
TDB − NLA Parallel Algorithms for Scientific Computing

Iterative Solution methods

– p. 1/28

TDB − NLA Parallel Algorithms for Scientific Computing

Basic Iterative Solution methods
The ideas to use iterative methods for solving linear systems of equations go
back to Gauss (1823), Liouville (1837) and Jacobi (1845).

– p. 2/28

Introduction:

Before considering iterative solution methods for linear systems of equations, we
recall how do we solve nonlinear problems
Let

f(x) = 0

have to be solved and f(x) is a nonlinear function in x.
The usual way to approach the problem is:

F (x) ≡ x− f(x).

If x∗ is the solution of f(x) = 0, then x∗ is a stationary point for

x = F (x). (1)

Then we proceed with finding the stationary point for (1) and this is done
iteratively, namely,

x(k+1) = F (x(k)), k = 0, 1, · · · , x(0) given.

– p. 3/28

Convergence of the fixed point iteration:

For any initial guess x(0), there exists a unique fixed point x∗ for F (x),

x∗ = lim
k→∞

x(k) if and only if F is a contracting mapping, i.e.

‖F (x)− F (y)‖ ≤ q‖x− y‖

for some q ∈ (0, 1).

– p. 4/28

Fixed point for linear problems:

Let now f(x) ≡ Ax− b be linear. We use the same framework:

F (x) = x− (Ax− b)

x(k+1) = x(k) − (Ax(k) − b) = x(k) + r(k)

where r(k) = b−Ax(k) is called the residual at iteration k.
In this way we obtain the simplest possible iterative scheme to solve

Ax = b,

namely,

x(k+1) = x(k) − (Ax(k) − b), k = 0, 1, · · ·
x(0) given.

– p. 5/28

Simple iteration

For many reasons the latter form of the simple iteration is replaced by

x(k+1) = x(k) + τr(k), (2)

where τ is some properly chosen method parameter.

Relation (2) defines the so-called stationary basic iterative method of first kind.

– p. 6/28

Stationary iterative methods ...

If we permit τ to change from one iteration to the next, we get

x(k+1) = x(k) + τkr
(k), (3)

which latter defines the so-called
non-stationary basic iterative method of first kind.

So far τ and τk are some scalars. Nothing prevents us to replace the method
parameter by some matrix, however, if this would improve the convergence of
the iterative method.

– p. 7/28

(cont)

Nothing prevents us to replace the method parameter by some matrix, however,
if this would improve the convergence of the iterative method. Thus, we can
consider

x(k+1) = x(k) + C−1(b−Ax(k))

or

x(k+1) = x(k) + C−1r(k),

(4)

It is easy to see that we obtain (4) by replacing Ax = b with

C−1Ax = C−1b

and use the simple iteration framework. In this case the iterative scheme takes
the form

Cd(k) = r(k),

x(k+1) = x(k) + d(k)
(5)

The scheme (5) has in general a higher computational complexity than (3), since
a solution of a system with the matrix C is required at each iteration.

– p. 8/28

Concerns:

C1 Does the iteration process converge to the solution, i.e. does x(k) → x∗?

C2 If ’yes’, how fast does it converge?
The number of iterations it needed for the iterative method to converge
with respect to some convergence criterion, is a function of the properties
of A. For instance, it = it(n), where n is the size of A. If it turns out that
it = O(n2), we haven’t gained anything compared to the direct solution
methods.
The best one can hope for is to get it ≤ Const, where Const is
independent of n. Since the the computational complexity of one iteration
is in many cases proportional to n (for sparse matrices, for instance)ten
the complexity of the whole solution process will be

O(n).

C3 Is the method robust with respect to the method parameters (τ , τk)?

– p. 9/28

Concerns (cont.):

C4 Is the method robust with respect to various problem parameters?
A = A(ρ, ν, E, · · ·)

C5 When we are using the scheme C−1Ax = C−1b, it must be easy to
solve systems with C.

C6 Is the method parallelizable?
Parallelization aspects become more and more important since n is XXL.

– p. 10/28

Concerns (cont.):

Suppose the method converges to the exact solution x∗.
Then more questions arise:

C7 When do we stop the iterations?

→ We want ‖x∗ − x(k)‖ ≤ ε but x∗ is not known.

→ What about checking on r(k)?

→ Is it enough to have ‖r(k)‖ ≤ ε̃?

Will the latter guarantee that ‖x∗ − x(k)‖ ≤ ε?

Denote e(k) = x∗ − x(k) (the error at iteration k). Then

r(k) = b−Ax(k) = A(x∗ − x(k)) = Ae(k).

In other words e(k) = A−1r(k).

Scenario: Suppose ‖A−1‖ = 108 and ε̃ = 10−4. Then

‖e(k)‖ ≤ ‖A−1‖‖r(k)‖ ≤ 104, which is not very exiting.

Example: Discrete Laplace ∆5
h:

‖A−1‖ ≈ λmin = 1
2
(πh)2 ≈ 104 for h = 10−2.

– p. 11/28

Concerns (cont.):

C8 How do we measure (estimate) the convergence rate?

C9 How do we find good method parameters (τ , τk, C), which will speed up
the convergence?

– p. 12/28

Stopping tests:

In practice, most used stopping tests are:

(S1) ‖r(k)‖ ≤ ε, residual based, absolute

– p. 13/28

Stopping tests:

In practice, most used stopping tests are:

(S1) ‖r(k)‖ ≤ ε, residual based, absolute

(S2) ‖r(k)‖ ≤ ε‖r(0)‖, residual based, relative

– p. 13/28

Stopping tests:

In practice, most used stopping tests are:

(S1) ‖r(k)‖ ≤ ε, residual based, absolute

(S2) ‖r(k)‖ ≤ ε‖r(0)‖, residual based, relative

(S3) ‖x(k) − x(k−1)‖ ≤ ε

– p. 13/28

Stopping tests:

In practice, most used stopping tests are:

(S1) ‖r(k)‖ ≤ ε, residual based, absolute

(S2) ‖r(k)‖ ≤ ε‖r(0)‖, residual based, relative

(S3) ‖x(k) − x(k−1)‖ ≤ ε

(S4) ‖x∗ − x(k)‖ ≤ ε0‖x∗ − x(0)‖.

If the latter is wanted, then we must check on (S3) and choose ε such

that ε ≤ ‖B‖
1−‖B‖

ε0‖x∗ − x(0)‖.

Either estimate of ‖A−1‖ or of ‖B = C−1R‖ is required.

– p. 13/28

Concerns (cont.):

C9 How do we find good method parameters (τ , τk, C), which will speed up
the convergence?

We consider [C9].

– p. 14/28

TDB − NLA ChoosingC:

Intuitively, C has to do something with A.
Note that if C = A, then C−1 = A−1 and we will get convergence in one step!
However, the computational effort to construct A−1 is higher than to use a direct
solution method.

We try the following choice. Consider the following so-called splitting of A,

A = C −R,

where C is nonsingular and R can be seen as an error matrix.

The matrix B = C−1R is referred to as the iteration matrix.

– p. 15/28

Equivalent formulation using the splitting:

Using the splitting A = C −R we obtain the following equivalent form of the
iterative procedure:

A = C −R −→ R = C −A

x(k+1) = x(k) + C−1(b−Ax(k))

= x(k) + C−1b− C−1(C −R)x(k)

= C−1b+ C−1Rx(k)

Cx(k+1) = Rx(k) + b (6)

The matrix C is called a preconditioner to A. Its general purpose is to improve
the properties of A in order to achieve a better (faster) convergence of the
method.

– p. 16/28

Choices of the matrixC

Choice ’J’
Let A = D − L− U , where D is diagonal, U is strictly upper triangular and L is
strictly lower triangular.
Let C ≡ D, R = L+ U . The iterative scheme is known as Jacobi iteration:

Dx(k+1) = (L+ U)x(k) + b

Entry-wise xk+1
i = 1

aii

(
bi −

∑
i 6=j

aijxj

)
..

For the method to converge: B = D−1(L+ U)

ρ(B) ≤ ‖D−1(L+ U)‖∞ = max
1≤i≤n

n∑

j = 1

j 6= i

∣∣∣∣
aij

aii

∣∣∣∣

We want ρ(B) < 1. One class of matrices, for which Jacobi method converges is
when A is strictly diagonally dominant.

– p. 17/28

Choices of the matrixC

Choice GS-B Choose C ≡ D − U , R = L

Backward Gauss-Seidel (D − U)x(k+1) = Lx(k) + b

– p. 18/28

Choices of the matrixC

Choice GS-B Choose C ≡ D − U , R = L

Backward Gauss-Seidel (D − U)x(k+1) = Lx(k) + b

Choice GS-F Choose C ≡ D − L, R = U

Forward Gauss-Seidel (D − L)x(k+1) = Ux(k) + b

– p. 18/28

Choices of the matrixC

Choice GS-B Choose C ≡ D − U , R = L

Backward Gauss-Seidel (D − U)x(k+1) = Lx(k) + b

Choice GS-F Choose C ≡ D − L, R = U

Forward Gauss-Seidel (D − L)x(k+1) = Ux(k) + b

G-S is convergent for s.p.d. matrices.

– p. 18/28

Choices of the matrixC

Choice GS-B Choose C ≡ D − U , R = L

Backward Gauss-Seidel (D − U)x(k+1) = Lx(k) + b

Choice GS-F Choose C ≡ D − L, R = U

Forward Gauss-Seidel (D − L)x(k+1) = Ux(k) + b

G-S is convergent for s.p.d. matrices.

make it more fancy: A = D − L− U . Then

ωA = ωD − ωL− ωL+D −D ← overrelaxation

= (D − ωL)− (ωU + (1− ω)D)

Choose C ≡ D − ωL, R = ωU + (1− ω)D:

SOR (D − ωL)x(k+1) = [ωU + (1− ω)D]x(k) + ωb

– p. 18/28

SOR - back to 1940

One can see SOR as a generalization of G-S (ω = 1). Rewrite
(D − ωL)x(k+1) = [ωU + (1− ω)D]x(k) + ωb

as
(
1
ω
D − L

)
x(k+1) =

[(
1
ω
− 1
)
D + U

]
x(k) + b

For the iteration matrix Bω =
(
1
ω
D − L

)−1 [(1
ω
− 1
)
D + U

]

One can show that ρ(Bω) < 1 for 0 < ω < 2. Furthermore, there is an optimal
value of ω, for which ρ(Bω) is minimized:

ωopt =
2

1 +

√
1− ρ(B̂)2

, B̂ = I −D−1
A A.

– p. 19/28

Splittings ofA

Let A,C,R ∈n×n and consider A = C −R. A splitting of A is called

regular if C is monotone and R ≥ 0 (elementwise)

weak regular if C is monotone and C−1R ≥ 0

nonnegative if C−1 exists and C−1R ≥ 0

convergent if ρ(C−1R) < 1.

Recall: A matrix is called monotone if Ax > 0 implies x > 0.
Theorem: A - monotone⇔ A−1 ≥ 0.

– p. 20/28

TDB − NLA SOR-like methods

SSOR- Symmetric Successive Overrelaxation

AOR - Accelerated Overrelaxation

(D + σL)x(k+1) = [(1− ω)D − (ω − σ)L− ωU]x(k) + ωb

GAOR Generalized AOR - for saddle point systems

· · ·

– p. 21/28

TDB − NLA The Second Order Chebyshev iteration method

Let A be symmetric matrix.

x0 given, x1 = x0 + 1
2
β0r0

For k = 0, 1, · · · until convergence
xk+1 = αkxk + (1− αk)xk−1 + βkrk.

rk = b−Axk.

αk =
a+ b

2
βk,

1

βk
=

a+ b

2
−
(
b− a

4

)2

βk−1, β0 =
4

a+ b
.

Note that αk > 1, k ≥ 1.

Modifications for nonsymmetric matrices exist.

– p. 22/28

The preconditioned modified Hermitian Skew-Symmetric

(PMHSS) method

Consider the complex system
Cz = h,

where C = A+ iB, z = x+ iy and h = f + ig. Thus,
(A+ iB)(x+ iy) = f + ig , where A,B are real matrices, x,y, f ,g are real
vectors and i =

√
−1 is the imaginary unit. Then

Ax−By = f

Bx+Ay = g

This system can be rewritten in a matrix form

[
A −B
B A

][
x

y

]
=

[
f

g

]
.

– p. 23/28

Let A,B be symmetric and B - positive definite. We want to solve[
A −B
B A

][
x

y

]
=

[
f

g

]
.

(αV +A)xk+1/2 = (αV + iB)xk − ib

(αV +B)xk+1 = (αV − iA)xk+1/2 + b

Let α = 1, V = B. Then the algorithm becomes:

(A+B)zk = qk

xk = 0.5 ∗ (1− i)zk,

where qk is the current residual in the iterative solution method.

(G. Golub, Z.-Z. Bai, M. Benzi and others.)

– p. 24/28

Convergence comparisons, 2D FEM, problem size 16641, ω = 0.01

– p. 25/28

Convergence comparisons, 2D FEM, problem size 16641, ω = 1

– p. 26/28

Problem Direct ILU-QMR C–to–R -GCGMR PMHSS-GMRES
size time iter time iter time iter time

err. err. err.

ω = 0.01

16641 0.2652 26 1.8462 3(6) 0.22638 3 0.1084
2.9051e-5 6.7551e-5 6.5565e-8

66049 1.5852 52 13.311 3(6) 0.88911 3 0.5652
1.2776e-4 1.8912e-4 1.7679e-7

263169 9.735 103 98.19 3(6) 4.0115 3 2.5433
1.4075e-3 6.1502e-4 8.5698e-7

ω = 100

16641 0.2918 19 1.6017 10(7) 0.6094 17 0.6866
6.8632e-6 2.8814e-5 3.6833e-6

66049 1.6299 36 10.675 10(7) 2.6054 17 3.1166
8.0457e-5 1.3499e-4 1.6439e-5

263169 9.9345 70 73.228 9(8) 11.803 17 15.154
8.2749e-4 3.5128e-3 6.7764e-5

2D, FEM, M -mass matrix, C = L+ iωM ;inner solver AGMG

– p. 27/28

Problem Direct ILU-QMR C–to–R -GCGMR PMHSS-GMRES
size time iter time iter time iter time

err. err. err.

ω = 0.01

4913 0.5755 69 0.2761 3(4) 0.2133 3 0.1226
1.3967e-4 8.1647e-05 7.5096e-07

35937 34.608 138 4.522 3(5) 1.2087 3 4.1468
3.4811e-4 1.2793e-3 4.7588e-06

274625 – 278 87.563 3(6) 12.982 – –

ω = 100

4913 0.5374 42 0.1818 11(3) 0.2125 18 0.6515
6.0743e-06 4.3167e-06 7.5454e-06

35937 33.129 78 2.5282 10(5) 2.3168 19 20.839
8.9689e-05 2.5178e-4 1.5175e-05

274625 – 149 46.315 10(6) 30.578 – –

3D, FEM, M -mass matrix, C = L+ iωM ; inner solver AGMG

– p. 28/28

	LogotopO
	LogotopO
	logotop {color {uured} Introduction:}
	logotop {color {uured} Convergence of the fixed point iteration:}
	logotop {color {uured} Fixed point for linear problems:}
	logotop {color {uured} Simple iteration}
	logotop {color {uured} Stationary iterative methods ...}
	logotop {color {uured} (cont)}
	logotop {color {uured} Concerns:}
	logotop {color {uured} Concerns (cont.):}
	logotop {color {uured} Concerns (cont.):}
	logotop {color {uured} Concerns (cont.):}
	 {color {uured} Stopping tests:}
	 {color {uured} Stopping tests:}
	 {color {uured} Stopping tests:}
	 {color {uured} Stopping tests:}

	logotop {color {uured} Concerns (cont.):}
	Logotop {color {uured} Choosing C:}
	logotop {color {uured} Equivalent formulation using the splitting:}
	 {color {uured} Choices of the matrix C}
	 {color {uured} Choices of the matrix C}
	 {color {uured} Choices of the matrix C}
	 {color {uured} Choices of the matrix C}
	 {color {uured} Choices of the matrix C}

	 {color {uured} SOR - back to 1940}
	 {color {uured} Splittings of A}
	Logotop {color {uured} SOR-like methods}
	Logotop {color {uured} The Second Order Chebyshev iteration method}
	logotop {color {uured}The preconditioned modified Hermitian Skew-Symmetric (PMHSS)
method }
	logotop {color {uured} }
	logotop {color {uured} }
	logotop {color {uured} }
	logotop {color {uured} }
	logotop {color {uured} }

