
Projection-based iterative
methods

– p. 1/49

TDB − NLA Parallel Algorithms for Scientific Computing

Shortly on projectors

– p. 2/49

Projectors and properties

Definitions:
Consider Cn and a mapping P : Cn → Cn.
P is called a projector if P 2 = P
If P is a projector, then I − P is also such:

(I − P)2 = I − 2P + P 2 = I − P.

N (P) = {x ∈ Cn : Px = 0} (null space (kernel) of P)
R(P) = {Ax : x ∈ Cn} (range of P).

A subspace S is called invariant under a square matrix A whenever AS ∈ S.

– p. 3/49

Properties:

P1: N (P)
⋂R(P) = {0} Indeed,

if x ∈ R(P) ⇒ ∃y : y = Px ⇒ Py = P 2x = Px ⇒ y = x ⇒ x = Px

If x ∈ N (P) ⇒ Px = 0 ⇒ x = Px ⇒ x = 0.

P2: N (P) = R(I − P)

x ∈ N (P) ⇒ Px = 0. Then x = Ix− Px = (I − P)x.
y ∈ R(I − P) ⇒ y = (I − P)y ⇒ Py = 0.

P3: Cn = R(P)
⊕N (P).

P4: Given two subspaces K and L of same dimension m, the following two

conditions are mathematically equivalent:

(i) No nonzero vector in K is orthogonal to L

(ii) ∀x ∈ Cn∃ unique vector y : y ∈ K,x− y ∈ L.

Proof (i)⇒(ii): K
⋂

L⊥ = {∅} ⇒ Cn = K
⊕

L⊥ ⇒ ∀x ∈ Cn : x = y + z,
where y ∈ K and z ∈ L⊥. Thus, z = x− y ⇒ (ii).

– p. 4/49

P5: Orthogonal and oblique projectors

P is orthogonal if N (P) = R(P)⊥. Otherwise P is oblique.
Thus, if P is orthogonal onto K, then Px ∈ K and (I − P)x ⊥ K. Equivalently,
((I − P)x,y) = 0, ∀y ∈ K.

K

x

Px

x−Px

– p. 5/49

Properties (cont.)

P6: If P is orthogonal, then ‖P‖ = 1.

P7: Any orthogonal projector has only two eigenvalues 0 and 1. Any vector

from R(P) is an eigenvector to λ = 1. Any vector from N (P) is an eigenvector
to λ = 0.

– p. 6/49

Theorem 1 Let P be orthogonal onto K. Then for any vector x ∈ Cn there holds

min
y∈K

‖x− y‖2 = ‖x− Px‖2. (1)

Proof For any y ∈ K, Px− y ∈ K, Px ∈ K, (I − P)x ⊥ K

‖x− y‖22 = ‖(x− Px) + (Px− y)‖22 =

‖x− Px‖22 + ‖Px− y‖22 + 2(x− Px, Px− y) = ‖x− Px‖22 + ‖Px− y‖22.

Therefore, ‖x− y‖22 ≥ ‖x− Px‖22 ∀y ∈ K and the minimum is reached for
y = Px.

Corollary 1 Let K ⊂ Cn and x ∈ Cn be given. Then min
y

‖x− y‖2 = ‖x− y∗‖2
is equivalent to y∗ ∈ K and x− y∗ ⊥ K.

– p. 7/49

Iterative solution methods

➾ Steepest descent

➾ Conjugate gradient method (CG)

➾ ORTHOMIN

➾ Generalized conjugate gradient method (GCG)

➾ Minimal residual method (MINRES)

➾ Generalized minimal residual method (GMRES)

➾ Lanczos method

➾ Arnoldi method

➾ Orthogonal residual method (ORTHORES)

➾ Full orthogonalization method (FOM)

➾ Incomplete orthogonalization method (IOM)

– p. 8/49

TDB − NLA Parallel Algorithms for Scientific Computing Projection-

based iterative solution methods

➾ SYMMLQ

➾ Biconjugate gradient method (BiCG)

➾ BiCGStab

➾ BiCG squared

➾ Conjugate gradients squared (CGS)

➾ Minimal residual method (MR)

➾ Quasiminimal residual method (QMR)

➾ Generalized conjugate residual method (GCR)

➾ · · ·

– p. 9/49

Projection-based iterative methods -

the basic ideas

– p. 10/49

General framework – projection methods

Want to solve b−Ax = 0,b,x ∈ Rn, A ∈ Rn×n

Instead, choose two subspaces L ⊂ Rn and K ⊂ Rn and

∗ find x̃ ∈ x(0) +K, such that b−Ax̃ ⊥ L

K - search space
L - subspace of constraints

∗ - basic projection step

The framework is known as Petrov-Galerkin conditions.

There are two major classes of projection methods:

orthogonal - if K ≡ L,

oblique - if K 6= L.

– p. 11/49

Want to solve b−Ax = 0

Given x0, K and L,

∗ find x̃ ∈ x(0) +K, such that b−Ax̃ ⊥ L

Notations:
x̃ = x0 + δ (δ – correction)
r0 = b−Ax0 (r0 – residual)

∗ find δ ∈ K, such that r0 −Aδ ⊥ L

– p. 12/49

Matrix formulation

Choose a basis in K and L: V = {v1,v2, · · · ,vm} and
W = {w1,w2, · · · ,wm}.
Then, x̃ = x0 + δ = x0 + V y for some y ∈ Rm.

The orthogonality condition can be written as

(∗∗) WT (r0 −AV y)

which is exactly the Petrov-Galerkin condition.
From (∗∗) we get

WT r0 = WTAV y

y = (WTAV)−1WT r0

x̃ = x0 + V (WTAV)−1WT r0

In practice, m < n, even m ≪ n, for instance, m = 1.
The matrix WTAV will be small and, hopefully, with a nice structure.

!!! WTAV should be invertible.

– p. 13/49

A prototype projection-based iterative method:

Given x(0); x = x(0)

Until convergence do:
Choose K and L

Choose basis V in K and W in L

Compute r = b−Ax

y = (WTAV)−1WT r

x = x+ V y

Degrees of freedom: m,K,L, V,W .
Clearly, if K ≡ L, then V = W .

To do next:
(1) Consider two important cases: L = K and L = AK

(2) Make a special choice of K.

– p. 14/49

Property 1:

Theorem 2 Let A be square, L = AK. Then a vector x̃ is an oblique projection on K

orthogonally to AK with a starting vector x0 if and only if x̃ minimizes the 2-norm of

the residual over x0 +K, i.e.,

‖r−Ax̃‖2 = min
x∈x0+K

‖r−Ax‖2. (2)

Thus, the residual decreases monotonically.

Referred to as minimal residual methods
CR, GCG, GMRES, ORTHOMIN

– p. 15/49

Property 1:

~

b

b−Ax
~

Ax

b−Ax

Ax
K

AK

– p. 16/49

Property 2:

Theorem 3 Let A be symmetric positive definite, i.e., it defines a scalar product (A·, ·)
and a norm ‖ · ‖A. Let L = K, i.e., r0 −Ax̃ ⊥ K. Then a vector x̃ is an orthogonal

projection onto K with a starting vector x0 if and only if it minimizes the A-norm of

the error e = x∗ − x over x0 +K, i.e.,

‖x∗ − x̃‖A = min
x∈x0+K

‖x∗ − x‖A. (3)

The error decreases monotonically in the A-norm.
Error-projection methods

– p. 17/49

Example:m = 1

Consider two vectors: d and e. Let K = span{d} and L = span{e}.
Then x̃ = x0 + αd (δ = αd) and the orthogonality condition reads as:

r0 −Aδ ⊥ e ⇒ (r0 −Aδ, e) = 0 ⇒ α(Ad, e) = (r0, e) ⇒ α =
(r0, e)

(Ad, e)
.

If d = e - Steepest Descent method (minimization on a line.
If we minimize over a plane - ORTHOMIN.

– p. 18/49

Choice ofK:

K = Km(A,v) = {v, Av, A2v, · · · , Am−1v}

Krylov subspace methods

L = K = Km(A, r0) and A spd ⇒ CG

L = AK = AKm(A, r0) ⇒ GMRES

– p. 19/49

Why are Krylov subspaces of interest?

Dealt with in the ’Numerical Linear Algebra’ course.

– p. 20/49

TDB − NLA Parallel Algorithms for Scientific Computing

How to construct a basis for K?

The Conjugate Gradient method

– p. 21/49

Let L = K or L = AK: The missing part is how to con-

struct a basis inK

Recall:
Choose a basis in K and L: V = {v1,v2, · · · ,vm} and
W = {w1,w2, · · · ,wm}.
Then, x̃ = x0 + δ = x0 + V y for some y ∈ Rm.

The orthogonality condition can be written as

(∗∗) WT (r0 −AV y)

which is exactly the Petrov-Galerkin condition.
From (∗∗) we get

WT r0 = WTAV y

y = (WTAV)−1WT r0

x̃ = x0 + V (WTAV)−1WT r0

– p. 22/49

Arnoldi’s method for general matrices

Consider Km(A,v) = {v, Av, A2v, · · · , Am−1v}, generated by some matrix A

and vector v.
1. Choose a vector v1 such that ‖v1‖ = 1

2. For j = 1, 2, · · · ,m
3. For i = 1, 2, · · · , j
4. hij = (Avj ,vi)

5. End

6. wj = Avj −
j∑

i=1
hijvi

7. hj+1,j = ‖wj‖
8. If hj+1,j = 0, stop
9. vj+1 = wj/hj+1,j

10. End

The algorithm breaks down in step j, i.e., hj+1,j = 0, if and only if the minimal
polynomial of A is of degree j.

– p. 23/49

The result of Arnoldi’s process

V m = {v1,v2, · · · ,vm} is an orthonormal basis in Km(A,v)

AV m = V mHm +wm+1e
T
m

V
m V

m

H
m

em()T
wm+1

(n,m)(n,m)(n,n)

A

(n,1)

(1,m)*

*

(m,m)

+

=*

– p. 24/49

Arnoldi’s process - example

H3 =

(Av1,v1) (Av2,v1) (Av3,v1)

‖w1‖ (Av2,v2) (Av3,v2)

0 ‖w2‖ (Av3,v3)

Since V m+1 ⊥ {v1,v2, · · · ,vm} then it follows that (V m)TAV m = Hm.
Hm is an upper-Hessenberg matrix.

– p. 25/49

Arnoldi’s method for symmetric matrices

Let now A be real symmetric matrix. Then the Arnoldi method reduces to the

Lanczos method.

Recall: Hm = (V m)TAV m

If A is symmetric, then Hm must be symmetric too, i.e., Hm is three-diagonal

Hm =

γ1 β2

β2 γ2 β3

. . .

βm γm

Thus, the vectors vj satisfy a three-term recursion:

βi+1v
i+1 = Avi − γiv

i − βiv
i−1

– p. 26/49

The CG method:

The CG algorithm using the above relations:

Initialize: r(0) = Ax(0) − b, g(0) = r(0)

For k = 0, 1, · · · , until convergence

τk =
(r(k),r(k))

(Agk,g(k))

x(k+1) = x(k) + τkg
k

r(k+1) = r(k) + τkAgk

βk =
(r(k+1),r(k+1))

(r(k),r(k))

gk+1 = −r(k+1) + βkg
k

end

r(k) – iteratively computed residuals
gk – search directions

– p. 27/49

CG: computer implementation

x = x0
r = A*x-b
delta0 = (r,r)
g = -r
Repeat: h = A*g

tau = delta0/(g,h)
x = x + tau*g
r = r + tau*h
delta1 = (r,r)
if delta1 <= eps, stop
beta = delta1/delta0; delta0 = delta1
g = -r + beta*g

Computational complexity (arithmetic cost per iteration): O(n)

- one matrix-vector multiply
- three vector updates
- two scalar products

– p. 28/49

Properties of the CG method, convergence

Finite termination property: there are no breakdowns of the CG
algorithm.
Reasoning: if gj = 0 then τk is not defined. the vectors gj are computed
from the formula gk = r(k) + βkg

k−1. Then

0 = (r(k),gj) = −(r(k), r(k)) + βk (r(k),gk−1)
︸ ︷︷ ︸

0

, ⇒ r(k)0, i.e., the

solution is already found.
As soon as x(k) 6= xexact, then r(k) 6= 0 and then gk+1) 6= 0.
However, we can generate at most n mutually orthogonal vectors in Rn,
thus, CG has a finite termination property.

Convergence of the CG method

Theorem: In exact arithmetic, CG has the property that xexact = x(m) for some
m ≤ n, where n is the order of A.

– p. 29/49

Rate of convergence of the CG method

Theorem: Let A is symmetric and positive definite.
Suppose that for some set S, containing all eigenvalues of A, for some

polynomial P̃ (λ) ∈ Π1
k

and some constant M there holds max
λ∈S

∣∣∣P̃ (λ)
∣∣∣ ≤ M.

Then,

‖xexact − x(k)‖A ≤ M‖xexact − x(0)‖A.

‖ek‖A ≤ 2

[
κ(A) + 1

κ(A)− 1

]k
‖e0‖A

Seek now the smallest k, such that

‖ek‖A ≤ ε‖e0‖A

k >
1

2

√
κ ln

(
2

ε

)

– p. 30/49

The GMRES method

– p. 31/49

Basic GMRES

Choose v(1) to be the normalized residual r(0) = b−Ax(0).
Any vector x ∈ x(0) +K is of the form x = x(0) + Vmy. Then

b−Ax = b−A(x(0) + Vmy)

= r(0) −AVmy

= βv(1) − Vm+1Hmy

= Vm+1(βe1 −Hmy).

Since the columns of Vm+1 are orthonormal, then

‖b−Ax‖2 = ‖βe1 −Hmy‖2.

– p. 32/49

Basic GMRES

1. Compute r(0) = b−Ax(0), β = ‖r(0)‖2 and v(1) = r(0)/β

2. For k = 1, 2, · · · ,m
3. Compute w(k) = Av(k)

4. For i = 1, 2, · · · , k
5. hik = (w(k),v(i))

6. w(k) = w(k) − hikv
(i)

7. End
8. hk+1,k = ‖w(k)‖2; if hk+1,k = 0, set m = k, goto 11
9. v(k+1) = w(k)/hk+1,k

10. End
11. Define the (m+ 1)×m Hessenberg matrix Hm = {hik}, 1 ≤ i ≤ m+ 1, 1 ≤ k ≤ m

12. Compute y(m) as the minimizer of ‖βe1 −Hmy‖2 and x(m) = x(0) + Vmy(m)

– p. 33/49

GMRES:

No breakdown of GMRES

As m increases, storage and work per iteration increase fast. Remedies:

Restart (keep m constant)
Truncate the orthogonalization process

The norm of the residual in the GMRES method is monotonically
decreasing. However, the convergence may stagnate. The rate of
convergence of GMRES cannot be determined so easy as that of CG.

The convergence history depends on the initial guess.

– p. 34/49

GMRES: convergence

Theorem: Let A be diagonalizable, A = X−1ΛX where Λ = diag{λ1, · · · , λn}
contains the eigenvalues of A. Define

ǫm = min
p∈Π1

m

max
i=1,···n

|p(λi)|.

Then, the residual norm at the mth step of GMRES satisfies

‖r(m)‖ ≤ κ(X)ǫm‖r(0)‖,

where κ(X) = ‖X‖ ‖X−1‖

– p. 35/49

TDB − NLA Parallelize CG: scenarios

On what hardware platform?

Which model - shared memory, distributed memory, both?

What can we parallelize?

What can’t we parallelize? Bottlenecks?

Can we modify the method to avoid bottlenecks?

What data distribution shall we utilize? How much knowledge about the
problem shall we utilize in the parallel implementation?

If we have managed to parallelise CG, did we do the job?

– p. 36/49

TDB − NLA How to parallelize the CG method?

Recall:
x = x0
r = A*x-b
delta0 = (r,r)
g = -r
Repeat: h = A*g matrix-vector

tau = delta0/(g,h) scalar product
x = x + tau*g vector update
r = r + tau*h vector update
delta1 = (r,r) scalar product
if delta1 <= eps, stop
beta = delta1/delta0, delta0=delta1
g = -r + beta*g vector update

What approaches have been taken in some of the software libraries?

– p. 37/49

’Matrix-given strategy’

PETSc – Portable, Extensible Toolkit for Scientific Computation
Last version: 3.3 (CUDA)

Slides borrowed from:
Ambra Giovannini
SuperComputing Applications and Innovation Department
www.corsi.cineca.it/courses/scuolaEstiva2/petscModule/petsc_2011.pdf

– p. 38/49

www.corsi.cineca.it/courses/scuolaEstiva2/petscModule/petsc_2011.pdf

Introduction to PETSc

PETSc main features

PETSc Portable Extensible Toolkit for Scientific ComputationPETSc – Portable, Extensible Toolkit for Scientific Computation
Is a suite of data structures and routines for the scalable (parallel) solution
of scientific applications mainly modelled by partial differential equations.

ANL – Argonne National Laboratory
Begun September 1991

pp y y p q

Begun September 1991
Uses the MPI standard for all message-passing communication
C, Fortran, and C++
Consists of a variety of libraries; each library manipulates a
particular family of objects and the operations one would like to
perform on the objectsperform on the objects
PETSc has been used for modelling in all of these areas:
Acoustics, Aerodynamics, Air Pollution, Arterial Flow, Brain Surgery, Cancer Surgeryy g y g y
and Treatment, Cardiology, Combustion, Corrosion, Earth Quakes, Economics,
Fission, Fusion, Magnetic Films, Material Science, Medical Imaging, Ocean
Dynamics, PageRank, Polymer Injection Molding, Seismology, Semiconductors, ...

Ambra Giovannini 1

Introduction to PETSc

Relationship between libraries

Ambra Giovannini 2

Introduction to PETSc

PETSc numerical component

Ambra Giovannini 4

Introduction to PETSc

Vectors
What are PETSc vectors?What are PETSc vectors?

Fundamental objects for storing field solutions, right-hand sides,
etc.
Each process locally owns a subvector of contiguously
numbered global indices

Features
Has a direct interface to the valuesHas a direct interface to the values
Supports all vector space operations

VecDot(), VecNorm(), VecScale(), …VecDot(), VecNorm(), VecScale(), …
Also unusual ops, e.g. VecSqrt(), VecInverse()
Automatic communication during assemblyg y
Customizable communication (scatters)

Ambra Giovannini 10

Introduction to PETSc

Numerical vector operations

Ambra Giovannini 16

Introduction to PETSc

Matrices
What are PETSc matrices?What are PETSc matrices?

Fundamental objects for storing linear operators
Each process locally owns a submatrix of contiguous rows

Features
S t d t tSupports many data types

AIJ, Block AIJ, Symmetric AIJ, Block Diagonal, etc.
Supports structures for many packagesSupports structures for many packages

Spooles, MUMPS, SuperLU, UMFPack, DSCPack
A matrix is defined by its interface, the operations that you can y , p y
perform with it, not by its data structure

Ambra Giovannini 21

Introduction to PETSc

Numerical matrix operations

Ambra Giovannini 27

Introduction to PETSc

Matrix AIJ format

The default matrix representation within PETSc isThe default matrix representation within PETSc is
the general sparse AIJ format (Yale sparse matrix
or Compressed Sparse Row, CSR)

The nonzero elements are stored by rows
Array of corresponding column numbers y p g
Array of pointers to the beginning of each row

Note: The diagonal matrix entries
t d ith th t f th

Ambra Giovannini 29

are stored with the rest of the nonzeros

Introduction to PETSc

Parallel sparse matrices
Each process locally owns a submatrix of contiguously numberedEach process locally owns a submatrix of contiguously numbered
global rows.
Each submatrix consists of diagonal and off-diagonal parts.

P0P0

P1

P2

Ambra Giovannini 32

Introduction to PETSc

KSP: linear equations solvers
The object KSP provides uniform and efficient access to all of theThe object KSP provides uniform and efficient access to all of the
package’s linear system solvers

KSP is intended for solving nonsingular systems of the form
Ax = b.

KSPCreate(MPI Comm comm, KSP *ksp)
KSPSetOperators(KSP ksp, Mat Amat, Mat Pmat,

MatStructure flag)
KSPSolve(KSP ksp, Vec b, Vec x)
KSPGetIterationNumber(KSP ksp, int *its)
KSPDestroy(KSP ksp)

Ambra Giovannini 39

Introduction to PETSc

PETSc KSP methods

Ambra Giovannini 40

PETSc cont.

External packages:

Hypre - a library for solving large, sparse linear systems of equations on
massively parallel computers, LLNL

SuperLU - a general purpose library for the direct solution of large,
sparse, nonsymmetric systems of linear equations on high performance
machines, Berkeley, Jim Demmel and coworkers

SuperLU_DIST - SuperLU for distributed memory

Sundials - SUite of Nonlinear and DIfferential/ALgebraic equation
Solvers,

FFTW - a C -library for computing the discrete Fourier transform (DFT) in
various dimensions, of arbitrary input size, real and complex data

Metis, ParMetis -

Added:
– Hybrid Chebychev
– pipelined GMRES which performs one non-blocking reduction per iteration
instead of two blocking reductions
– flexible BiCGStab, tolerates a nonlinear preconditioner
– improved flexible BiCGStab, tolerates a nonlinear preconditioner and performs
one reduction every other iteration

– p. 39/49

’Problem-given strategy’

Example: Metis - provides mesh/graph partitionings (nonoverlapping) domain
decomposition

– p. 40/49

’Problem-given strategy’

21

3 4 33 4

1 2 2 A =

1 −0.5 −0.5 0

−0.5 1 0 −0.5

−0.5 0 1 −0.5

0 −0.5 −0.5 1

A1 =

1 −0.5 −0.5 0

−0.5 0.5 0 0

−0.5 0 0.5 0

0 0 0 0

A2 =

0 0 0 0

0 0.5 0 −0.5

0 0 0.5 −0.5

0 −0.5 −0.5 1

– p. 41/49

FEM-DD-unpreconditioned CG

Assume A and b are distributed and an initial guess x(0) is given, which is
replicated.

g(0) = b−Ax(0)

r = replicate(g(0))

d(0) = −r

δ0 = (g(0), r(0))

For k = 0, 1, · · · until convergence

(1) h = Ad(k)

(2) τ = δ0/(h,d(k))

(3) x(k+1) = x(k) + τd(k)

(4) g(k+1) = g(k) + τh

(5) r = replicate(g(k+1))

(6) δ1 = (g(k+1), r)

(7) β = δ1/δ0, δ0 = δ1

(8) d(k+1) = r+ βd(k)

– p. 42/49

Why local comunications are not enough?

Consider the solution of Ax = b by the standard conjugate gradient, where

A =

2 −1

−1 2 −1

. . .
. . .

−1 2 −1

−1 1

,b =

1

0

0

0

0

.

The exact solution is x̂ = [1, 1, · · · , 1]T .
Starting with x0 = [0, 0, · · · , 0]T one finds that after k iterations

xk =

[
k

k + 1
,
k − 1

k + 1
, · · · , 1

k + 1
, 0, · · · , 0

]T

for 1 ≤ k ≤ n− 1 and xn = x̂.
Hence, the information travels one step at a time from left to right and it takes
n

steps before the last component has changed at all.

– p. 43/49

Include preconditioning:C−1Ax = C−1
b

Unpreconditioned CG Preconditioned CG
x = x0 x = x0
r = A*x-b r = A*x-b; C*h = r
delta0 = (r,r) delta0 = (r,h)
g = -r g = -h
Repeat: h = A*g Repeat: h = A*g

tau = delta0/(g,h) tau = delta0/(g,h)
x = x + tau*g x = x + tau*g
r = r + tau*h r = r + tau*h; C*h = r
delta1 = (r,r) delta1 = (r,h)
if delta1 <= eps, stop if delta1 <= eps, stop
beta = delta1/delta0 beta = delta1/delta0
g = -r + beta*g g = -h + beta*g

– p. 44/49

FEM-DD- preconditioned CG

Assume A, B and b are distributed and the initial guess x(0) is replicated.

g(0) = Ax(0) − b, g(0) = replicate(g(0))

h = Bg(0)

δ0 = (g(0),h) h = replicate(h)

d(0) = −h

For k = 0, 1, · · · until convergence

(1) h = Ad(k)

(2) τ = δ0/(h,d(k))

(3) x(k+1) = x(k) + τd(k)

(4) g(k+1) = g(k) + τh, g(k+1) = replicate(g(k+1))

(5) h = Bg(k+1),

(6) δ1 = (g(k+1),h) h = replicate(h)

(7) β = δ1/δ0, δ0 = δ1

(8) d(k+1) = −h+ βd(k)

– p. 45/49

deal.ii

I: Shared memory paradigm

Task-based

Thread-based

II: Distributed memory paradigm

Each machine keeps the entire mesh and DoF handler locally, but only a
share of the global matrix, sparsity pattern, and solution vector is stored
on each machine.

The mesh and DoFhandler are also distributed, i.e. each processor
stores only a share of the cells and degrees of freedom. No processor
has knowledge of the entire mesh, matrix, or solution, and in fact
problems solved in this mode are usually so large (say, 100s of millions to
billions of degrees of freedom) that no processor can or should store
even a single solution vector.

– p. 46/49

CG - more efficient global ommunications?

Preconditioned Chronopoulos/Gear CG

r0 = b−A ∗ x0

C ∗ u0 = r0; w0 = A ∗ u0 α = (r0, u0)/(w0, u0), β0 = 0, γ0 = (r0, u0)

Repeat:
pi = ui + βipi−1 vector update
si = wi + βisi−1 vector update
xi+1 = xi + αipi vector update
ri+1 = ri − αisi vector update
Cui+1 = ri+1 system solve
wi+1 = Aui+1 matrix-vector
γi+1 = (ri+1, ui+1) scalar product
δ = (wi+1, ui+1) scalar product
βi+1 = γi+1/γi
αi+1 = γi+1/(δ − βi+1γi+1/αi)

The communication phase for both dot-products from the algorithm can be
combined in a single global reduction. The update for xi can be postponed and
used to overlap the global reduction. However, even for small parallel machines
the runtime of a single vector update will not be enough to fully cover the latency
of the global communication.

– p. 47/49

CG - more efficient global ommunications?

Pipelined Chronopoulos/Gear CG

Hiding global synchronization latency in the PCG algorithm
P. Ghysels, W. Vanroose, December 2012

r0 = b−A ∗ x0; w0 = A ∗ u0

Repeat:
γi = (ri, ri) scalar product
δ = (wi, ri) scalar product
qi+1 = Awi+1 matrix-vector
if i > 0 then βi = γi/γi−1, αi = γi/(δ − βiγi/αi−1)

else βi = 0, αi = γi/δ

zi = qi + βizi−1 vector update
si = wi + βisi−1 vector update
pi = ri + βipi−1 vector update
xi+1 = xi + αipi vector update
ri+1 = ri − αisi vector update
wi+1 = wi − αizi vector update

– p. 48/49

CG - more efficient global ommunications?

Danger: what is going on with the NUMERICAL STABILITY of the method?

However, with increasing s, the stability of the s-step Krylov basis
deteriorates.

We report on extensive numerical tests that show the stability of the
pipelined CG and CR methods.

Stability is also negatively impacted in the pipelined methods by the extra
multiplication with the matrix A (ri, ui and wi are replaced by
ri = b−Axi, ui = M−1ri and wi = Aui every 50-th iteration.)

A possible improvement might be to add a shift in the matrix-vector
product, similar to what is also done in s-step Krylov methods and for
pipelined GMRES. The CG iteration can provide information on the
spectrum of A, which can be used to determine good shifts.

To summarize: need a preconditioner; not only local communications for good
numerical performance.

– p. 49/49

