
(
f (k), k, νk, {a

(k)
j }

νk
j=0

)
;

[f
(k)
1 , f

(k)
2]← f (k),

w
(k)
1 = B

(k)
11 f

(k)
1 ,

w
(k)
2 = f

(k)
2 −A

(k)
21 w

(k)
1 ,

k = k − 1,

if k = 0 then u
(0)
2 = A(0) w

(1)
2 , solve on the coarsest level exactly;

else

u
(k)
2 ← AMLI

(
a
(k)
νk w

(k)
2 , k, νk, {a

(k)
j }

νk
j=0

)
;

for j = 1 to νk − 1:

u
(k)
2 ← AMLI

(
A(k) u

(k)
2 + a

(k)
νk−jw

(k)
2 , k, νk, {a

(k)
j }

νk
j=0

)
;

endfor

endif

k = k + 1,

u
(k)
1 = w

(k)
1 −B

(k)
11 A

(k)
12 u

(k)
2 ,

u(k) ← [u
(k)
1 ,u

(k)
2]

end Procedure AMLI

– p. 22/25

solution on
the coarsest level

multiplication
with A(k)

12 ,B(k)
11

multiplication
with A(k)

21,B(k)
11

multiplication with

A
(k)

level 0

level 1,

level 2,

level 3,

level 4,

level 5

ν=1

ν=3

ν=1

ν=1

One AMLI step (V -cycle) ν-fold W -cycle, [1, 1, 3, 1]

– p. 23/25

AMLI: Computational complexity

l
l−1

...

l−m+1

l−m

...
l−m−1

l−2m+1

...

...

ν

ν

ν

1

1

1

1
...

...

1

Polynomial degree/
inner iterations

Level no.

wℓ=C(nℓ + · · ·+ nℓ−µ)

+Cν(nℓ−µ−1 + · · ·+ nℓ−2µ−1)

+Cν2(nℓ−2µ−2 + · · ·+ nℓ−3µ−2)

+ · · ·

≤Cnℓ

[
1 + 1

ρ
+ · · ·+

(
1
ρ

)µ] 1

1− νρ−(µ+1)
,

where 1 < ρ ≤ ρk =
nk+1

nk

,
k = 0, 1, . . . ℓ−1. Hence

ν < ρµ+1

– p. 24/25

TDB − NLA Parallel Algorithms for Scientific Computing

Time to try ready packages!

– p. 25/25

