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Given a computer:

We need to solve something in parallel, and as fast as possible!

Several questions arise:
• There is more than one algorithm (method) which does the job. Which one to
choose?

• Can we in advance (a priori) predict the performance?

• How much does the a priori estimate depend on the computer platform?
– On the implementation?
– On the compiler?
– On the MPI/OpenMP/Pthreads implementation/Cache discipline/...?

• Can we do a posteriori analysis of the observed performance? How?

• Compare what others have done - always a good idea, but how to do this?

• We have to write a paper. How to present the parallel results? Why take up
this issue?

Did we do a good job?
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Basic terminology

computational complexity W (A, p), W (A, 1) (number of
arithmetic operations to perform)

parallel machine (homogeneous), number of PE (threads) p,
size of the problem N (degrees of freedom), some algorithm
A

clock cycle

execution time serial: T (A, 1) = tcW (A) parallel:

T (A, p) = Ts(A) +
Tp(A)

p
+ Tc(A, p)

FLOPS rate (peak performance: theoretical vs sustained)

MIPS - Million Instructions per second

Power /Watt=Joule/second)

Energy = Power*time (Joule)
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Clock cycle:
general characteristic of the speed of the processing unit.
The execution of instructions is done in quantums (unit time
length) called a clock cycle:

τ(s) =
1

fr
=

1

frequency (Hz)

Theoretical peak performance (of one CPU):

f =
#instructions per cycle

τ

mega-, giga-, tera-, peta-, exa-flops performance

106 109 1012 1015 1018
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More terminology: Granularity

The term granularity is usually used to describe the complexity
and type of parallelism, inherent to a parallel system.
granularity of a parallel computer and granularity of
computations

fine grain parallelism; fine-grained machine;

medium grain parallelism; medium-grained machine;

coarse grain parallelism; coarse-grained computer system.
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How to measure the parallel performance?

How to understand what we see on the
performance plots?
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How to measure the parallel performance?

How to understand what we see on the
performance plots?

Recall some well-known stuff
(skip type of interconnection networks»> perf.)
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Recall: Shared memory machines
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Recall: Shared memory machines
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Recall: Distrib.memory: Static interconnection networks
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Recall: Interconnection network topologies

(f) linear array (g) ring (h) star (i) 2D mesh (j) 2D toroidal

mesh

(k) systolic array (l) completely

connected

(m) chordal ring

. . . . .

(n) binary tree (o) 3D cube

(p) 3D cube
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Virtual (logical) topologies
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(q) What is

’P’?

(r) AMD

Opteron

(s) Intel Turk-

willa

(t) Intel Sandy

Bridge
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The Knights Ferry MIC architecture board houses this 32-core Aubrey Isle
processor.
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Interconnection networks for multicore

Initially employed busses and crossbar switches between
the cores and cache banks

Such solutions are not scalable to 1000 cores!

On-chip technologies should scale close to linearly

Scalable on-chip communication networks will borrow ideas
from large-scale packet-switched networks.

IBM Cell employ multiple ring networks to connect 9
processors on the chip and employ software-managed
memory to communicate between between the cores rather
than cache-coherent protocols.
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Performance barriers (parallel overhead)

◮ Startup (latency) time

◮ Communication overhead

◮ Synchronization costs

◮ Imbalance of system re-
sources (I/O channels and
CPUs)

of milliseconds, i.e., millions of flops 

each of these can be in the range

on modern computer systems

◮ Redundant computation

◮ load (dis-)balance

� Tradeoff: to run fast in parallel there must be a large enough
amount of work per processing unit but not so large that there is
not enough parallel work.
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TDB − NLA Parallel performance metrics

T (A, p) is the primary metric (was?)

speedup S(A, p) = T (A,1)
T (A,p) ≤ p; relative, absolute

efficiency E(A, p) = S(A,p)
p

≤ 1

redundancy W (A, p)/W (A, 1)

work wasted, · · ·

scalability (strong, weak)
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TDB − NLA

T (A, p)

Not much to say - we measure and observe the time.

speedup

relative: S(A, p) = T (A,1)
T (A,p)

(the same algorithm is run on one and on p PEs)

absolute: S̃(A, p) = T (A∗,1)
T (A,p)

(the performance of the parallel algorithm on p PEs is
compared with the best known serial algorithm on one
PE - A∗) · · · if we dare!
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Measuring speedups - pros and cons: contra- relative speedup is that it "hides"
the possibility for T (A, 1) to be very large. The relative speedup "favors slow
processors and poorly-coded programs" because of the following observation.

Let the execution times on a uni- and p-processor machine, and the
corresponding speedup be

T0(A, 1) and T0(A, p) and S0 =
T0(A, 1)

T0(A, p)
> 1.

Next, consider the same algorithm and optimize its program implementation.
Then usually
T (A, p) < T0(A, p) but also S < S0.
Thus, the straightforward conclusion is that
∗ Worse programs have better speedup.
∗ Numerically inefficient methods scale better.
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A closer look:
T (A, p) = βT0(A, p) for some β < 1. However, T (A, 1) is also
improved, say T (A, 1) = αT0(A, 1) for some α < 1.

What might very well happen is that α < β. Then, of course,
S0

S
=

β

α
> 1.

When the comparison is done via the absolute speedup formula,
namely

S̃0

S̃
=

T (A∗, 1)

T0(A, p)

T (A, p)

T (A∗, 1)
= β < 1.

In this case T (A∗, 1) need not even be known explicitly. Thus,
the absolute speedup does provide a reliable measure of the
parallel performance.

Skip ’Efficiency’ » Cont2
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Efficiency : E(A, p) =
T1

pTp

=
1

pSp

Isoefficiency : It has been observed (Grama, Gupta, Kumar etc.) that
efficiency increases with the problem size N and decreases with
increasing the number of processors p. The idea is to keep E(A, p)

constant, while suitably increase N and p simultaneously. Consider
efficiency based on relative speedup, given as

E =
1

1 + p
T (A,p)
T (A,1)

.

Since T (A, 1) is some function of N (f(N)), then

f(N) = E
1−E

pT (A, p).

Using some algebraic manipulations, it is possible to rewrite the latter as

N = E(p)

and the function E(p), called the isoefficiency function, relates the growth
of N and p so that E remains equal to a chosen constant.
The isoefficiency metric – useful in the analysis of the parallel
performance of various parallel systems.
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Both speedup and efficiency, as well as MFLOPSrate, are tools for analysis but

not a goal of parallel computing.

None of these alone is a sufficient criterion to judge whether the performance of
a parallel system is satisfactory or not. Furthermore, there is a tradeoff between
the parallel execution time and the efficient utilization of many processors, or
between efficiency and speedup.
One way to observe this is to fix N and vary p. Then for some p1 and p2 we
have the relation

E(A, p1)

E(A, p2)
=

p2T (A, p2)

p1T (A, p1)
.

If we want E(A, p1) < E(A, p2) and T (A, p1) > T (A, p2) to hold

simultaneously, then p2
p1

<
T (A,p1)
T (A,p2)

, i.e., the possibility of utilizing more

processors is limited by the gain in execution time.
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"As a realistic goal, when developing parallel
algorithms for massively parallel computer
architectures one aims at efficiency which tends to
one with both increasing problem size and number of
processors/processing units/cores."

Massively parallel ...?
We deal now with computers from 2, 4, 16, 32, to
over 1000000 cores.
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Scalability

* scalability of a parallel machine: The machine is scalable if it
can be incrementally expanded and the interconnecting network
can incorporate more and more processors without degrading
the communication speed.

* scalability of an algorithm: If, generally speaking, it can use all
the processors of a scalable multicomputer effectively,
minimizing idleness due to load imbalance and communication
overhead.

* scalability of a machine-algorithm pair
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How to define scalability?

Definition 1: A parallel system is scalable if the performance is linearly
proportional to the number of processors used.
BUTS: impossible to achieve in practice

Definition 2: A parallel system is scalable if the efficiency E(A, p) can become
bigger than some given efficiency E0 ∈ (0, 1) by increasing the size of the
problem, i.e., E(A, p) stays bounded away from zero when N increases
(efficiency-conserving model).

Definition 3: A parallel system is scalable if the parallel execution time remains
constant when the number of processors p increases linearly with the size of the
problem N (time-bounded model). BUTS: too much to ask for since there is
communication overhead.

Definition 4: A parallel system is scalable if the achieved average speed of the
algorithm on the given machine remains constant when increasing the number
of processors, provided that the problem size is increased properly with the
system size.
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Scaled speedup (weak scalability):

Compare scalability figures when problem size and number of PEs are
increased simultaneously in a way that the load per individual PE is kept large
enough and approximately constant.
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Presuming an algorithm is parallelizable, i.e., a significant part of it can be done
concurrently, we can achieve large speed-up of the computational task using

(a) well-suited architecture;

(b) well-suited algorithms;

(c) well-suited data structures.

A degraded efficiency of a parallel algorithm can be due to either the computer
architecture or the algorithm itself:

(i) lack of a perfect degree of parallelism in the algorithm;

(ii) idleness of computers due to synchronization and load imbalance;

(iii) of the parallel algorithm;

(iv) communication delays.
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Gene Amdahl, 1965
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Gene Amdahl, March 13, 2008
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Gene Amdahl’s prophecy:

For over a decade prophets have voiced the contention that the
organization of a single computer has reached its limits and that
truly significant advances can be made only by interconnection
of a multiplicity of computers in such a manner as to permit
cooperative solution...
The nature of this overhead (in parallelism) appears to be
sequential so that it is unlikely to be amendable to parallel
processing techniques. Overhead alone would then place an
upper limit on throughput on five to seven times the sequential
processing rate, even if the housekeeping were done in a
separate processor...
At any point in time it is difficult to foresee how the previous
bottlenecks in a sequential computer will be effectively
overcome.
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Parallel performance models

The fundamental principle of computer performance; Amdahl’s law (1967)

Given: N operations, grouped into k subtasks N1, N2, · · · , Nk, which must
be done sequentially, each with rate Ri.

T =
k∑

i=1

ti =
k∑

i=1

Ni

Ri

=
k∑

i=1

fi N

Ri

; R =
T

N
N/

∑
(fiN/Ri) =

1
∑k

i=1 fi/Ri

Hence, the average rate R(= N/R) for the whole task is the weighted
harmonic mean of R1, R2, . . . , Rk.

For the special case of only two subtasks - fp (parallel) and 1− fp - serial,
then

R(fp) =
1

fp
Rp

+
1−fp
Rs

and S =
p

fp + (1− fp)p
≤

1

1− fp
.

Thus, the speedup is bounded from above by the inverse of the serial fraction.
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Example:

(200 km/h)

300 km

50 km
BA

(50 km/h)

250 km

V =
1

5
6200 +

1
650

= 133.3 km/h

If we drive 125 km/h on the highway, then the total time would
increase with only 15%.
So, why bother to drive fast on the highway?!
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Gustafson-Barsis law (1988):

Perhaps, the first breakthrough of the Amdahl’s model is the result
achieved by the 1988 Gordon Bell’s prize winners - a group from Sandia
Laboratories.

On a 1024 processor nCUBE/10 and with fp computed to be in the range
of (0.992, 0.996) they encountered a speedup of 1000 while the Amdahl’s
law prediction was only of the order of 200
(S = 1024/(0.996 + 0.004 ∗ 1024) ≈ 201).

T (A, 1) = (1− fp) + fpp

T (A, p) = (1− fp) + fp = 1 properly scaled problem

S = T (A, 1) = p− (p− 1)(1− fp)
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An example:

32 cores, 1% serial part and 0.99% parallel part

Amdahl’s law: S ≤ 1/(0.01 + 0.99/32) = 24.43

Gustafson’s law: S ≤ 32− 31 ∗ 0.01 = 31.69
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Top 500, November 2012

1 Titan - Cray XK7 , Opteron 6274 16C 2.200GHz, Cray Gemini interconnect,
NVIDIA K20x, 560 640 cores, 27.1125 PFlop/s, DOE/SC/Oak Ridge National
Laboratory

2 Sequoia - BlueGene/Q, Power BQC 16C 1.60 GHz, Custom, 1 572 864 cores,
DOE/NNSA/LLNL

3 K computer, SPARC64 VIIIfx 2.0GHz, Tofu interconnect, 705 024 cores

4 Mira - BlueGene/Q, Power BQC 16C 1.60GHz, Custom, 786 432 cores,
DOE/SC/Argonne National Laboratory

5 JUQUEEN BlueGene/Q, Power BQC 16C 1.600GHz, Custom Interconnect,
393 216 cores

...
...

83 Triolith - Cluster Platform SL230s Gen8, Xeon E5-2660 8C 2.200GHz, Infini-
band FDR, 19 136 cores, National Supercomputer Centre
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Top 500, November 2012

Titan – the first major supercomputing system to utilize a hybrid
architecture: utilizes both conventional 16-core AMD Opteron
CPUs and NVIDIA Tesla K20 GPU Accelerators.
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Top 500, November 2012

BlueGene-Q:

IBM PowerPC A2 1.6 GHz, 16 cores per node

Networks
5D Torus 40 GBps; 2.5 µsec latency (worst case)

Collective network – part of the 5D Torus; collective logic
operations supported

Global Barrier/Interrupt – part of 5D Torus

1 GB Control Network – System Boot, Debug, Monitoring

L2 cache – multi-versioned, supporting transactional memory and
speculative execution; has hardware support for atomic operations.
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Models and metrics for the ’small-sized’

Skeleton-Based Approach
The ’Roofline’ approach

Skipped »> Cont3
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New performance models and metrics:

Examples:
Estimating Parallel Performance, A Skeleton-Based Approach
Oleg Lobachev and Rita Loogen, Proceeding HLPP’10 Proceedings of the 4th
international workshop on High-level parallel programming and applications,
ACM New York, NY, USA, 2010, 25–34.

Roofline: An Insightful Visual Performance Model for Floating-Point Programs
and Multicore Architectures
Samuel Webb Williams, Andrew Waterman and David A. Patterson,
Communications of the ACM, 52 (2009), 65-76.
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The ’Skeleton’ approach:

No of PEs - ’p’, problem size - ’n’, W (n), T (n) = W (n),
T (n, p) - execution time on p PEs; assume W (n, p) = pT (n, p).
In a parallel execution, the sequential work is distributed over the processors.
This causes an overhead, A(n, p) (a penalty), which is also distributed over the

p elements, thus, A(n, p) = pÃ(n, p). Then

T (n, p) = T (n)/p+ Ã(n, p)

and

W (n, p) = T (n) + pÃ(n, p) = T (n) +A(n, p)

Task: try to estimate accurately T (n) and Ã(n, p).
Then we can predict T (n, p). Use ’skeletons’ as abstract descriptions of the
parallelization paradigm (’divide and conquer’, ’iteration’).
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The ’Roofline’ approach:
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A scalar product of two vectors of ordern onp PE’s (tree)

1

1p 2p

1
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log n + 1
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4p
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. . .

*

4y xn-1 n-1y xn ny

3

****
n-1p

n/4p

np

n/2p

+

+ +

3p
+

** *

+

+

y

p

p

p

T1 = (2n− 1)τ . For p = n we get

Tp = (log2 n+ 1)τ + α(log2 n+ 1)τ,

S =
T1

Tp

=
2n− 1

(log2 n+ 1)
·

1

1 + α

and we see that the theoretical speedup is degraded by the factor (1 + α)−1 due
to data transport. If p < n, the data transport during the first ⌊n/p⌋ − 1 levels of
the algorithm need correspondingly more data transports.
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A scalar product of two vectors of ordern on 3D hypercube

1 2

4

5 6

8

3

7

2+6

7+38+4

1+5 2+6

7+38+4

3+7+4+8 3+7+4+8

3+7+4+83+7+4+8

1+5+2+6

1+5+2+6 1+5+2+6

Σ Σ

ΣΣ

Σ Σ

ΣΣ

1+5

= 1+2+3+4+5+6+7+8Σ

1+5+2+6

T1 = (2n− 1)τ

Tp = n
p
τ + αd τ
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GOTO the basic iterative methods...
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