Other parallel approaches

- Approximate inverses
e Domain decomposition methods

Approximate inverse preconditioning

Some references

e Kolotilina, L. Yu.; Yeremin, A. Yu. Factorized sparse approximate inverse preconditionings. I. Theory. SIAM J. Matrix Anal. Appl. 14 (1993), 45-58
e Kolotilina, L. Yu.; Nikishin, A. A.; Yeremin, A. Yu. Factorized sparse approximate inverse preconditionings. IV. Simple approaches to rising efficiency. Numer. Linear Algebra Appl. 6 (1999), 515-531

Q Grote, Marcus J.; Huckle, Thomas Parallel preconditioning with sparse approximate inverses. SIAM J. Sci. Comput. 18 (1997), 838-853.
e Benzi, Michele; Meyer, Carl D.; Tuma, Miroslav A sparse approximate inverse preconditioner for the conjugate gradient method. SIAM J. Sci. Comput. 17 (1996), 1135-1149
a Benzi, Michele; Tuma, Miroslav A sparse approximate inverse preconditioner for nonsymmetric linear systems. SIAM J. Sci. Comput. 19 (1998), 968-994

Q Huckle, Thomas Approximate sparsity patterns for the inverse of a matrix and preconditioning. Appl. Numer. Math. 30 (1999), 291-303
a Bröker, Oliver; Grote, Marcus J. Sparse approximate inverse smoothers for geometric and algebraic multigrid. Appl. Numer. Math. 41 (2002), 61-80

Some references

Q Broker, Oliver; Parallel multigrid methods using sparse approximate inverses. Thesis (Dr.sc.)2̆013Eidgenoessische Technische Hochschule Zuerich (Switzerland). 2003. 169 pp

Q Holland, Ruth M.; Wathen, Andy J.; Shaw, Gareth J. Sparse approximate inverses and target matrices. SIAM J. Sci. Comput. 26 (2005),1000-1011

Q Jia, Zhongxiao; Zhu, Baochen A power sparse approximate inverse preconditioning procedure for large sparse linear systems. Numer. Linear Algebra Appl. 16 (2009),259-299
e Wang, Shun; de Sturler, Eric Multilevel sparse approximate inverse preconditioners for adaptive mesh refinement. Linear Algebra Appl. 431 (2009), 409-426
e Malas, Tahir; Gürel, Levent Accelerating the multilevel fast multipole algorithm with the sparse-approximate-inverse (SAI) preconditioning. SIAM J. Sci. Comput. 31 (2009), 1968-1984
e Neytcheva, M; Bängtsson, Erik; Linnér, Elisabeth Finite-element based sparse approximate inverses for block-factorized preconditioners. Adv. Comput. Math. 35 (2011), 323-355

Some references

Q Thomas Huckle,
Modified Sparse Approximate Inverses
http://www5.in.tum.de/wiki/index.php/MSPAI
Factorized Sparse Approximate Inverses
http://www5.in.tum.de/wiki/index.php/FSPAI

Approximate inverses: Explicit Methods

Given a sparse matrix $A=\left[a_{i j}\right] \in^{n \times n}$.
Let S be a sparsity pattern. We want to compute $G \in \mathcal{S}$, such that

$$
(G A)_{i j}=\delta_{i j},(i, j) \in \mathcal{S}
$$

i.e.

$$
\sum_{k:(i, k) \in S} g_{i k} a_{k j}=\delta_{i j},(i, j) \in \mathcal{S}
$$

Some observations:
$\oplus \quad$ the elements in the i th row of G can be computed independently;
$\ominus \quad$ even if A is symmetric, G is not necessarily symmetric, because $g_{i j}$ and $g_{j i}$ are, in general, not equal.

How does this work?

Choose \mathcal{S} to be the tridiagonal part of A, $\mathcal{S}=\left\{(1,1),(1,2),\{(i, i-1),(i, i),(i, i+1)\}_{i=1}^{n},(n, n-1),(n, n)\right\}$.
Then, when computing the i th row of G we need only the entries of the matrix A, namely,

$$
A^{i}=\left[\begin{array}{ccc}
a_{i-1, i-1} & a_{i-1, i} & a_{i-1, i+1} \\
a_{i, i-1} & a_{i, i} & a_{i, i+1} \\
a_{i+1, i-1} & a_{i+1, i} & a_{i+1, i+1}
\end{array}\right]
$$

Given $A \in R^{n \times n}$ and \mathcal{S} for $\mathrm{i}=1: \mathrm{n}$,

Extract from A the small matrix A^{i}, needed to compute the entries of $G(i,:)$
Solve with A^{i}
Store row $G(i,:)$
end

For all rows, the steps can be performed fully in parallel!

Example:

We want to find G with the same sparsity pattern as A, i.e.,

$$
\begin{aligned}
& A=\left[\begin{array}{cccc}
2 & -1 & 0 & 0 \\
-1 & 3 & -2 & 0 \\
0 & -2 & 4 & -1 \\
0 & 0 & -1 & 2
\end{array}\right] \quad G=\left[\begin{array}{cccc}
g_{11} & g_{12} & 0 & 0 \\
g_{21} & g_{22} & g_{23} & 0 \\
0 & g_{32} & g_{33} & g_{34} \\
0 & 0 & g_{43} & g_{44}
\end{array}\right] \\
& G(1,:): \begin{aligned}
2 g_{11}-g_{12} & =1 \\
-g_{11}+3 g_{12} & =0
\end{aligned} \quad G(2,:): \begin{aligned}
2 g_{21}-g_{22} & =0 \\
-g_{21}+3 g_{22}-2 g_{23} & =1 \\
-2 g_{22}+4 g_{23} & =0
\end{aligned}
\end{aligned}
$$

Example, cont.

$$
\left.\begin{array}{c}
A^{-1}=\frac{1}{19}\left[\begin{array}{ccc}
13 & 7 & 4 \\
7 & 14 & 8
\end{array}\right) 4 \\
4 \\
8
\end{array} \begin{array}{c}
10 \\
2 \\
4
\end{array} \sqrt[5]{12}\right]\left[\begin{array}{cccc}
\frac{3}{5} & \frac{1}{5} & 0 & 0 \\
\frac{1}{3} & \frac{2}{3} & \frac{1}{3} & 0 \\
0 & \frac{4}{13} & \frac{6}{13} & \frac{3}{13} \\
0 & 0 & \frac{1}{7} & \frac{4}{7}
\end{array}\right] \quad G A=\left[\begin{array}{cccc}
1 & 0 & -0.40 & 0 \\
0 & 1 & 0 & -0.33 \\
-0.31 & 0 & 1 & 0 \\
0 & -0.28 & 0 & 1
\end{array}\right]
$$

Example, cont.

Note: the second row of G is the second row of the matrix

$$
B=\left[\begin{array}{cccc}
2 & -1 & 0 & 0 \\
-1 & 3 & -2 & 0 \\
0 & -2 & 4 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]^{-1}, G B=\left[\begin{array}{cccc}
1 & 0 & -0.4 & 0 \\
0 & 1 & 0 & 0 \\
-0.31 & 0 & 1.2308 & 0.4615 \\
0 & -0.2857 & 0.5714 & 1.1429
\end{array}\right]
$$

However, if we compute $A G$ then

$$
A G=\left[\begin{array}{cccc}
0.8667 & -0.2667 & -0.3333 & 0 \\
0.4000 & 1.1846 & 0.0769 & -0.4615 \\
-0.6667 & -0.1026 & 1.0366 & 0.3516 \\
0 & -0.3077 & -0.1758 & 0.9121
\end{array}\right]
$$

i.e., the matrix G is computed as a left-side approximate inverse of A and as such is somewhat less accurate than as a right-side approximate inverse.
The drawback of the above method is that in general even if A is symmetric, G is not!

Implicit Methods

Let A be in a factored form.
Suppose $A=L D^{-1} U$ is a triangular matrix factorization of A. If A is a band matrix then L and U are also band matrices.
Let $L=I-\widetilde{L} ; U=I-\widetilde{U}$, where \widetilde{L} and \widetilde{U} are strictly lower and upper triangular matrices correspondingly.

Lemma 1 Using the above notations it can be shown that
(i) $A^{-1}=D L^{-1}+\widetilde{U} A^{-1}$,
(ii) $A^{-1}=U^{-1} D+A^{-1} \widetilde{L}$.

Proof

$$
\begin{gathered}
A=L D^{-1} U \Longrightarrow A^{-1}=U^{-1} D L^{-1} \\
\Longrightarrow(I-\widetilde{U}) A^{-1}=D L^{-1} \Longrightarrow A^{-1}=D L^{-1}+\widetilde{U} A^{-1}
\end{gathered}
$$

Also

$$
A^{-1}(I-\widetilde{L})=U^{-1} D \Longrightarrow A^{-1}=U^{-1} D+A^{-1} \widetilde{L}
$$

Algorithm to compute A^{-1}

for $r=n, n-1, \cdots, 1$

$$
\left(A^{-1}\right)_{r, r}=D_{r, r}+\sum_{s=1}^{\min (q, n-r)} \widetilde{U}_{r, r+s}\left(A^{-1}\right)_{r+s, r}
$$

$$
\begin{aligned}
& \text { for } k=1,2, \cdots, q \\
& \left(A^{-1}\right)_{r-k, r}=\sum_{s=1}^{\min (q, n-r+k)} \widetilde{U}_{r-k, r-k+s}\left(A^{-1}\right)_{r-k+s, r} \leadsto(i) \\
& \left(A^{-1}\right)_{r, r-k}=\sum_{t=1}^{\min (q, n-r+k)}\left(A^{-1}\right)_{r, r-k+t} \widetilde{L}_{r-k+t, r-k} \leadsto(i i)
\end{aligned}
$$

endfor
endfor
q is the bandwidth.

A drawback:

Consider an spd matrix

$$
A=\left[\begin{array}{ccc}
1 & -2 & 1 \\
-2 & 5 & -3 \\
1 & -3 & 4
\end{array}\right] . \quad \text { Then } \quad A_{b a n d}=\left[\begin{array}{ccc}
1 & -2 & 0 \\
-2 & 5 & -3 \\
0 & -3 & 4
\end{array}\right]
$$

is indefinite.

A general framework for computing approximate inverses

Frobenius norm minimization

$$
\|A\|_{I}=\sqrt{\sum_{i=1}^{n} \sum_{i=1}^{n} a_{i j}^{2}}=\sqrt{\operatorname{tr}\left(A A^{H}\right)}
$$

Let a sparsity pattern \mathcal{S} be given. Consider the functional

$$
F_{W}(G)=\|I-G A\|_{W}^{2}=\operatorname{tr}(I-G A) W(I-G A)^{T},
$$

where the weight matrix W is spd If $W \equiv I$ then $\|I-G A\|_{I}$ is the Frobenius norm of $I-G A$.
Clearly $F_{W}(G) \geq 0$. If $G=A^{-1}$ then $F_{W}(G)=0$. Hence, we want to compute the entries of G in order to minimize $F_{W}(G)$, i.e. to find $\hat{G} \in S$, such that

$$
\|I-\hat{G} A\|_{W} \leq\|I-G A\|_{W}, \forall G \in S .
$$

The following properties of $\operatorname{tr}(\cdot)$ will be used:

$$
\operatorname{tr} A=\operatorname{tr} A^{T}, \operatorname{tr}(A+B)=\operatorname{tr} A+\operatorname{tr} B
$$

$$
\begin{align*}
F_{W}(G) & =\operatorname{tr}(I-G A) W(I-G A)^{T} \\
& =\operatorname{tr}\left(W-G A W-W(G A)^{T}+G A W(G A)^{T}\right) \tag{1}\\
& =\operatorname{tr} W-\operatorname{tr} G A W-\operatorname{tr}(G A W)^{T}+\operatorname{tr} G A W A^{T} G^{T} .
\end{align*}
$$

Minimize F_{W} w.r.t. G, consider the entries $g_{i, j}$ as variables. The necessary condition for a minimizing point are

$$
\begin{equation*}
\frac{\partial F_{W}(G)}{\partial g_{i j}}=0,(i, j) \in \mathcal{S} . \tag{2}
\end{equation*}
$$

From (1) and (2) we get $-2\left(W A^{T}\right)_{i j}+2\left(G A W A^{T}\right)_{i j}=0$, or

$$
\begin{equation*}
\left(G A W A^{T}\right)_{i j}=\left(W A^{T}\right)_{i j},(i, j) \in \mathcal{S} . \tag{3}
\end{equation*}
$$

The equations (3) may or may not have a solution, depending on the particular matrix A and the choice of \mathcal{S} and W.

Choices of W :

Choise 1: Let A be spd Choose $W=A^{-1}$ which is also spd

$$
\Longrightarrow(G A)_{i j}=\delta_{i j},(i, j) \in S
$$

i.e. the formula for the explicit method can be seen as a special case of the more general framework for computing approximate inverses using weighted Frobenius norms.

Choise 2: Let $W=\left(A^{T} A\right)^{-1}$.

$$
\Longrightarrow(G)_{i j}=\left(A^{-1}\right)_{i j},(i, j) \in S
$$

which is the formula for the implicit method. In this case the entries of G are the corresponding entries of the exact inverse.

Improvement via diagonal compensation

Let A be symmetric and five-diagonal. Suppose we know that the two of the off-diagonals contain small entries. Such matrix appears if we solve the anisotropic problem, for instance:

$$
-\frac{\partial^{2} u}{\partial x^{2}}-\varepsilon \frac{\partial^{2} u}{\partial y^{2}}=f
$$

where $\varepsilon>0$ is small.
We choose a tridiagonal sparsity pattern \mathcal{S}_{3} for G, where the the two nonzero off-diagonals will correspond to the off-diagonals of A, containing bigger elements, i.e. they are not necessarily next to the main diagonal. Then we construct an approximate inverse in the following way:

Step 1: Let \widetilde{A} be A with deleted small entries, i.e. $\widetilde{A} \in \mathcal{S}_{3}$.
Step 2: Compute $\widetilde{G}:(\widetilde{G} A)_{i j}=\delta_{i j},(i, j) \in S_{3}$.
Step 3: Find $G=\bar{G}+D$, where $\bar{G}=\frac{1}{2}\left(\widetilde{G}+\widetilde{G}^{T}\right)$ and D is diagonal, computed from the following imposed condition on G, i.e.

$$
G A \mathbf{e}=\mathbf{e},
$$

and $\mathbf{e}=(1,1, \cdots, 1)^{T}$.
The diagonal compensation technique prescribes the spd property of A.

Constructing an spd approximate inverse

The methods described till now do not guarantee that G will be such a matrix.
We want now to compute an spd approximate inverse of an spd matrix.
Let \mathcal{S} be a symmetric sparsity pattern. We seek G of the form

$$
G=L_{G}^{T} L_{G}, L_{G} \in \mathcal{S}_{L}
$$

Clearly G will be spd

Theorem 1 A matrix G of the form $G=L_{G}^{T} L_{G}$ which is an spd approximation of A^{-1} can be computed from the following relation:

$$
\begin{equation*}
\min _{X \in \mathcal{S}_{L}} \frac{\frac{1}{n} \operatorname{tr} X A X^{T}}{\left(\operatorname{det}\left(X A X^{T}\right)\right)^{\frac{1}{n}}}=\frac{\frac{1}{n} \operatorname{tr} L_{G} A L_{G}^{T}}{\left(\operatorname{det}\left(L_{G} A L_{G}^{T}\right)\right)^{\frac{1}{n}}} \tag{4}
\end{equation*}
$$

Proof:
$X \in \mathcal{S}_{L}$ is lower triangular. Let $X=D(I-\widetilde{X})$, where $\widetilde{X} \in \mathcal{S}_{\widetilde{L}}$ is strictly lower triangular. Then $\widetilde{X}=I-D^{-1} X$. Let denote also $D=\operatorname{diag}\left(d_{1}, d_{2}, \cdots, d_{n}\right)$. Then

$$
\begin{gather*}
\frac{\frac{1}{n} \operatorname{tr} X A X^{T}}{\left(\operatorname{det}\left(X A X^{T}\right)\right)^{\frac{1}{n}}}=\frac{\frac{1}{n} \sum_{i}\left(X A X^{T}\right)_{i i}}{\left(\operatorname{det}(X)^{2} \operatorname{det}(A)\right)^{\frac{1}{n}}} \\
=\frac{\frac{1}{n} \sum_{i}\left(D(I-\widetilde{X}) A(I-\widetilde{X})^{T} D\right)_{i i}}{\left(\operatorname{det}(X)^{2} \operatorname{det}(A)\right)^{\frac{1}{n}}}=\frac{\frac{1}{n} \sum_{i} d_{i}^{2}\left((I-\widetilde{X}) A(I-\widetilde{X})^{T}\right)_{i i}}{\left(\prod_{i} d_{i}^{2}\right)^{\frac{1}{n}}(\operatorname{det}(A))^{\frac{1}{n}}} \\
=\frac{\frac{1}{n} \sum_{i} \alpha^{2}}{\left(\prod_{i} \alpha^{2}\right)^{\frac{1}{n}}} \cdot \frac{\left(\prod_{i}\left((I-\widetilde{X}) A(I-\widetilde{X})^{T}\right)_{i i}\right)^{\frac{1}{n}}}{(\operatorname{det}(A))^{\frac{1}{n}}} \tag{5}\\
=\text { Expression_A•Expression_B. }
\end{gather*}
$$

In the above notations $\alpha_{i}^{2}=d_{i}^{2}\left((I-\widetilde{X}) A(I-\widetilde{X})^{T}\right)_{i i}$.
Expression_B does not depend on d_{i}. The problem of minimizing Expression_B is a particular case of the already considered problem of minimizing the functional $F_{W}(G)$ with a special choice of the corresponding matrices $-W=A, A=I, G=\widetilde{X}$. In other words, the solution of the problem

$$
\begin{equation*}
\min _{\tilde{X} \in S_{\widetilde{L}}} \prod_{i}\left((I-\widetilde{X}) A(I-\widetilde{X})^{T}\right)_{i i}=\min _{\tilde{X} \in S_{\tilde{L}}} \operatorname{tr}(I-\widetilde{X}) A(I-\widetilde{X})^{T} \tag{6}
\end{equation*}
$$

will be also the solution of minimizing Expression_B.
Further, Expression_A $\geq 1, \forall \alpha$, being the ratio of the arithmetic and geometric mean, and takes the value 1 when $\alpha_{i}^{2}=1$.

Thus, we minimize Expression_A computing

$$
\begin{equation*}
d_{i}=\frac{1}{\left((I-\widetilde{X}) A(I-\widetilde{X})^{T}\right)_{i i}^{\frac{1}{2}}} \tag{7}
\end{equation*}
$$

Let \widetilde{L}_{G} be the solution of (7). Note that it is strictly lower triangular. Let the entries d_{i} of D are computed from the relations (7), where instead of $\widetilde{X} \widetilde{L}_{G}$ is used. Then the matrix $L_{G}^{T} L_{G}$, where $L_{G}=D\left(I-\widetilde{L}_{G}\right)$, will be the searched approximation of A^{-1} :

- $\left(L_{G} A L_{G}^{T}\right)_{i i}=1$ by construction;
- The equality (4) gives a measure of the quality of the approximate inverse constructed (the K-condition number (Igor Kaporin).

Let $A=\operatorname{tridiag}(-1,4,-1)$. Find $L_{G}^{T} L_{G}$ - an approximate inverse of A, where L_{G} is bidiagonal. Thus, $\mathcal{S}_{\widetilde{L}}=\left\{\{(i-1, i)\}_{i=2}^{n}\right\}$.
First we compute a strictly lower bidiagonal matrix \widetilde{L} from the condition

$$
(\widetilde{L} A)_{i, j}=(A)_{i, j}, i, j \in \mathcal{S}_{\widetilde{L}}
$$

which gives us

$$
\widetilde{L}=\left[\begin{array}{cccccc}
0 & & & & & \\
\frac{1}{4} & 0 & & & & \\
& \frac{1}{4} & 0 & & & \\
& & & \ddots & & \\
& & & \frac{1}{4} & 0 & \\
& & & & \frac{1}{4} & 0
\end{array}\right]
$$

Then d_{i} are found to be

$$
d_{1}=\frac{1}{2}, d_{i}=\frac{2}{\sqrt{15}}, i=1,2, \cdots, n
$$

$L_{G}=\left[\begin{array}{ccccc}\frac{1}{2} & 0 & \cdots & 0 & 0 \\ \frac{1}{2 \sqrt{15}} & \frac{2}{\sqrt{15}} & \cdots & 0 & 0 \\ & & \ddots & & \\ & & & \ddots & \\ 0 & 0 & \cdots & \frac{1}{2 \sqrt{15}} & \frac{2}{\sqrt{15}}\end{array}\right], \quad L_{G}^{T} L_{G}=\left[\begin{array}{ccccc}\frac{4}{15} & \frac{1}{15} & 0 & \cdots & 0 \\ \frac{1}{15} & \frac{17}{60} & \frac{1}{15} & \cdots & 0 \\ & & \ddots & & \\ & & & \ddots & \\ 0 & \cdots & & \frac{1}{15} & \frac{17}{60}\end{array}\right]$,
and

$$
L_{G}^{T} L_{G} A=\left[\begin{array}{ccccc}
1 & 0 & -\frac{1}{15} & \cdots & 0 \\
\frac{7}{15} & 1 & \frac{7}{60} & \cdots & 0 \\
& & \ddots & & \\
& & & \ddots & \\
0 & \cdots & & \frac{7}{60} & 1
\end{array}\right] .
$$

Extensions

Q When minimizing $\|I-A G\|_{F}$, minimize the 2-norm of each column separately, $\left\|\mathbf{e}_{k}-A \mathbf{g}_{k}\right\|_{F}, k=1, \cdots, n$
a use adaptive \mathcal{S} (much more expensive)
Q used the sparsity pattern of powers of A
e Modified SPAI: combines
a Frobenius norm minimization
e MILU
a vector probing

MSPAI

Consider the formulation:

$$
\min _{G}\|C G-B\|_{F}=\min _{G}\left\|\left[\begin{array}{c}
C \\
\rho \mathbf{e}^{T} C
\end{array}\right] G-\left[\begin{array}{c}
B_{0} \\
\rho \mathbf{e}^{T} B_{0}
\end{array}\right]\right\|_{F}
$$

$\rho=0, C_{0}=A, B_{0}=I$ - the original form
$C_{0}=I, B_{0}=A$ - explicit approximation of A
$\rho=[1,1, \cdots, 1]-$ MILU
Improve existing approximations:

$$
\min _{U}\left\|\left[\begin{array}{c}
L \\
\rho \mathbf{e}^{T} L
\end{array}\right] U-\left[\begin{array}{c}
A \\
\rho \mathbf{e}^{T} A
\end{array}\right]\right\|_{F}
$$

Finite element setting:

$$
A=\sum_{k=1}^{M} R_{k}^{T} A_{k} R_{k}
$$

with R_{k} being the Boolean matrices which prescribe the local-to-global correspondence of the numbered degrees of freedom. Is this of interest?

$$
B^{-1}=\sum_{k=1}^{M} R_{k}^{T} A_{k}^{-1} R_{k}
$$

B^{-1} and A^{-1} are spectrally equivalent, namely, for some $0<\alpha_{1}<\alpha_{2}$ there holds

$$
\alpha_{1} A_{11}^{-1} \leq B_{11}^{-1} \leq \alpha_{2} A_{11}^{-1}
$$

Finite element setting:

Consider spd matrices.

$$
\min _{M}\left(\lambda_{\min }\left(A_{k}\right)\right) \leq \lambda(A) \leq p \max _{M}\left(\lambda_{\max }\left(A_{k}\right)\right)
$$

where p is the maximum degree of the graph representing the discretization mesh. Similarly, there holds

$$
\min _{M}\left(\lambda_{\min }\left(A_{k}\right)^{-1}\right) \leq \lambda\left(B^{-1}\right) \leq p \max _{M}\left(\lambda_{\max }\left(A_{k}\right)^{-1}\right) .
$$

Then we obtain

$$
\frac{\min \left(\lambda_{\min }\left(A_{k}\right)\right)}{\max \left(\lambda_{\max }\left(A_{k}\right)\right)} \leq \frac{\mathbf{x}^{T} B^{-1} \mathbf{x}}{\mathbf{x}^{T} A^{-1} \mathbf{x}} \leq \frac{\max \left(\lambda_{\max }\left(A_{k}\right)\right)}{\min \left(\lambda_{\min }\left(A_{k}\right)\right)}
$$

Thus, the spectral equivalence constants do not depend on the mesh parameter h but they are in general robust neither with respect to problem and mesh-anisotropies, nor to jumps in the problem coefficients as the eigenvalues of A_{k} depend on those.

FEM-SPAI

FEM-SPAI

The matrix itself (mesh (A))

FEM-SPAI

The approximate inverse (mesh (AI))

FEM-SPAI

The exact inverse matrix (mesh (inv(A)))

FEM-SPAI

The difference (mesh (inv (A) -AI))

FEM-SPAI

The product with $A($ mesh (AI $* \mathrm{~A})$)

FEM-SPAI: Scalability figures: Constant problem size

\#proc	$n_{\text {fine }}$	$t_{B_{11}^{-1}} / t_{A}$	$t_{\text {repl }}[\mathrm{s}]$	$t_{\text {solution }}[\mathrm{s}]$	\# iter
4	197129	0.005	0.28	7.01	5
16	49408	0.180	0.07	0.29	5
64	12416	0.098	0.02	0.03	5

Problem size: 787456
Solution method: PCG
Relative stopping criterium: $<10^{-6}$

FEM-SPAI: Scalability figures: Constant load per processor

$\#$ proc	$t_{B_{11}^{-1} / t_{A}}$	$t_{\text {repl }}[\mathrm{s}]$	$t_{\text {solution }}[\mathrm{s}]$	$\#$ iter
1	0.0050	-	0.17	5
4	0.0032	0.28	7.01	5
16	0.0035	0.24	4.55	5
64	0.0040	0.23	12.43	5

Local number of degrees of freedom: 197129
Solution method: PCG
Relative stopping criterium: $<10^{-6}$

TDB-NLA Parallel Algorithms for Scientific Computing

Domain decomposition methods

Many different interpretations within the PDE community:
Q Parallel computing: data decomposition (independent of numerical method)
e Asymptotic analysis: separation of physical domain into regions with possibly different models

Q Preconditioning methods: solution of a large linear system arising from the discretization of the PDE on the whole domain by DDM as a solver or a preconditioner:
e Overlapping domain decomposition
e Non-overlapping domain decomposition

тDB-nLA Domain decomposition:

Domain decomposition - decomposition of the spatial domain into several subdomains. Search the global true solution through (iteratively) solving subproblems while enforcing suitable continuity requirements between neighbor subdomains.
e Flexible - localized treatment of complex and irregular geometries, singularities etc.

Q Efficient - often optimal convergence rate
Q Easy to parallelize (coarse grain parallelization)

TDB-NLA Schwarz 1870 (alternating method)

$$
A \mathbf{u}=\mathbf{f}
$$

Matrix form of Alternating Schwarz

Decompose A as $A_{i} A_{\partial \Omega_{i} \backslash \Gamma_{i}} A_{\Gamma_{i}}$.
Let $I_{\Omega_{i} \rightarrow \Gamma_{j}}$ be the discrete operator that interpolates the nodes in the interior of Ω_{i} to Γ_{j}. Then:

$$
\begin{aligned}
& A_{\Omega_{1}} \mathbf{u}_{\Omega_{1}}^{k}=\mathbf{f}_{1}-A_{\Gamma_{1}} I_{\Omega_{2} \rightarrow \Gamma_{1}} \mathbf{u}_{\Omega_{2}}^{k-1} \\
& A_{\Omega_{2}} \mathbf{u}_{\Omega_{2}}^{k}=\mathbf{f}_{2}-A_{\Gamma_{2}} I_{\Omega_{1} \rightarrow \Gamma_{2}} \mathbf{u}_{\Omega_{1}}^{k}
\end{aligned}
$$

Gauss-Seidel method for the system

$$
\left[\begin{array}{cc}
A_{\Omega_{1}} & A_{\Gamma_{1}} I_{\Omega_{2} \rightarrow \Gamma_{1}} \\
A_{\Gamma_{2}} I_{\Omega_{1} \rightarrow \Gamma_{2}} & A_{\Omega_{2}}
\end{array}\right]\left[\begin{array}{l}
\mathbf{u}_{\Omega_{1}} \\
\mathbf{u}_{\Omega_{2}}
\end{array}\right]=\left[\begin{array}{l}
\mathbf{f}_{1} \\
\mathbf{f}_{2}
\end{array}\right]
$$

Rearrange as a simple iteration:

$$
\begin{aligned}
& \mathbf{u}_{\Omega_{1}}^{k}=\mathbf{u}_{\Omega_{1}}^{k-1}+A_{\Omega_{1}}^{-1}\left(\mathbf{f}_{1}-A_{\Omega_{1}} \mathbf{u}_{\Omega_{1}}^{k-1}-A_{\Gamma_{1}} I_{\Omega_{2} \rightarrow \Gamma_{1}} \mathbf{u}_{\Omega_{2}}^{k-1}\right) \\
& \mathbf{u}_{\Omega_{2}}^{k}=\mathbf{u}_{\Omega_{2}}^{k-1}+A_{\Omega_{2}}^{-1}\left(\mathbf{f}_{2}-A_{\Omega_{2}} \mathbf{u}_{\Omega_{2}}^{k-1}-A_{\Gamma_{1}} I_{\Omega_{1} \rightarrow \Gamma_{2}} \mathbf{u}_{\Omega_{2}}^{k}\right)
\end{aligned}
$$

Additive and multiplicative Schwarz methods:

$$
\begin{array}{r}
\mathbf{u}_{\Omega_{1}}^{k}=\mathbf{u}_{\Omega_{1}}^{k-1}+A_{\Omega_{1}}^{-1}\left(\mathbf{f}_{1}-A_{\Omega_{1}} \mathbf{u}_{\Omega_{1}}^{k-1}-A_{\Omega \backslash \bar{\Omega}_{1}} \mathbf{u}_{\Omega \backslash \bar{\Omega}_{1}}^{k-1}\right) \\
\mathbf{u}_{\Omega_{2}}^{k}=\mathbf{u}_{\Omega_{2}}^{k-1}+A_{\Omega_{2}}^{-1}\left(\mathbf{f}_{2}-A_{\Omega_{2}} \mathbf{u}_{\Omega_{2}}^{k-1}-A_{\Omega \backslash \bar{\Omega}_{2}} \mathbf{u}_{\Omega \backslash \bar{\Omega}_{2}}^{k-1}\right) \\
\Uparrow \\
\mathbf{u}_{\Omega \backslash \bar{\Omega}_{2}}^{k}
\end{array}
$$

For the whole system: two-step algorithm

$$
\begin{aligned}
& \mathbf{u}^{k+1 / 2}=\mathbf{u}^{k}+\left[\begin{array}{cc}
A_{\Omega_{1}}^{-1} & 0 \\
0 & 0
\end{array}\right]\left(\mathbf{f}-A \mathbf{u}^{k}\right) \\
& \mathbf{u}^{k+1}=\mathbf{u}^{k+1 / 2}+\left[\begin{array}{cc}
0 & 0 \\
0 & A_{\Omega_{2}}^{-1}
\end{array}\right]\left(\mathbf{f}-A \mathbf{u}^{k+1 / 2}\right)
\end{aligned}
$$

Final form

$$
\begin{aligned}
& \text { Denote: } \mathbf{u}_{\Omega_{1}}=R_{1} \mathbf{u}=\left[\begin{array}{ll}
I & 0
\end{array}\right]\left[\begin{array}{c}
\mathbf{u}_{\Omega_{1}} \\
\mathbf{u}_{\Omega \backslash \Omega_{1}}
\end{array}\right] \\
& \mathbf{u}_{\Omega_{2}}=R_{2} \mathbf{u}=\left[\begin{array}{ll}
0 & I
\end{array}\right]\left[\begin{array}{c}
\mathbf{u}_{\Omega \backslash \Omega_{2}} \\
\mathbf{u}_{\Omega_{2}}
\end{array}\right]
\end{aligned}
$$

Then $A_{\Omega_{i}}=R_{i} A R_{i}^{T}$; let $B_{i}=R_{i}^{T}\left(R_{i} A R_{i}^{T}\right)^{-1} R_{i}$.

$$
\begin{aligned}
& \mathbf{u}^{k+1}=\mathbf{u}^{k}+\left(B_{1}+B_{2}-B_{2} A B_{1}\right)\left(\mathbf{f}-A \mathbf{u}^{k}\right) \\
& \mathbf{u}^{k+1}=\mathbf{u}^{k}+\left(B_{1}+B_{2}\right)\left(\mathbf{f}-A \mathbf{u}^{k}\right)
\end{aligned}
$$

Final form, many subdomains

$$
\begin{gathered}
\mathbf{u}^{k+1}=\mathbf{u}^{k}+\sum_{i=1}^{p} B_{i}\left(\mathbf{f}-A \mathbf{u}^{k}\right) \\
\mathbf{u}^{k+1 / p}=\mathbf{u}^{k}+B_{1}\left(\mathbf{f}-A \mathbf{u}^{k}\right) \\
\mathbf{u}^{k+2 / p}=\mathbf{u}^{k+1 / p}+B_{2}\left(\mathbf{f}-A \mathbf{u}^{k+1 / p}\right) \\
\vdots \\
\mathbf{u}^{k+1}=\mathbf{u}^{k+(p-1) / p}+B_{p}\left(\mathbf{f}-A \mathbf{u}^{k+(p-1) / p}\right) \\
\mathbf{u}^{k+1}=\mathbf{u}^{k}+\left(I-\left(I-B_{p} A\left(\cdots\left(I-B_{A}\right)\right)\right)\right) A^{-1}\left(\mathbf{f}-A \mathbf{u}^{k}\right)
\end{gathered}
$$

Problem:

Too slow Convergence deteriorates as p increases (H decreases).
Reason: The only global communication of information between subdomains are through overlapping regions. Too slow!
How to speed up? Coarse grid correction.

$$
\mathbf{u}^{\text {fine }}=\mathbf{u}^{\text {fine }}+R^{T} A_{C}^{-1} R\left(\mathbf{f}-A \mathbf{u}^{\text {fine }}\right)
$$

Two-level additive Schwarz method:

$$
\mathbf{u}^{k+1}=\mathbf{u}^{k}+\left(R^{T} A_{C}^{-1} R+\sum_{i=1}^{p} R^{T} A_{i}^{-} R\right) \mathbf{r}^{k}
$$

Final keywords

Q multiplicative is faster than additive
a overlapping or nonoverlapping; large overlap is better for convergence
Q deteorating convergence when increasing the number of subdomains (if implemented straightforwardly)
Q stabilization with a coarse grid corrrection, nearly optimal convergence
a used as a preconditiner
a used in a Multigrid setting as a smoother
Q attractive for parallel computations (FETI, BETI, ...)

