Other parallel approaches

« Approximate inverses

« Domain decomposition methods



Approximate inverse
preconditioning
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Approximate inverses: Explicit Methods

Given a sparse matrix A = [a;;] €™"*".
Let S be a sparsity pattern. We want to compute GG € S, such that

(GA);j =045, (3,7) €S,

> gikar; =0, (3,5) € S.
k:(i,k)eS

Some observations:

@ the elements in the ¢th row of G can be computed independently;

© evenif Ais symmetric, G is not necessarily symmetric, because g;; and
g;i are, in general, not equal.



How does this work?

Choose S to be the tridiagonal part of A,

S={(1,1),(1,2),{(¢1—1),(¢,%), ¢, + 1)} 1, (n,mn — 1), (n,n)}.

Then, when computing the zth row of G we need only the entries of the matrix A,
namely,

Qi—1,4i—1 Qi—1,i Qi—1,i+1
i _
A= | aii-1 a; i Qi it1
a;4+1,5—1  Qi+1,5 Ai4+1,44+1

Given A € R**"™ and S

for i=1:n,
Extract from A the small matrix A?, needed to compute the entries of G (4, :)
Solve with A*
Store row G'(4, :)

end

For all rows, the steps can be performed fully in parallel!



Example:

We want to find G with the same sparsity pattern as A, i.e.,

2 -1 0
—1 —

4 3 -2
0 -2 4

0 0 -1

G(1,:) - 2011 — 912 =
’ —g11 +3912 =

G(2,:):

g11

g21
0

0

g12 0 0
g22  g23 0
g32 933 g34
0 943 ga4]
2g21 — g22

—g21 + 3922 — 2923

—2g29 + 4923




Example, cont.
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Example, cont.

Note: the second row of G is the second row of the matrix

|
B_ —-1 3
0 -2
| 0 0

- —1 _

. GB =

= o O O

However, if we compute AG then

AG

[ 0.8667 —0.2667
0.4000 1.1846
—0.6667 —0.1026

0 —0.3077

1 0 —0.4 0
0 1 0 0
—0.31 0 1.2308  0.4615
0  —0.2857 0.5714 1.1429
—0.3333 0

0.0769  —0.4615

1.0366  0.3516

—0.1758  0.9121 _

l.e., the matrix G is computed as a left-side approximate inverse of A and as
such is somewhat less accurate than as a right-side approximate inverse.

The drawback of the above method is that
in general even if A is symmetric, G is not!



Implicit Methods

Let A be in a factored form.

Suppose A = LD~ 1U is a triangular matrix factorization of A. If A is a band
matrix then L and U are also band matrices.

~ ~

Let| L =1—L; U=1—-U, |where L and U are strictly lower and upper
triangular matrices correspondingly.

Lemma 1 Using the above notations it can be shown that
(i) A=' =DL™' +UA™Y, (i) A=' =U~'D+ A~'L.

Proof
A=ILD 'U=—= A"1'=U"'DL!
— ([-U)A"'=DL '= A" '=DL ' +UA".

Also
AT I -L)=U"'D=A"'=U"'D+ AL



Algorithm to computed 1

forr=n,n—-1,---,1

min(qg,n—r)

(A_l)r,r — Dr,r + Z ﬁr,r—l—s (A_l)r—i—s,r

s=1
fork=1,2,---,q
min(qg,n—r—+k)
(A_l)r—k,r = Z Ur—k,r—k+s(A_1)r—k+s,r 7 (Z)
s=1
min(qg,n—r—+k)
(A_l)r,r—k = Z (A_1>'r,r—k:—|—tLr—k:—|—t,r—k: ~ (ZZ)
t=1
endfor
endfor

q is the bandwidth.



A drawback:

Consider an spd matrix

IS indefinite.



A general framework for computing approximate inverses

Frobenius norm minimization

1Allr =

n n
> a2 = y/tr(AAH)
—1i=1 "

Let a sparsity pattern S be given. Consider the functional
Fyw (G) = [T — GA|j3y = tr(I - GAW(I — GA)T,

where the weight matrix W is spd If W = I then ||I — G A||; is the Frobenius
norm of I — G A.
Clearly Fy (G) > 0. If G = A=! then Fy, (G) = 0. Hence, we want to compute

the entries of G in order to minimize Fy, (G), i.e. to find G € S, such that
1T = GAllw < |IT - GAllw, VG € S.
The following properties of ¢r(-) will be used:

trA=1trAl, tr(A+ B) =trA + trB.



Fw(G) = tr(I -GAWI —GA)T
tr(W — GAW — W(GA)T + GAW (GA)T) (1)
= trW —trGAW — tr(GAW)T +trGAW AT GT.
Minimize Fw w.r.t. G, consider the entries g; ; as variables. The necessary
condition for a minimizing point are
OFw (G)

From (1) and (2) we get| —2(W AT);; + 2(GAW AT),;; =0, |or

(GAWAT);; = (WA, (i,5) € S. (3)

The equations (3) may or may not have a solution, depending on the particular
matrix A and the choice of S and W.



Choices oWV :

Choise 1: Let A be spd Choose W = A~! which is also spd

l.e. the formula for the explicit method can be seen as a special case of the more
general framework for computing approximate inverses using weighted
Frobenius norms.

Choise 2: Let W = (AT A)~1.
= (G)ij = (AN, (i,4) € S,

which is the formula for the implicit method. In this case the entries of GG are the
corresponding entries of the exact inverse.



Improvement via diagonal compensation

Let A be symmetric and five-diagonal. Suppose we know that the two of the
off-diagonals contain small entries. Such matrix appears if we solve the
anisotropic problem, for instance:

where £ > 0 is small.

We choose a tridiagonal sparsity pattern S3 for G, where the the two nonzero
off-diagonals will correspond to the off-diagonals of A, containing bigger
elements, i.e. they are not necessarily next to the main diagonal. Then we
construct an approximate inverse in the following way:



Step 1. Let A be A with deleted small entries, i.e. A € Ss.
Step 2: Compute G: (GA);; = 6;5, (i,4) € S3.

Step 3: Find G = G + D, where G = 1(G + GT) and D is diagonal, computed
from the following imposed condition on G, i.e.

GAe = e,

ande = (1,1,---,1)T.

The diagonal compensation technique prescribes the spd property of A.



Constructing an spd approximate inverse

The methods described till now do not guarantee that G will be such a matrix.
We want now to compute an spd approximate inverse of an spd matrix.

Let S be a symmetric sparsity pattern. We seek G of the form
G = Lng,LG eSt.

Clearly GG will be spd

Theorem 1 A matrix G of the form G = L, L which is an spd approximation of
A~ can be computed from the following relation:

, LirX AXT LtrLg ALY
MINXeSy T = 1 (4)
(det(XAXT))n (det(LgALL)) ™




Proof:
X € Sy, is lower triangular. Let X = D(I — 55), where X € S7 Is strictly lower
triangular. Then X =1—-D"1X. Letdenote also D = diag(di,d2, -+ ,dp).

Then
LarXAXT L3 (XAXT)y
(det(XAXT))n  (det(X)2det(A))=
iy (0-XAu-xX)T)

(det(X)2det(A4)) = (IT; ) * (det(A))

Ly, (DU -X)au - X)TD) )

11

1

_ wie® (Hi((I—X)A(I—)?)T)ii) n
([, 02)" (det(A))w

= Fxpression_A - Expression_B.

()



In the above notations a? = d? ((I — X)A(I - X)T)

11

Ezxpression_B does not depend on d;. The problem of minimizing
Expresston_B is a particular case of the already considered problem of
minimizing the functional Fyy (G) with a special choice of the corresponding

~

matrices- W = A, A =1, G = X. In other words, the solution of the problem

min I—)?AI—)ZT> = min g tr(I — X)A(I — X)T (6
XESEH(( JAU = X)T) = ming o tr(l = X)AUI = X)T (6)
will be also the solution of minimizing Expression_B.

Further, Expression_A > 1, Va, being the ratio of the arithmetic and geometric
mean, and takes the value 1 when a? = 1.



Thus, we minimize Expression_A computing

di = ! _ 7)

(1-X)ag-%)7)°

(A

Let Lo be the solution of (7). Note that it is strictly lower triangular. Let the
entries d; of D are computed from the relations (7), where instead of X Lg is
used. Then the matrix Lng, where Lg = D(I — EG), will be the searched
approximation of A—1:

- (LgALY}): = 1 by construction;

- The equality (4) gives a measure of the quality of the approximate inverse
constructed (the K-condition number (Igor Kaporin).



Let A = tridiag(—1,4,—1). Find LELG - an approximate inverse of A, where
L is bidiagonal. Thus, §7 = {{(i — 1,4)}", }.

First we compute a strictly lower bidiagonal matrix L from the condition

which gives us

0
1
7 0
1
- 7 0
L =
1
1 0
1
| Y
Then d; are found to be
1 2
di=—-,d; = —,1=1,2,---,n
T T U1
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Extensions

When minimizing ||I — AG||#, minimize the 2-norm of each column
separately, |lex — Agk||F,k=1,---,n

use adaptive S (much more expensive)
used the sparsity pattern of powers of A

Modified SPAI: combines
@ Frobenius norm minimization
Q@ MILU
Q@ vector probing



MSPAI

Consider the formulation:

| F

C B
min ||CG — B||p = min 7 | G— TO
G G pe’ C pe* By
p=0,Co = A, Bg = I -the original form
Co = I, Bg = A - explicit approximation of A
p=1[1,1,---,1] - MILU
Improve existing approximations:
L A
min ., | U— T
U pe’ L pe’ A -




Finite element setting:

M
A= Rj AyRy,
k=1

with R, being the Boolean matrices which prescribe the local-to-global
correspondence of the numbered degrees of freedom.
Is this of interest?

M
B~' =Y R{A;'Ry.
k=1

B~ and A~ are spectrally equivalent, namely, for some 0 < a1 < as there
holds

a1A' < B < a24r,



Finite element setting:

Consider spd matrices.

mA}n(Amin (Ak:)) S )\(A) S pmﬁX()\maaz (Ak))’

where p is the maximum degree of the graph representing the discretization
mesh. Similarly, there holds

mj\/i[n(Amin (Ak:)_l) < A(B_l) < pmﬁX(Amax (Ak:)_l)-

Then we obtain

mln()\mm(Ak)) xT'B—1x maX()\max (Ak:))
max(Amaz (Ax)) — xTA=1x = min(Anin (Ag))

Thus, the spectral equivalence constants do not depend on the mesh parameter
h but they are in general robust neither with respect to problem and
mesh-anisotropies, nor to jumps in the problem coefficients as the eigenvalues
of A;, depend on those.



FEM-SPAI
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The matrix itself (spy( A) )



FEM-SPAI

12

The matrix itself (mesh( A))



FEM-SPAI

350

The approximate inverse (mesh( Al ))
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The exact inverse matrix (mesh(i nv(A)))



FEM-SPAI
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FEM-SPAI

The product with A (mesh( Al xA))



FEM-SPAI: Scalability figures: Constant problem size

#proc N fine tBl_ll /tA trepl [S] tsolution [S] # ater
4 197129 0.005 0.28 7.01 5
16 49408 0.180 0.07 0.29 5
64 12416 0.098 0.02 0.03 5

Problem size: 787456
Solution method: PCG
Relative stopping criterium: < 10~



FEM-SPAI: Scalability figures: Constant load per processor

#p?“OC tBl_ll /tA trepl [S] tsolution [S] # ater
1 0.0050 - 0.17 5
4 0.0032 0.28 7.01 5
16 0.0035 0.24 4.55 5
64 0.0040 0.23 12.43 5

Local number of degrees of freedom: 197129
Solution method: PCG
Relative stopping criterium: < 10~6
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Domain decomposition methods



G)B - NLA)

Many different interpretations within the PDE community:

@ Parallel computing: data decomposition (independent of numerical
method)

@ Asymptotic analysis: separation of physical domain into regions with
possibly different models

@ Preconditioning methods: solution of a large linear system arising from
the discretization of the PDE on the whole domain by DDM as a solver or
a preconditioner:

@ Overlapping domain decomposition
@ Non-overlapping domain decompaosition



DB - NLA) DOomain decomposition:

Domain decomposition - decomposition of the spatial domain into several
subdomains. Search the global true solution through (iteratively) solving
subproblems while enforcing suitable continuity requirements between neighbor
subdomains.

@ Flexible - localized treatment of complex and irregular geometries,
singularities etc.

@ Efficient - often optimal convergence rate

@ Easy to parallelize (coarse grain parallelization)



(s-~1a) Schwarz 1870 (alternating method)




Matrix form of Alternating Schwarz

Decompose A as A; Ago;,\T; Ar; -
Let I, 1, be the discrete operator that interpolates the nodes in the interior of
2; toI';. Then:

Ag uby =11 — Apllgﬁplugj

ko _ k
Aq, ug, = fo — Ar,Io, -1, ug,

Gauss-Seidel method for the system

AQ1 AP1[QQ—>P1 qu — fl
AI‘2 [Q1—>F2 AQQ uQ, f2



Rearrange as a simple iteration:

u’él = uQ 1y Ag (f1 — Aq, ugzl — Ar, Io,51, ué‘gl)
_ k-1 —1 k—1 k
uéz =uq, + AQ2 (f2 — Aq, Uo, — Ap 1o, 51y qu)
Additive and multiplicative Schwarz methods:
k k: 1
uh, = uQ Ly Ag (f Ag,un ~ —Ag\g,u

uf, =u "t +Ag (2 — Agyudt — Ag g, ul =)



For the whole system: two-step algorithm

uk—|—1/2 — uki +

AZL 0
(S)h ] (f — Auk‘)

0 0

ubtl — gk+1/2 4 -
0 Ag
2

(f _ Auk:—i—l/2)




Final form

: ug,
Denote: ug, = Riu=[I 0] L ]
O\

uqQ,
Then Aq, = R;AR!; let B, = R (R, ART)71R;.

un, = Rou = [O I] [uQ\Qz

ufFtl = uk -+ (Bl + By — BQABl)(f — Auk)

uk+1 = uk‘ —+ (Bl —+ Bg)(f — Auk)



Final form, many subdomains

p
uftl = uf 4 ZBi(f — Au®)
=1

ukt1/P = uk + By (f — AuF)
ub+2/p = yk+1/p 4 By(f — Auk+1/p)

uftlt = uk+e=D/P 4 B (f — Aukt@-1)/p)

wF = uk 4 (I — (I = BpA(--- (I — By)))A™ (£ — Au¥)



Problem:

Too slow Convergence deteriorates as p increases (H decreases).

Reason: The only global communication of information between subdomains are
through overlapping regions. Too slow!

How to speed up? Coarse grid correction.

ufz'ne — ufz'ne + RTAE,lR(f . Aufine)

Two-level additive Schwarz method:

P
uftl = u* + (RTA(_le—I— ZRTAZ._ R) rk
=1
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Final keywords

multiplicative is faster than additive
overlapping or nonoverlapping; large overlap is better for convergence

deteorating convergence when increasing the number of subdomains (if
implemented straightforwardly)

stabilization with a coarse grid corrrection, nearly optimal convergence
used as a preconditiner
used in a Multigrid setting as a smoother

attractive for parallel computations (FETI, BETI, ...)
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