TDB-NLA Parallel Algorithms for Scientific Computing

Multigrid methods
Algebraic Multigrid methods
Algebraic Multilevel Iteration methods

Residual correction

$A \mathbf{x}=\mathbf{b}, \mathbf{x}_{\text {exact }}, \mathbf{e}^{(k)}=\mathbf{x}_{\text {exact }}-\mathbf{x}^{(k)}$
$\mathbf{r}^{(k)}=\mathbf{b}-A \mathbf{x}^{(k)}$
Residual equation: $\quad A \mathbf{e}^{(k)}=\mathbf{r}^{(k)}$

Residual correction:	$\mathbf{x}^{(k+1)}=\mathbf{x}^{(k)}+\mathbf{e}^{(k)}$
Recall:	$\mathbf{x}^{(k+1)}=\mathbf{x}^{(k)}+C^{-1}\left(\mathbf{b}-A \mathbf{x}^{(k)}\right)$

Error propagation: $\quad \mathbf{e}^{(k+1)}=\left(I-C^{-1} A\right) \mathbf{e}^{(k)}$
tide-nla Parallel Algorithms for Scientific Computing

Run Jacobi demo...

student/NLA/Demos/Module3/L5

High and low frequencies - nonsmooth, smooth

Main idea: R. Fedorenko (1961), N.S. Bakhvalov (1966)

Reduce the error $\mathbf{e}^{(k)}=\mathbf{x}_{\text {exact }}-\mathbf{x}^{(k)}$ on the given (fine) grid by successive residual corrections on a hierarchy of (nested) coarser grids.

TIB - nLA Some contributors:

Years	MG matches	AMG matches
$1966-1986$	384	9
$1987-1996$	1108	41
$1997-2006$	1251	156
$2007-2013$	823	178

Archi Brandt	Jan Mandel	Tom Manteiffel
Wolggang Hackbusch	Steve McCormick	Yvan Notay
Jurgen Ruge	Petr Vanec	Irad Yavneh
Klaus Stüben	Piet Hemker	Panayot Vassilevski

Ruge, J. W.; Stüben, K. Algebraic multigrid. Multigrid methods, 73-130, Frontiers Appl. Math., 3, SIAM, Philadelphia, PA, 1987.

Multilevel preconditioning methods: MG

Procedure $M G: \mathbf{u}^{(k)} \leftarrow M G\left(\mathbf{u}^{(k)}, \mathbf{f}^{(k)}, k,\left\{\nu_{j}^{(k)}\right\}_{j=1}^{k}\right) ;$
if $k=0$, then solve $A^{(0)} \mathbf{u}^{(0)}=\mathbf{f}^{(0)}$ exactly or by smoothing,
else

$$
\mathbf{u}^{(k)} \underset{s_{1}}{\leftarrow} \mathcal{S}_{1}^{(k)}\left(\mathbf{u}^{(k)}, \mathbf{f}^{(k)}\right), \text { perform } s_{1} \text { pre-smoothing steps }
$$

Correct the residual:

$$
\begin{aligned}
& \mathbf{r}^{(k)}= A^{(k)} \mathbf{u}^{(k)}-\mathbf{f}^{(k)} ; \text { form the current residual, } \\
& \mathbf{r}^{(k-1)} \leftarrow \mathcal{R}\left(\mathbf{r}^{(k)}\right), \text { restrict the residual on the next coarser grid, } \\
& \mathbf{e}^{(k-1)} \leftarrow M G\left(\mathbf{0}, \mathbf{r}^{(k-1)}, k-1,\left\{\nu_{j}^{(k-1)}\right\}_{j=1}^{k-1}\right) ; \\
& \mathbf{e}^{(k)} \leftarrow \mathcal{P}\left(\mathbf{e}^{(k-1)}\right) ; \text { prolong the error from the next coarser to the } \\
& \text { current grid, } \\
& \mathbf{u}^{(k)}=\mathbf{u}^{(k)}-\mathbf{e}^{(k)} ; \text { update the solution, } \\
& \mathbf{u}^{(k)} \leftarrow \mathcal{S}_{2}^{(k)}\left(\mathbf{u}^{(k)}, \mathbf{f}^{(k)}\right), \text { perform } s_{2} \text { post-smoothing steps. }
\end{aligned}
$$

endif
end Procedure $M G$

Nested iteration

```
Procedure \(N I: \mathbf{u}^{(\ell)} \leftarrow N I\left(\mathbf{u}^{(0)},\left\{\mathbf{f}^{(k)}\right\}_{k=1}^{(\ell)}, \ell,\left\{\nu^{(k)}\right\}_{k=1}^{\ell}\right)\);
    \(\mathbf{u}^{(0)}=A^{(0)^{-1}} \mathbf{f}^{(0)}\),
    for \(k=1\) to \(\ell\) do
        \(\mathbf{u}^{(k)}=\mathcal{P}\left(\mathbf{u}^{(k-1)}\right) ;\)
    \(\mathbf{u}^{(k)} \leftarrow M G\left(\mathbf{u}^{(k)}, \mathbf{f}^{(k)}, k,\left\{\nu_{j}^{(k)}\right\}_{j=1}^{k}\right) ;\)
    endfor
end Procedure NI
```

The so-called full $M G$ corresponds to Procedure $N I(\cdot, \cdot, \ell,\{1,1, \cdots, 1\})$

The full MG (V-cycle)

A compact formula presenting the MG procedure in terms of a recursively defined iteration matrix:
(i) Let $M^{(0)}=0$,
(ii) For $k=1$ to ℓ, define
$M^{(k)}=\mathcal{S}^{(k)^{s_{2}}}\left(A^{(k)^{-1}}-\mathcal{P}_{k-1}^{k}\left(I-M^{(k-1)^{\nu}}\right) A^{(k-1)^{-1}} \mathcal{R}_{k}^{k-1}\right) A^{(k)} \mathcal{S}^{(k)^{s_{1}}}$,
where $\mathcal{S}^{(k)}$ is a smoothing iteration matrix (assuming \mathcal{S}_{1} and \mathcal{S}_{2} are the same), \mathcal{R}_{k}^{k-1} and \mathcal{P}_{k-1}^{k} are matrices which transfer data between two consecutive grids and correspond to the restriction and prolongation operators \mathcal{R} and \mathcal{P}, respectively, and $\nu=1$ and $\nu=2$ correspond to the V - and W-cycles.

It turns out that in many cases the spectral radius of $M^{(\ell)}, \rho\left(M^{(\ell)}\right)$, is independent of ℓ, thus the rate of convergence of the NI method is optimal. Also, a mechanism to make the spectral radius of $M^{(\ell)}$ smaller is to choose s_{1} and s_{2} larger. The price for the latter is, clearly, a higher computational cost.

MG ingredients

Q smoothers (many different)
e Jacobi, weighted Jacobi $(\omega \operatorname{diag}(A)$, GS, SOR, SSOR, SPAI
Q restriction and prolongation operators
a coarse level matrix (approximation properties)

$1 \mathcal{D}$ Interpolation (Prolongation)

- Values at points on the coarse grid mapuncranged to the fine grid
- Values at fine-grid points $\mathfrak{N O T}$ on the coarse grid are the averages of their coarse-grid ne ighbors

$1 \mathcal{D}$ Restriction by injection

- Mapping from the fine grid to the coarse grid:

$$
I_{h}^{2 h}: \Omega^{h} \rightarrow \Omega^{2 h}
$$

- Let $v^{h}, v^{2 h}$ Ge defined on $\Omega^{h}, \Omega^{2 h}$. Then

$$
I_{h}^{2 h} v^{h}=v^{2 h}
$$

where $v_{i}^{2 h}=v_{2 i}^{h}$.

$1 \mathcal{D}$ Restriction by full-weigfting

- Let $v^{h}, v^{2 h}$ bedefined on $\Omega^{h}, \Omega^{2 h}$. Then

$$
I_{h}^{2 h} v^{h}=v^{2 h}
$$

where

$$
v_{i}^{2 h}=\frac{1}{4}\left(v_{2 i-1}^{h}+2 v_{2 i}^{h}+v_{2 i+1}^{h}\right)
$$

Prolongation and restriction are often nicely related

- For the $1 \mathcal{D}$ examples, line ar interpolation and fullweighting are related by:

$$
I_{2 h}^{h}=\frac{1}{2}\left(\begin{array}{lll}
1 & & \\
2 & & \\
1 & 1 & \\
& 2 & \\
& 1 & 1 \\
& & 2 \\
& & 1
\end{array}\right) \quad I_{h}^{2 h}=\frac{1}{4}\left(\begin{array}{lllllll}
1 & 2 & 1 & & & & \\
& & 1 & 2 & 1 & & \\
& & & & 1 & & \\
& & & & 1 & 2 & 1
\end{array}\right)
$$

- A commonly used, and highly useful, requirement is that

$$
I_{2 h}^{h}=c\left(I_{h}^{2 h}\right)^{T} \text { for } c \text { in } \mathfrak{R}
$$

2D Prolongation

$v_{2 i, 2 j}^{h}=v_{i j}^{2 h}$
$v_{2 i+1,2 j}^{h}=\frac{1}{2}\left(v_{i j}^{2 h}+v_{i+1, j}^{h}\right)$
$v_{2 i, 2 j+1}^{h}=\frac{1}{2}\left(v_{i j}^{2 h}+v_{i, j+1}^{h}\right)$

$$
\square\left[\begin{array}{ccc}
\frac{1}{4} & \frac{1}{2} & \frac{1}{4} \\
\frac{1}{2} & 1 & \frac{1}{2} \\
\frac{1}{4} & \frac{1}{2} & \frac{1}{4}
\end{array}\right.
$$

$v_{2 i+1,2 j+1}^{h}=\frac{1}{4}\left(v_{i j}^{2 h}+v_{i+1, j}^{h}+v_{i, j+1}^{h}+v_{i+1, j+1}^{h}\right)$
We denote the operator by using a "give to" stencil,] [. Centered over a c-point, it shows what fraction of the c-point's value is
contributed to neigfboring f-points, .

2D Restriction (full-weighting)

$$
\left[\begin{array}{ccc}
\frac{1}{16} & \frac{1}{8} & \frac{1}{16} \\
\frac{1}{8} & \frac{1}{4} & \frac{1}{8} \\
\frac{1}{16} & \frac{1}{8} & \frac{1}{16}
\end{array}\right]
$$

We denote the operator by using a "give to" stencil, []. Centered over a c-point, it shows what fractions of the neighboring (O)f-points' value is contributed to the value at the c-point.

The variational properties

- The definition for $A^{2 h}$ that resulted from the foregoing line of reasoning is usefulfor both theoretical and practical reasons. Together with the commonly used relationship between restriction and prolongation we fave the following "variational properties":

$$
\begin{aligned}
A^{2 h} & =I_{h}^{2 h} A^{h} I_{2 h}^{h} \\
I_{2 h}^{h} & =c\left(I_{h}^{2 h}\right)^{T}
\end{aligned}
$$

(Galerkin Condition)
for c in \mathfrak{R}

MG: Rate of convergence and computational complexity
tide-nLA Algebraic Multigrid

AMG demo ...

AGMG http://homepages.ulb.ac.be/~ynotay/AGMG/
.../Projects/ComplexSymmetric

Approach for parallelizing multigrid is straightforward data decomposition

Level 1

Level 2

Level L

- Basic communication pattern is "nearest neighbor"
- Relaxation, interpolation, \& Galerkin not hard to implement
- Different neighbor processors on coarse grids
- Many idle processors on coarse grids ($100 \mathrm{~K}+$ on BG / L)
- Algorithms to take advantage have had limited success

Straightforward parallelization approach is optimal for V-cycles on structured grids (5-pt Laplacian example)

- Standard communication / computation models

$$
\begin{array}{ll}
T_{\text {comm }}=\alpha+m \beta & \text { (communicate } m \text { doubles) } \\
T_{\text {comp }}=m \gamma & \text { (compute } m \text { flops) }
\end{array}
$$

- Time to do relaxation

$$
T \approx 4 \alpha+4 n \beta+5 n^{2} \gamma
$$

- Time to do relaxation in a $\mathrm{V}(1,0)$ multigrid cycle

$$
\begin{aligned}
T_{V} & \approx(1+1+\cdots) 4 \alpha+(1+1 / 2+\ldots) 4 n \beta+(1+1 / 4+\ldots) 5 n^{2} \gamma \\
& \approx(\log N) 4 \alpha+(2) 4 n \beta+(4 / 3) 5 n^{2} \gamma
\end{aligned}
$$

- For achieving optimality in general, the log term is unavoidable!
- More precise: $T_{V, \text { better }} \approx T_{V}+(\log P)(4 \beta+5 \gamma)$

Additional comments on parallel multigrid

- W-cycles scale poorly:

$$
T_{W} \approx\left(2^{\log N}\right) 4 \alpha+(\log N) 4 n \beta+(2) 5 n^{2} \gamma
$$

- Lexicographical Gauss-Seidel is too sequential
- Use red/black or multi-color GS
- Use weighted Jacobi, hybrid Jacobi/GS, L1
- Use C-F relaxation (Jacobi on C-pts then F-pts)
- Use Polynomial smoothers
- Parallel smoothers are often less effective

- Recent survey on parallel multigrid:
- "A Survey of Parallelization Techniques for Multigrid Solvers," Chow, Falgout, Hu, Tuminaro, and Yang, Parallel Processing For Scientific Computing, Heroux, Raghavan, and Simon, editors, SIAM, series on Software, Environments, and Tools (2006)
- Recent paper on parallel smoothers:
- "Multigrid Smoothers for Ultra-Parallel Computing," Baker, Falgout, Kolev, and Yang, SIAM J. Sci. Comput., submitted. LLNL-JRNL-435315

Example weak scaling results on Dawn (an IBM BG/P system at LLNL) in 2010

PFMG-CG on Dawn (40×40×40)

- Laplacian on a cube; $40^{3}=64 \mathrm{~K}$ grid points per processor; largest problem had 3 billion unknowns!
- PFMG is a semicoarsening multigrid solver in hypre
- Still room to improve setup implementation (these results already employ the assumed partition algorithm described later)

Basic multigrid research challenge

- Optimal $O(N)$ multigrid methods don't exist for some applications, even in serial
- Need to invent methods for these applications
- However ...
- Some of the classical and most proven techniques used in multigrid methods don't parallelize
- Gauss-Seidel smoothers are inherently sequential
- W-cycles have poor parallel scaling
- Parallel computing imposes additional restrictions on multigrid algorithmic development

Choosing the coarse grid

- In C-AMG, the coarse grid is a subset of the fine grid
- The basic coarsening procedure is as follows:
- Define a strength matrix A_{s} by deleting weak connections in A
- First pass: Choose an independent set of fine-grid points based on the graph of A_{s}
- Second pass: Choose additional points if needed to satisfy interpolation requirements
- Coarsening partitions the grid into C - and F-points

C-AMG coarsening

\rightarrow select C-pt with maximal measure

\rightarrow select neighbors as F-pts
\rightarrow update measures of F-pt neighbors

C-AMG coarsening

$\underset{\text { maximal measure }}{\text { melect C-pt with }}$
\rightarrow select neighbors as F-pts
\rightarrow update measures of F-pt neighbors

C-AMG coarsening

$\underset{\text { maximal measure }}{\text { select C-pt with }}$
\rightarrow select neighbors as F-pts
\rightarrow update measures of F-pt neighbors

C-AMG coarsening

\rightarrow select C-pt with maximal measure

\rightarrow select neighbors as F-pts
\rightarrow update measures of F-pt neighbors

C-AMG coarsening

\rightarrow select C-pt with maximal measure

\rightarrow select neighbors as F-pts

\rightarrow update measures of F-pt neighbors

C-AMG coarsening

\rightarrow select C-pt with maximal measure

\rightarrow select neighbors as F-pts

\rightarrow update measures of F-pt neighbors

C-AMG coarsening

\rightarrow select C-pt with maximal measure

\rightarrow select neighbors as F-pts

\rightarrow update measures of F-pt neighbors

C-AMG coarsening

\rightarrow select C-pt with maximal measure
\rightarrow select neighbors as F-pts
\rightarrow update measures of F-pt neighbors

C-AMG coarsening

\rightarrow select C-pt with
\rightarrow select neighbors as F-pts
\rightarrow update measures of F-pt neighbors

C-AMG coarsening is inherently sequential

\rightarrow select C-pt with
\rightarrow select neighbors as F-pts
\rightarrow update measures of F-pt neighbors

Parallel Coarsening Algorithms

- C-AMG coarsening algorithm is inherently sequential
- Several parallel algorithms (in hypre):
- CLJP (Cleary-Luby-Jones-Plassmann) - one-pass approach with random numbers to get concurrency (illustrated next)
- Falgout - C-AMG on processor interior, then CLJP to finish
- PMIS - CLJP without the 'C'; parallel version of C-AMG first pass
- HMIS - C-AMG on processor interior, then PMIS to finish
- CGC (Griebel, Metsch, Schweitzer) - compute several coarse grids on each processor, then solve a global graph problem to select the grids with the best "fit"
- Other parallel AMG codes use similar approaches

CLJP coarsening is fully parallel

\rightarrow select C-pts with maximal measure locally
\rightarrow remove neighbor edges
\rightarrow update neighbor measures

CLJP coarsening is fully parallel

\rightarrow select C-pts with maximal measure locally
\rightarrow remove neighbor edges
\rightarrow update neighbor measures

CLJP coarsening is fully parallel

\rightarrow select C-pts with maximal measure locally
\rightarrow remove neighbor edges
\rightarrow update neighbor measures

CLJP coarsening is fully parallel

\rightarrow select C-pts with maximal measure locally
\rightarrow remove neighbor edges
\rightarrow update neighbor measures

CLJP coarsening is fully parallel

CLJP coarsening is fully parallel

CLJP coarsening is fully parallel

$\rightarrow 10$ C-points selected
\rightarrow Standard AMG selects 9 C-points

Parallel coarse-grid selection in AMG can produce unwanted side effects

- Non-uniform grids can lead to increased operator complexity and poor convergence
- Operator "stencil growth" reduces parallel efficiency

- Currently no guaranteed ways to control complexity
- Can ameliorate with more aggressive coarsening
- Requires long-range interpolation approaches

Parallel AMG in hypre now scales to 130 K processors on $B G / L$... and beyond

AMG on BG/L ($25 \times 25 \times 25)$

- Largest problem above: 2B unknowns
- Largest problem to date: 26 B unknowns on 98 K processors of BG / L
- Most processors to date: 16B unknowns on 196K cores of Jaguar (Cray XT5 at ORNL)

SA builds interpolation by first chopping up a global basis, then smoothing it

" Tentative interpolation is constructed from "aggregates" (local QR factorization is used to orthonormalize)

- Smoothing adds basis overlap and improves approximation property

$$
P=S \widehat{P}
$$

SA coarsening (5-pt Laplacian)

Phase 1:

a) Pick root pt not adjacent to agg
b) Aggregate root and neighbors

Phase 2:

Move pts into nearby aggs or new aggs

SA coarsening (5-pt Laplacian)

Phase 1:

a) Pick root pt not adjacent to agg
b) Aggregate root and neighbors

Phase 2:

Move pts into nearby aggs or new aggs

SA coarsening (5-pt Laplacian)

Phase 1:

a) Pick root pt not adjacent to agg
b) Aggregate root and neighbors

Phase 2:

Move pts into nearby aggs or new aggs

SA coarsening (5-pt Laplacian)

Phase 1:

a) Pick root pt not adjacent to agg
b) Aggregate root and neighbors

Phase 2:

Move pts into nearby aggs or new aggs

SA coarsening (5-pt Laplacian)

Phase 1:

a) Pick root pt not adjacent to agg
b) Aggregate root and neighbors

Phase 2:

Move pts into nearby aggs or new aggs

SA coarsening (5-pt Laplacian)

Phase 1:

a) Pick root pt not adjacent to agg
b) Aggregate root and neighbors

Phase 2:

Move pts into nearby aggs or new aggs

SA coarsening (5-pt Laplacian)

Phase 1:

a) Pick root pt not adjacent to agg
b) Aggregate root and neighbors

Phase 2:

Move pts into nearby aggs or new aggs

SA coarsening (5-pt Laplacian)

Phase 1:

a) Pick root pt not adjacent to agg
b) Aggregate root and neighbors

Phase 2:

Move pts into nearby aggs or new aggs

SA coarsening (5-pt Laplacian)

Phase 1:
a) Pick root pt not adjacent to agg
b) Aggregate root and neighbors

Phase 2:

Move pts into nearby aggs or new aggs

SA coarsening (5-pt Laplacian)

Phase 1:
a) Pick root pt not adjacent to agg
b) Aggregate root and neighbors

Phase 2:

Move pts into nearby aggs or new aggs

SA coarsening is traditionally more aggressive than C-AMG coarsening (5-pt Laplacian example)

SA Seed Points (10)

C-AMG Grid (25)

Operator complexities are usually smaller, too

Additional comments on SA...

- Usual prolongator smoother is damped Jacobi
- Strength of connection is usually defined differently

$$
\left|a_{i j}\right|>\theta \sqrt{\left|a_{i i} a_{j j}\right|}
$$

- Special care must be taken for anisotropic problems to keep complexity low
- Thresholded prolongator smoothing
- Basis shifting approach
- Parallel SA coarsening has issues similar to C-AMG

AMG: The ideal prolongation and restriction

Reference: Wiesner, Tuminaro, Wall, Gee
Multigrid transfers for nonsymmetric systems based on Schur complements and Galerkin projections, NLA, 2013
AMG and the Schur complement

$$
\left(\begin{array}{cc}
A_{f f} & A_{f c} \\
A_{c f} & A_{c c}
\end{array}\right)\binom{x_{f}}{x_{c}}=\binom{b_{f}}{b_{c}} .
$$

Assuming $A_{f f}$ to be invertible, A has the corresponding LDU decomposition

$$
\left(\begin{array}{cc}
A_{f f} & A_{f c} \\
A_{c f} & A_{c c}
\end{array}\right)=\left(\begin{array}{cc}
I & 0 \\
A_{c f} A_{f f}^{-1} & I
\end{array}\right)\left(\begin{array}{cc}
A_{f f} & 0 \\
0 & S
\end{array}\right)\left(\begin{array}{cc}
I & A_{f f}^{-1} A_{f c} \\
0 & I
\end{array}\right)
$$

where $S=A_{c c}-A_{c f} A_{f f}^{-1} A_{f c}$ and is referred to as the Schur complement.

Define

$$
\mathcal{R}^{o p t}=\left(\begin{array}{ll}
-A_{c f} A_{f f}^{-1} & I
\end{array}\right), \mathcal{P}^{o p t}=\binom{-A_{f f}^{-1} A_{f c}}{I} \quad \text { and } \quad \hat{I}=\binom{I}{0} .
$$

One can easily verify that $S=\mathcal{R}^{o p t} A \mathcal{P}^{o p t}$,

$$
\left(\begin{array}{cc}
I & 0 \\
A_{c f} A_{f f}^{-1} & I
\end{array}\right)^{-1}=\binom{\hat{I}^{T}}{\mathcal{R}^{o p t}} \text { and }\left(\begin{array}{cc}
I & A_{f f}^{-1} A_{f c} \\
0 & I
\end{array}\right)^{-1}=\left(\begin{array}{cc}
\hat{I} & \mathcal{P}^{o p t}
\end{array}\right) .
$$

Application of the inverses of the three operators in the exact factorization is equivalent to restriction at the c-points, followed by solution of two systems: $A_{f f}$ which can be interpreted as relaxation and $\mathcal{R}^{o p t} A \mathcal{P}^{o p t}$ which is the coarse correction. Finally, the coarse correction is interpolated and added to the relaxation solution. As this procedure is exact, it converges in one iteration.

Further work:
how to approximate $\mathcal{R}^{o p t}, \mathcal{P}^{o p t}$ and S, or rather the coarse correction $\mathcal{R}^{o p t} A \mathcal{P}^{o p t}$, which is nothing but $A_{c f} A_{f f}^{-1} A_{f c}$.

We enter the full block factorized preconditioning framework, that can be seen as purely algebraic and not related to MG.

tDb - nLA Algebraic Multilevel Iteration Methods (AMLI)

The so-called AMLI methods have been developed by Owe Axelsson and Panayot Vassilevski in a series of papers betwee 1989 and 1991.
These methods were originally developed for elliptix problems and spd matrices, and are the first regularity-free optimal order preconditioning methods.

$$
\begin{aligned}
& \text { Sequence of matrices }\left\{A^{(k)}\right\}_{k=k_{0}}^{\ell} \\
& \qquad N_{k_{0}} \subset N_{k_{0}+1} \subset \ldots \subset N_{\ell} \\
& \left.A^{(k)}=\left[\begin{array}{cc}
A_{11}^{(k)} & A_{12}^{(k)} \\
A_{21}^{(k)} & A_{22}^{(k)}
\end{array}\right]\right\} N_{k} \backslash N_{k-1}
\end{aligned} .
$$

$A^{(k)}$ has to approximate $S_{A^{(k+1)}}$ in some way. For instance,

$$
A^{(k)}=A_{22}^{(k+1)}-A_{21}^{(k+1)} B_{11}^{(k+1)} A_{12}^{(k+1)}
$$

where $B_{11}^{(k+1)}$ is some sparse, positive definite, nonnegative and symmetric approximation of $A_{11}^{(k+1)^{-1}}$.
How to split N_{k+1} into two parts: the order n_{k} of the matrices $A^{(k)}$ should decrease geometrically:

$$
\frac{n_{k+1}}{n_{k}}=\rho_{k} \geq \rho>1
$$

$$
M^{\left(k_{0}\right)}=A^{\left(k_{0}\right)},
$$

$$
\text { for } k=k_{0}, k_{0}+1, \ldots \ell-1
$$

$$
M^{(k+1)}=\left[\begin{array}{cc}
A_{11}^{(k+1)} & 0 \\
A_{21}^{(k+1)} & \widetilde{S}^{(k)}
\end{array}\right]\left[\begin{array}{cc}
I_{1}^{(k+1)} & A_{11}^{(k+1)^{-1}} A_{12}^{(k+1)} \\
0 & I_{2}^{(k+1)}
\end{array}\right],
$$

endfor
where $\widetilde{S}^{(k)}$ can be, for instance:

$$
\widetilde{S}^{(k)}=A^{(k)}\left[I-P_{\nu}\left(M^{(k)^{-1}} A^{(k)}\right)\right]^{-1},
$$

$P_{\nu}(t)$ denotes a polynomial of degree ν.
We could use some other way of stabilization.

Forward sweep:

$$
\begin{aligned}
& \text { Solve }\left[\begin{array}{ll}
A_{11}^{(k+1)} & 0 \\
A_{21}^{(k+1)} & \widetilde{S}^{(k)}
\end{array}\right]\left[\begin{array}{l}
\mathbf{w}_{1} \\
\mathbf{w}_{2}
\end{array}\right]=\left[\begin{array}{l}
\mathbf{y}_{1} \\
\mathbf{y}_{2}
\end{array}\right], \\
& (F 1) \quad \mathbf{w}_{1}=A_{11}^{(k+1)^{-1}} \mathbf{y}_{1}, \\
& (F 2) \quad \mathbf{w}_{2}=\widetilde{S}^{(k)^{-1}}\left(\mathbf{y}_{2}-A_{21}^{(k+1)} \mathbf{w}_{1}\right) .
\end{aligned}
$$

i.e.

Backward sweep:

$$
\begin{align*}
& \text { Solve }\left[\begin{array}{cc}
I_{1}^{(k+1)} & A_{11}^{(k+1)^{-1}} A_{12}^{(k+1)} \\
0 & I_{2}^{(k+1)}
\end{array}\right]\left[\begin{array}{l}
\mathbf{x}_{1} \\
\mathbf{x}_{2}
\end{array}\right]=\left[\begin{array}{l}
\mathbf{w}_{1} \\
\\
\mathbf{w}_{2}
\end{array}\right], \\
& \text { (B1) } \mathbf{x}_{2}=\mathbf{w}_{2} \text {, } \\
& \text { (B2) } \mathbf{x}_{1}=\mathbf{w}_{1}-A_{11}^{(k+1)^{-1}} A_{12}^{(k+1)} \mathbf{x}_{2} \text {. }
\end{align*}
$$

Procedure $A M L I: \mathbf{u}^{(k)} \leftarrow A M L I\left(\mathbf{f}^{(k)}, k, \nu_{k},\left\{a_{j}^{(k)}\right\}_{j=0}^{\nu_{k}}\right) ;$
$\left[\mathbf{f}_{1}^{(k)}, \mathbf{f}_{2}^{(k)}\right] \leftarrow \mathbf{f}^{(k)}$,
$\mathbf{w}_{1}^{(k)}=B_{11}^{(k)} \mathbf{f}_{1}^{(k)}$,
$\mathbf{w}_{2}^{(k)}=\mathbf{f}_{2}^{(k)}-A_{21}^{(k)} \mathbf{w}_{1}^{(k)}$,
$k=k-1$,
if $k=0$ then $\mathbf{u}_{2}^{(0)}=A^{(0)} \mathbf{w}_{2}^{(1)}$, solve on the coarsest level exactly; else
$\mathbf{u}_{2}^{(k)} \leftarrow A M L I\left(a_{\nu_{k}}^{(k)} \mathbf{w}_{2}^{(k)}, k, \nu_{k},\left\{a_{j}^{(k)}\right\}_{j=0}^{\nu_{k}}\right) ;$
for $j=1$ to $\nu_{k}-1$:
$\mathbf{u}_{2}^{(k)} \leftarrow A M L I\left(A^{(k)} \mathbf{u}_{2}^{(k)}+a_{\nu_{k}-j}^{(k)} \mathbf{w}_{2}^{(k)}, k, \nu_{k},\left\{a_{j}^{(k)}\right\}_{j=0}^{\nu_{k}}\right) ;$
endfor
endif
$k=k+1$,
$\mathbf{u}_{1}^{(k)}=\mathbf{w}_{1}^{(k)}-B_{11}^{(k)} A_{12}^{(k)} \mathbf{u}_{2}^{(k)}$,
$\mathbf{u}^{(k)} \leftarrow\left[\mathbf{u}_{1}^{(k)}, \mathbf{u}_{2}^{(k)}\right]$
end Procedure $A M L I$

One AMLI step (V-cycle)

AMLI: Computational complexity

Level no. Polynomial degree/ inner iterations
$\left\{\begin{array}{l|l}l & v \\ l-1 & 1 \\ \ldots & \ldots \\ l-m+1 & 1\end{array}\right.$
$\begin{cases}l-m & v \\ l-m-1 & 1 \\ \ldots & \ldots \\ l-2 m+1 & 1\end{cases}$
\ldots

$$
\begin{aligned}
w_{\ell}= & C\left(n_{\ell}+\cdots+n_{\ell-\mu}\right) \\
& +C \nu\left(n_{\ell-\mu-1}+\cdots+n_{\ell-2 \mu-1}\right) \\
& +C \nu^{2}\left(n_{\ell-2 \mu-2}+\cdots+n_{\ell-3 \mu-2}\right) \\
& +\cdots \\
\leq & C n_{\ell}\left[1+\frac{1}{\rho}+\cdots+\left(\frac{1}{\rho}\right)^{\mu}\right] \frac{1}{1-\nu \rho^{-(\mu+1)}}, \\
\text { where } 1 & <\rho \leq \rho_{k}=\frac{n_{k+1}}{n_{k}}, \\
k= & 0,1, \ldots \ell-1 . \text { Hence }
\end{aligned}
$$

$$
\nu<\rho^{\mu+1}
$$

tide - nLA Parallel Algorithms for Scientific Computing

Time to try ready packages!

