Projection-based iterative
methods

(‘o5 -~is) Parallel Algorithms for Scientific Computing

Shortly on projectors

Projectors and properties

Definitions:

Consider C™ and a mapping P : C™ — C™.
P is called a projector if P? = P

If P is a projector, then I — P is also such:

(I-P)¥=I-2P+P*=]-P.

N(P) = {x € C™ : Px = 0} (null space (kernel) of P)
R(P) = {Ax : x € C™} (range of P).

A subspace S is called invariant under a square matrix A whenever AS € S.

Properties:

P1: |N(P)R(P) = {0} Indeed,
fxcR(P)=Jy:y=Px=>Py=Px=Px=>y=x=x=Px
fxe N(P)= Px=0=x=Px=x=0.

P2: \N(P) =R(I — P)

x E N(P)= Px=0.Thenx =Ix — Px = (I — P)x.
yeER(I—-P)=y=({I—-P)y= Py=0.

P3:|C™ = R(P)PN(P).

P4: | Given two subspaces K and L of same dimension m, the following two
conditions are mathematically equivalent:

() No nonzero vector in K is orthogonal to L

(i) Vxe C™"Juniquevectory :y € K,x—y € L.
Proof ()=(i) KNLt ={0}=C"=K@Lt-=Vvxc(C":x=y +z,
wherey € K andz € L. Thus, z = x — y = (ii).

P5: | Orthogonal and oblique projectors

P is orthogonal if N'(P) = R(P)-. Otherwise P is oblique.
Thus, if P is orthogonal onto K, then Px € K and (I — P)x L K. Equivalently,
((I_ P)Xay) — 07vy c K.

X X—PXx

Px Y

Properties (cont.)

Pé6: | If P is orthogonal, then || P|| = 1.

P7: | Any orthogonal projector has only two eigenvalues 0 and 1. Any vector

from R(P) is an eigenvector to A = 1. Any vector from N (P) is an eigenvector
to A =0.

Theorem 1 Let P be orthogonal onto K. Then for any vector x € C™ there holds

' — = ||x — Px]||2. 1
min [jx = yll2 = [x = Px2)

Proof Foranyy €e K, Px—ye K, Pxe K,(I - P)x L K

Ix —yli5 = [I(x — Px) + (Px —y)l5 =

Ix = Px[|3 + [|[Px — y|3 + 2(x — Px, Px —y) = [|x — Px[|3 + || Px — y|}3.
Therefore, ||x — y||2 > ||x — Px||3 Yy € K and the minimum is reached for

y = Px. H

Corollary1 Let K C C™ and x € C™ be given. Then min ||x — y|l2 = ||x — y*||2
y

is equivalenttoy™ € Kandx —y* 1L K.

N Iy A I A A Iy

Iterative solution methods

Steepest descent

Conjugate gradient method (CG)

ORTHOMIN

Generalized conjugate gradient method (GCG)
Minimal residual method (MINRES)
Generalized minimal residual method (GMRES)
Lanczos method

Arnoldi method

Orthogonal residual method (ORTHORES)
Full orthogonalization method (FOM)
Incomplete orthogonalization method (IOM)

OO O 0o 0oo0od o4

(s -~a) Parallel Algorithms for Scientific Computing Projecti

based iterative solution methods

SYMMLQ

Biconjugate gradient method (BiCG)
BiCGStab

BiCG squared

Conjugate gradients squared (CGS)

Minimal residual method (MR)

Quasiminimal residual method (QMR)
Generalized conjugate residual method (GCR)

Projection-based iterative methods -

the basic ideas

General framework — projection methods

Wantto solve b — Ax = 0,b,x € R", A €¢ R"*"

Instead, choose two subspaces L C R™ and K C R™ and

« find X € x(O + K, suchthatb — AX 1 L

K - search space
L - subspace of constraints

x - basic projection step
The framework is known as Petrov-Galerkin conditions.

There are two major classes of projection methods:
@ orthogonal - if K = L,
@ oblique - if K # L.

Wantto solve b — Ax =0
Given x°, K and L,

«find X € x(O) + K, suchthatb — AX | L

Notations:
x = xY 4+ § (§ — correction)
r = b — Ax? (r? — residual)

x find 6 € K, suchthatr® — A5 1 L

Matrix formulation

Choose abasisin Kand L: V = {vy,v2,--- , vy, } and
W ={wi,wa, -, W}
Then, X =x° + 6 = x° + Vy forsome y € R™.

The orthogonality condition can be written as
(xx) | WT(x0 — AVy)

which is exactly the Petrov-Galerkin condition.
From (xx) we get

WTrd = WTAVy
y = (WTAV)= 1w Ty0
X=x0 4+ VWTAV)=1WwTy0
In practice, m < n, even m < n, for instance, m = 1.
The matrix W1 AV will be small and, hopefully, with a nice structure.

M W7 AV should be invertible.

A prototype projection-based iterative method:

Given x(0):x = x(0)
Until convergence do:
Choose K and L
Choose basis V in K and W in L
Computer = b — Ax
y = (WTAV) =Wy
x=X+Vy
Degrees of freedom: m, K, L, V, W.
Clearly,if K = L,thenV = W.

To do next:
(1) Consider two important cases: L = K and L = AK
(2) Make a special choice of K.

Property 1:

Theorem 2 Let A be square, L = AK. Then a vector x is an oblique projection on K
orthogonally to AK with a starting vector x° if and only if X minimizes the 2-norm of
the residual over x° + K, i.e.,

lr — AX||2 = min ||r — Ax]|2. (2)
xex0+ K
Thus, the residual decreases monaotonically.

Referred to as minimal residual methods
CR, GCG, GMRES, ORTHOMIN

Property 1:

AK

AX

b—Ax

-

\J

Property 2:

Theorem 3 Let A be symmetric positive definite, i.e., it defines a scalar product (A-,-)
and anorm || - ||a. Let L = K, i.e., v — AX | K. Then a vector X is an orthogonal

projection onto K with a starting vector x° if and only if it minimizes the A-norm of

the error e = x* — x over xY + K, i.e.,

[x* —X[la = min [x* —x][a. (3)
xexo

The error decreases monotonically in the A-norm.
Error-projection methods

Example:m =1

Consider two vectors: d and e. Let K = span{d} and L = span{e}.
Then x = x" + ad (6 = ad) and the orthogonality condition reads as:

0
r’ — A Le= (r” - Ad,e) =0= a(Ad,e) = (r',e) = a = .e) :
(Ad,e)

If d = e - Steepest Descent method (minimization on a line.
If we minimize over a plane - ORTHOMIN.

Choice ofK:

K=Km(A,v)={v,Av,A%v,... A"~ 1y}

Krylov subspace methods

@ L=K=K"(A,r%and Aspd = CG
@ L=AK = AK™(A,r%) = GMRES

Why are Krylov subspaces of interest?

Dealt with in the 'Numerical Linear Algebra’ course.

(‘o5 -~is) Parallel Algorithms for Scientific Computing

How to construct a basis for KC?

The Conjugate Gradient method

LetL = K or L = AK: The missing part is how to con-

struct a basis i

Recall:
Choose abasisin Kand L: V = {vy,va, -+ , vy, } and
W ={wi,wa, -+ ,wWm}.

Then,x =x%+4+§ =x% + Vy forsomey € R™.
The orthogonality condition can be written as
(%) | WT(r? — AVy)

which is exactly the Petrov-Galerkin condition.
From (xx) we get

Wil =Wt AVy
y = (WTAV)= 1wyl
Xx=x0+V(WTAV)" w10

Arnoldi's method for general matrices

Consider K™ (A,v) = {v, Av, A?v,--. , Am~ 1y}, generated by some matrix A
and vector v.
1. Choose a vector vi such that ||vi]| =1

Forj=1,2,---,m
For:=1,2,---,3
hij = (Avj,vi)
End

j
Wj = AVj — 'Zl hisz’
1=

hjvi, = [lw;l
If hj11,; =0, stop

© N o ObhownN

Vitl = Wi/hjt1,
End
The algorithm breaks down in step j, i.e., hj+1 ; = 0, if and only if the minimal
polynomial of A is of degree j.

[
o

The result of Arnoldi’s process

@ V™ ={vy,va, - ,Vvpy}isanorthonormal basis in ™ (A, v)

Q AV =VTH™ 4w, el

m

wrt (€)'
N
< HT Lt (Am)
A oy _ | oym (m,m)
(n,n) (n,m) (n,m)

(n,1)

Arnoldi’s process - example

(Avi,vi) (Avz,vi) (Avs,vi)

H? = | |wi]l (Ava,v2) (Avs,va)
0 [wall (Avs,vs)
Since V™t | {vy,va, -+, v} thenitfollows that (V)T AV™ = H™,

H™ is an upper-Hessenberg matrix.

Arnoldi's method for symmetric matrices

Let now A be real symmetric matrix. Then the Arnoldi method reduces to the
Lanczos method.

Recall: H™ = (V™)L Ay™
If A is symmetric, then H™ must be symmetric too, i.e., H™ is three-diagonal

v1 B2

B2 v2 B3
H™ = .

i Bm Ym

Thus, the vectors v7 satisfy a three-term recursion:

Big1v' Tl = Av? — y;v" — v

The CG method:

The CG algorithm using the above relations:

Initialize: r(® = Ax(0) — b, g(0) = ¢(0)
For k=0,1,---, untl convergence
) (R

Tk = (agh,g®)
x(k+1) = x(k) 4 7 gk
plk+1) — (k) 4+ TkAgk
L(E+1) L(k+1)
Br = e F) e (R :

ghtl — _p(kt1) 4 g ok

end

r(k) — iteratively computed residuals
gk — search directions

CG: computer implementation

X = x0

r = Axx-Db

delta0 = (r,r)

g =-r

Repeat: h = Axg
tau = deltal/ (g, h)
X = X + tauxg
r =r + tau*h

deltal = (r,r)

I f deltal <= eps, stop

beta = deltal/deltal; delta0 = deltal
g -r + beta*g

Computational complexity (arithmetic cost per iteration): O(n)
- one matrix-vector multiply

- three vector updates

- two scalar products

Properties of the CG method, convergence

@ Finite termination property: there are no breakdowns of the CG
algorithm.
Reasoning: if g/ = 0 then 7, is not defined. the vectors g7 are computed

from the formula g = r(*) 4 B,g*k—1. Then
0=(r®, gl =—(® r*)) 48, (* gt 1), = r®o, e, the

\ . 7
Vv

0

solution is already found.

As soon as x(*) £ x.pqct, then (k) £ 0 and then ght1) £ 0.
However, we can generate at most n mutually orthogonal vectors in R™,
thus, CG has a finite termination property.

Convergence of the CG method

Theorem: In exact arithmetic, CG has the property that xezqct = x(") for some
m < n, where n is the order of A.

Rate of convergence of the CG method

Theorem: Let A is symmetric and positive definite.
Suppose that for some set .S, containing all eigenvalues of A, for some

polynomial P(\) € IT; and some constant M there holds max ‘ﬁ()\)‘ < M.
S
Then,

eracact — x(k)HA < MHXe:cact — X(O)HA-

x(A)+1

g 0
m} e[|

mwAsz[
Seek now the smallest &, such that

le®|la < elle®]|a

k> %\/;ln (Z)

3

The GMRES method

Basic GMRES

Choose v(1) to be the normalized residual r(®) = b — Ax(0),
Any vector x € x(0) + K is of the form x = x(9) + V},,y. Then

b—Ax = b—AxO +V,y)
r(0) — AVny

5"(1) - Vm—|—1ﬁmy
Vm-l-l(ﬂel — Fm}’)-

Since the columns of V,,, 41 are orthonormal, then

b — Ax|l2 = ||Be1 — Hmy]|2-

il
N = O

© 0N Oh DR

Basic GMRES

Compute r(® = b — Ax(0), g = ||[r(D |3 and v(D) = r(0) /3
Fork=1,2,---,m
Compute w(k) = Av (k)
For:=1,2,--- .k
hir = (w(k) v())
wk) = w(k) — p ()
End
his1 = ||[WE|2;if hgy1 =0, setm = k, goto 11
v = wk) Jhy g
End
Define the (m + 1) x m Hessenberg matrix H,, = {h;1z},1<i<m+1,1<k<m
Compute y(™) as the minimizer of ||Se1 — H,y||2 and x(™) = x(0) 4 1, y(m)

e P

GMRES:

No breakdown of GMRES
As m increases, storage and work per iteration increase fast. Remedies:

@ Restart (keep m constant)
@ Truncate the orthogonalization process

The norm of the residual in the GMRES method is monotonically
decreasing. However, the convergence may stagnate. The rate of
convergence of GMRES cannot be determined so easy as that of CG.

The convergence history depends on the initial guess.

GMRES: convergence

Theorem: Let A be diagonalizable, A = X ~'AX where A = diag{\1, - --

contains the eigenvalues of A. Define

€™ = min max |p(\;)].

Then, the residual norm at the mth step of GMRES satisfies
Ie™) < m(X)e™ O],

where £(X) = || X[[| X

7>\n}

ePppPPPP

©

(o5 - ~La) Parallelize CG: scenarios

On what hardware platform?

Which model - shared memory, distributed memory, both?
What can we parallelize?

What can’'t we parallelize? Bottlenecks?

Can we modify the method to avoid bottlenecks?

What data distribution shall we utilize? How much knowledge about the
problem shall we utilize in the parallel implementation?

If we have managed to parallelise CG, did we do the job?

(o5 -~ua) How to parallelize the CG method?

Recall:

X =x0

r = A*x-b

deltaO = (r,r)

g=-r

Repeat: h = A*g matrix-vector
tau = delta0/(g,h) scalar product
X = X + tau*g vector update
r=r + tau*h vector update
deltal = (r,r) scalar product

if deltal <= eps, stop
beta = deltal/delta0, deltaO=deltal
g = -r + beta*g vector update

What approaches have been taken in some of the software libraries?

'Matrix-given strategy’

PETSc — Portable, Extensible Toolkit for Scientific Computation
Last version: 3.3 (CUDA)

Slides borrowed from:

Ambra Giovannini

SuperComputing Applications and Innovation Department

WWW. cor si . ci neca.it/courses/scuol aEsti va2/ pet scMbdul e/ petsc_2011. pdf

www.corsi.cineca.it/courses/scuolaEstiva2/petscModule/petsc_2011.pdf

20th Summer

Introduction to PETSc A s
— " COMPUTING

July 4-15, 2011 (Italian)
September 5 - 16, 2011 (English)

PETSc — Portable, Extensible Toolkit for Scientific Computation

Is a suite of data structures and routines for the scalable (parallel) solution
of scientific applications mainly modelled by partial differential equations.

ANL — Argonne National Laboratory

Begun September 1991

Uses the MPI standard for all message-passing communication

C, Fortran, and C++

Consists of a variety of libraries; each library manipulates a
particular family of objects and the operations one would like to
perform on the objects

PETSc has been used for modelling in all of these areas:

Acoustics, Aerodynamics, Air Pollution, Arterial Flow, Brain Surgery, Cancer Surgery
and Treatment, Cardiology, Combustion, Corrosion, Earth Quakes, Economics,
Fission, Fusion, Magnetic Films, Material Science, Medical Imaging, Ocean
Dynamics, PageRank, Polymer Injection Molding, Seismology, Semiconductors, ...

CINECA

Ambra Giovannini 1

20th Summer

Introduction to PETSc f s PARALLEL
COMPUTING

July 4-15, 2011 (Italian)
September 5 - 16, 2011 (English)

Relationship between libraries

[TAO
PETSc }

PARPACK |—| (
* (\ P ScalAPACK]

ARPACK] : M H

CINECA \

Ambra Giovannini 2

20th Summer

Introduction to PETSc 7~ School of
COMPUTING

July 4-15, 2011 (Italian)
September 5 - 16, 2011 (English)

PETSc numerical component

“

Nonlinear Solvers]
Time Steppers
Newton-based Methods .
Other Euler Backward Pscudo-lTl_me Other
Line Search | Trust Region Euler Stepping
Krylov Subspace Methods
GMRES CcG CGS Bi-CG-Stab TFQMR Richardson Chebychev Other
Preconditioners
Additive Block) . LU
Schwars Tacobi Jacobi ILu 1CC (sequential only) Other
Matrices
Compressed Block Compressed Block
Sparse Row Sparse Row Diagonal Dense Other
(ALT) (BAL)) (BDiag)
Index Sets
Vectors
Indices | Block Indices | Stride Other

Ambra Giovannini

20th Summer

Introduction to PETSc School of

COMPUTING

July 4-15, 2011 (Italian)
September 5 - 16, 2011 (English)

What are PETSc vectors?

Fundamental objects for storing field solutions, right-hand sides,
etc.

Each process locally owns a subvector of contiguously
numbered global indices

Features

CINECA

Has a direct interface to the values
Supports all vector space operations

VecDot(), VecNorm(), VecScale(), ..
Also unusual ops, e.g. VecSgrt(), Veclnverse()
Automatic communication during assembly
Customizable communication (scatters)

Ambra Giovannini 10

Introduction to PETSc

Numerical vector operations

20th Summer

" 4B School of
~a? PARALLEL
COMPUTING

July 4-15, 2011 (italian)

Function Name Operation
VecAXPY (Vec y,PetscScalar a,Vec x); y=y+axzx
VecAYPX(Vec y,PetscScalar a,Vec x); y=x+axy

VecWAXPY (Vec w,PetscScalar a,Vec x,Vec y);

VecAXPBY (Vec y,PetscScalar a,PetscScalar b,Vec x);

VecScale(Vec x, PetscScalar a);

VecDot(Vec x, Vec y, PetscScalar *r);
VecTDot(Vec x, Vecy, PetscScalar *r);
VecNorm(Vec x,NormType type, double *1);
VecSum(Vec x, PetscScalar *r);

VecCopy(Vec x, Vec y);

VecSwap(Vec x, Vec y);
VecPointwiseMult(Vec w,Vec x,Vec y);
VecPointwiseDivide(Vec w,Vec x,Vec y);
VecMDot(Vec x,int n,Vec y[],PetscScalar *r);
VecMTDot(Vec x,int n,Vec y[],PetscScalar *r);
VecMAXPY (Vec y,int n, PetscScalar *a, Vec x[]);
VecMax(Vec X, int *1dx, double *r);
VecMin(Vec X, int *idx, double *r);
VecAbs(Vec x);

VecReciprocal(Vec x);

VecShift(Vec x,PetscScalar s);

w=a*xxr-+1y
y=a*xxr+bxy

r=a%*x

r=1xy

r=ua"*y

r = ||z]|ype
=)

y=ux

y=a while r =y
W; = Ti *Y;

w; = T;/y;

rli| = &' = yli]

ri] =z * yld]

y=uy—+>;a;*x[i

= maxx;
= min x;
r; = a4
r;=1/x;
T = S+ x;
Tr; =«

ddd \ VecSet(Vec x.PetscScalar alpha):
CINE_CA

Ambra Giovannini 16

September 5 - 16, 2011 (English)

1 20th Summer
Introduction to PETSc School of

COMPUTING

July 4-15, 2011 (Italian)
September 5 - 16, 2011 (English)

What are PETSc matrices?
Fundamental objects for storing linear operators
Each process locally owns a submatrix of contiguous rows

Features
Supports many data types
AlJ, Block AlJ, Symmetric AlJ, Block Diagonal, etc.
Supports structures for many packages
Spooles, MUMPS, SuperLU, UMFPack, DSCPack

A matrix is defined by its interface, the operations that you can
perform with it, not by its data structure

CINECA

Ambra Giovannini 21

! 20th Summer
Introduction to PETSc ¢ Y School of
])) COMPUTING
Numerical matrix operations ek ol PP
Function Name Operation
MatAXPY (Mat Y, PetscScalar a,Mat X,MatStructure); Y =Y +ax X
MatMult(Mat A, Vec x, Vec y); y=Axx
MatMultAdd(Mat A,Vec x, Vec y, Vec z); r=y+ Axux
MatMultTranspose(Mat A,Vec X, Vec y); Y= Al x o
MatMultTransposeAdd(Mat A, Vec x, Vec y, Vec z), r=y+ Al s
MatNorm(Mat A,NormType type, double *r); r = ||Al|type
MatDiagonalScale(Mat A, Vec I,Vec r); A = diag(l) * A * diag(r)
MatScale(Mat A,PetscScalar a); A=ax A
MatConvert(Mat A,MatType type,Mat *B); B=A
MatCopy(Mat A,Mat B,MatStrucﬁure); B=A
MatGetDiagonal(Mat A,Vec X); r = diag(A)
MatTranspose(Mat A,MatReuse,Mat* B); D= AT
MatZeroEntries(Mat A); A=0
MatShift(Mat Y,PetscScalar a); Y=Y +axl
CINECA \
Ambra Giovannini 27

20th Summer

I School of
Introduction to PETSc £, ahodlot
) COMPUTING
Matrix AlJ format \ S oo Y
0 1 2 345 67 The default matrix representation within PETSc is

—
—

the general sparse AlJ format (Yale sparse matrix
or Compressed Sparse Row, CSR)

The nonzero elements are stored by rows
Array of corresponding column numbers
Array of pointers to the beginning of each row

2 BV S SUT (G RS

o

value

mdex

19 24

() 4 7 12 15
B 1 (6] (2[5 (5[5 (o3 o] [+] |~ NGRS

row pointer

i Note: The diagonal matrix entries

are stored with the rest of the nonzeros

Ambra Giovannini 29

Introduction to PETSc @

Parallel sparse matrices

Each process locally owns a submatrix of contiguously
global rows.

Each submatrix consists of diagonal and off-diagonal parts.

PO

P1

P2

CINECA \

20th Summer
School of
PARALLEL
COMPUTING

July 4-15, 2011 (Italian)
September 5 - 16, 2011 (English)

numbered

Ambra Giovannini 32

KSP: linear equations solvers

The object KSP provides uniform and efficient access to all of the
package’s linear system solvers

KSP is intended for solving nonsingular systems of the form
AX = Db.

KSPCreate(MP1 Comm comm, KSP *ksp)
KSPSetOperators(KSP ksp, Mat Amat, Mat Pmat,

MatStructure flag)
KSPSolve(KSP ksp, Vec b, Vec x)
KSPGetlterationNumber(KSP ksp, Int *i1ts)
KSPDestroy(KSP ksp)

“

20th Summer

Introduction to PETSc - School of |
COMPUTING

July 4-15, 2011 (italian)
September 5 - 16, 2011 (English)

Ambra Giovannini

39

20th Summer

Introduction to PETSc 7~ School of
COMPUTING

July 4-15, 2011 (Italian)
September 5 - 16, 2011 (English)

PETSc KSP methods

Options Default

Database Convergence
Method KSPType Name Monitor7
Richardson KSPRICHARDSON richardson true
Chebychev KSPCHEBYCHEV chebychev true
Conjugate Gradient [| |] KSPCG cg true
BiConjugate Gradient KSPBICG bicg true
Generalized Minimal Residual [15] KSPGMRES gmres precond
BiCGSTAB [%] KSPBCGS bcgs precond
Conjugate Gradient Squared [! /] KSPCGS cgs precond
Transpose-Free Quasi-Minimal Residual (1) [7] KSPTFQMR tfqmr precond
Transpose-Free Quasi-Minimal Residual (2) KSPTCQMR tcqmr precond
Conjugate Residual KSPCR cr precond
Least Squares Method KSPLSQR Isqr precond
Shell for no KSP method KSPPREONLY preonly precond

Ttrue - denotes true residual norm, precond - denotes preconditioned residual norm

“

Ambra Giovannini 40

PETSc cont.

External packages:

@ Hypre - a library for solving large, sparse linear systems of equations on
massively parallel computers, LLNL

@ SuperLU - a general purpose library for the direct solution of large,
sparse, nonsymmetric systems of linear equations on high performance
machines, Berkeley, Jim Demmel and coworkers

©

SuperLU_DIST - SuperLU for distributed memory

©

Sundials - SUite of Nonlinear and Dlfferential/ALgebraic equation
Solvers,

@ FFTW - a C -library for computing the discrete Fourier transform (DFT) in
various dimensions, of arbitrary input size, real and complex data

@ Metis, ParMetis -

Added:

— Hybrid Chebychev

— pipelined GMRES which performs one non-blocking reduction per iteration
instead of two blocking reductions

— flexible BICGStab, tolerates a nonlinear preconditioner

— improved flexible BiCGStab, tolerates a nonlinear preconditioner and performs
one reduction every other iteration

'Problem-given strategy’

Example: Metis - provides mesh/graph partitionings (nonoverlapping) domain
decomposition

'Problem-given strategy’

—0.5

—0.5
0.5

—0.5
0

o o o O

1
—0.5
—0.5

0

o o O O

—0.5
1
0
—0.5

0.5
0
—0.5

—0.5
0
1
—0.5

0.5
—0.5

0

—0.5

—0.5
1

—0.5

FEM-DD-unpreconditioned CG

Assume A and b are distributed and an initial guess x(°) is given, which is
replicated.

g0 = p— AxO)
r = replicate(g(?))
d® = —r
g = (g(O),r(O))

For k = 0,1, --- until convergence
(1) h = AdW
(2) T = do/(h,d®)
R xkth) = x(k) 4 rdq(k)
@ et = g 4rh
(5) r = replicate(gF+1)
(6) o = (g r)
(7) B = 61/d0,00 =01
8 dt) = p4pd®

Why local comunications are not enough?

Consider the solution of Ax = b by the standard conjugate gradient, where

2 _1 B 1 n
—1 2 -1 0
A= b= 0
1 2 -1 0
] -1 1 L 0
The exact solutionis x = [1,1,---,1]T.
Starting with x% = [0, 0, - - - , 0]7" one finds that after & iterations
N ko k-1 1 T
— , ,...,—,0,...70
kK+1 k+1 k+1

forl<k<n-—1andx" = x.
Hence, the information travels one step at a time from left to right and it takes

n
‘ steps before the last component has changed at all.

Include preconditioningC~*Ax = C~'b

Unpreconditioned CG
X =x0
r = A*x-b
deltaO = (r,r)
g=-r
Repeat: h = A*g
tau = delta0/(g,h)
X = X + tau*g
r=r + tau*h
deltal = (r,r)
if deltal <= eps, stop
beta = deltal/deltaO
g = -r + beta*g

Preconditioned CG

X =x0

r=A*x-b; C*h =r
deltaO = (r,h)
g=-h

Repeat: h = A*g
tau = delta0/(g,h)
X = X + tau*g
r=r+ tau*h; C*h =r
deltal = (r,h)
if deltal <= eps, stop
beta = deltal/deltaO
g = -h + beta*g

FEM-DD- preconditioned CG

Assume A, B and b are distributed and the initial guess x(©) is replicated.

g(0)

h

d0

d)
Fork=0,1,---

(1) h

(2) T

3) x(k+D)

(4) gkt

(5) h

(6) 01

(7) B

8) d+1)

Ax(0) — p,
Bg(o)

(g(®), h)
_h

until convergence

Ad()

80/ (h,d(*))
x(k) 1 rq(k)
g(®) 4+ rh,
Bg(k+1),
(g(F+1D) h)
d1/do,

—h + gd®)

g(0) = replicate(g(?)

h = replicate(h)

g(F+1) = replicate(g(F+1)

h = replicate(h)
do = 01

deal.il

I: Shared memory paradigm
@ Task-based
@ Thread-based
lI: Distributed memory paradigm

@ Each machine keeps the entire mesh and DoF handler locally, but only a
share of the global matrix, sparsity pattern, and solution vector is stored
on each machine.

@ The mesh and DoFhandler are also distributed, i.e. each processor
stores only a share of the cells and degrees of freedom. No processor
has knowledge of the entire mesh, matrix, or solution, and in fact
problems solved in this mode are usually so large (say, 100s of millions to
billions of degrees of freedom) that no processor can or should store
even a single solution vector.

CG - more efficient global ommunications?

Preconditioned Chronopoulos/Gear CG

ro=b— A x*xxg
C xug =1ro; wo = A*xug a= (rg,uo)/(wo,uo), Bo =0, v0 = (ro,uo)
Repeat:

Pi = Wi + BiPi—1 vector update
S; = w; + Bisi—1 vector update
Tit1l = Ti + aip; vector update
Ti4l = Ti — Q;S; vector update
Cuit1 =7iq1 system solve

wit1 = Auitq matrix-vector

Yit1 = (ri+1,ui4+1) Scalar product
0 = (Wit1,Uit1) scalar product

Bi+1 = Yi+1/7i
ait1 = Yit1/(6 — Bir1Vit1/)

The communication phase for both dot-products from the algorithm can be
combined in a single global reduction. The update for z; can be postponed and
used to overlap the global reduction. However, even for small parallel machines
the runtime of a single vector update will not be enough to fully cover the latency
of the global communication.

CG - more efficient global ommunications?

Pipelined Chronopoulos/Gear CG

Hiding global synchronization latency in the PCG algorithm
P. Ghysels, W. Vanroose, December 2012

ro=b—Ax*xxg, wg = A * ug

Repeat:
vi = (15, 74) scalar product
6 = (wq, 1;) scalar product
qi+1 = Awiqq matrix-vector

if ¢ > 0then 8; = ~v;/vi—1, o = vi/(0 — Barvi/i—1)
else ,BZ =0, a; = ’77;/5

zi = @i + Bizi—1 vector update
S$; = w; + Bisi—1 vector update
Pi =7 + Bibi—1 vector update
Tit1 = T + a;p; vector update
Titl = T§ — Q;8; vector update

Wit] = Wi — ;24 vector update

CG - more efficient global ommunications?

Danger: what is going on with the NUMERICAL STABILITY of the method?

@ However, with increasing s, the stability of the s-step Krylov basis
deteriorates.

@ We report on extensive numerical tests that show the stability of the
pipelined CG and CR methods.

@ Stability is also negatively impacted in the pipelined methods by the extra
multiplication with the matrix A (r;, u; and w; are replaced by
r; =b— Ax;, u; = M~ 1r; and w; = Au; every 50-th iteration.)

@ A possible improvement might be to add a shift in the matrix-vector
product, similar to what is also done in s-step Krylov methods and for
pipelined GMRES. The CG iteration can provide information on the
spectrum of A, which can be used to determine good shifts.

To summarize: need a preconditioner; not only local communications for good
numerical performance.

