Other parallel approaches

- Approximate inverses
- Domain decomposition methods

Approximate inverse preconditioning

Some references

- Kolotilina, L. Yu.; Yeremin, A. Yu. Factorized sparse approximate inverse preconditionings. I. Theory. SIAM J. Matrix Anal. Appl. 14 (1993), 45-58
- Kolotilina, L. Yu.; Nikishin, A. A.; Yeremin, A. Yu. Factorized sparse approximate inverse preconditionings. IV. Simple approaches to rising efficiency. Numer. Linear Algebra Appl. 6 (1999), 515-531
- Grote, Marcus J.; Huckle, Thomas Parallel preconditioning with sparse approximate inverses. SIAM J. Sci. Comput. 18 (1997), 838-853.
- Benzi, Michele; Meyer, Carl D.; Tuma, Miroslav A sparse approximate inverse preconditioner for the conjugate gradient method. SIAM J. Sci. Comput. 17 (1996), 1135-1149
- Benzi, Michele; Tuma, Miroslav A sparse approximate inverse preconditioner for nonsymmetric linear systems. SIAM J. Sci. Comput. 19 (1998), 968-994
- Huckle, Thomas Approximate sparsity patterns for the inverse of a matrix and preconditioning. Appl. Numer. Math. 30 (1999), 291-303
- Bröker, Oliver; Grote, Marcus J. Sparse approximate inverse smoothers for geometric and algebraic multigrid. Appl. Numer. Math. 41 (2002), 61-80

Some references

- Broker, Oliver; Parallel multigrid methods using sparse approximate inverses. Thesis (Dr.sc.) 2013 Eidgenoessische Technische Hochschule Zuerich (Switzerland). 2003. 169 pp
- Holland, Ruth M.; Wathen, Andy J.; Shaw, Gareth J. Sparse approximate inverses and target matrices. SIAM J. Sci. Comput. 26 (2005),1000-1011
- Jia, Zhongxiao; Zhu, Baochen A power sparse approximate inverse preconditioning procedure for large sparse linear systems. Numer. Linear Algebra Appl. 16 (2009),259-299
- Wang, Shun; de Sturler, Eric Multilevel sparse approximate inverse preconditioners for adaptive mesh refinement. Linear Algebra Appl. 431 (2009), 409-426
- Malas, Tahir; Gürel, Levent Accelerating the multilevel fast multipole algorithm with the sparse-approximate-inverse (SAI) preconditioning. SIAM J. Sci. Comput. 31 (2009), 1968-1984
- Neytcheva, M; Bängtsson, Erik; Linnér, Elisabeth Finite-element based sparse approximate inverses for block-factorized preconditioners. Adv. Comput. Math. 35 (2011), 323-355

Some references

Thomas Huckle, Modified Sparse Approximate Inverses http://www5.in.tum.de/wiki/index.php/MSPAI Factorized Sparse Approximate Inverses http://www5.in.tum.de/wiki/index.php/FSPAI

Approximate inverses: Explicit Methods

Given a sparse matrix $A=[a_{ij}]\in {}^{n\times n}$. Let S be a sparsity pattern. We want to compute $G\in\mathcal{S}$, such that

$$(GA)_{ij} = \delta_{ij}, \ (i,j) \in \mathcal{S},$$

i.e.

$$\sum_{k:(i,k)\in S} g_{ik} a_{kj} = \delta_{ij}, \ (i,j) \in \mathcal{S}.$$

Some observations:

- \oplus the elements in the *i*th row of *G* can be computed independently;
- even if A is symmetric, G is not necessarily symmetric, because g_{ij} and g_{ji} are, in general, not equal.

How does this work?

Choose S to be the tridiagonal part of A,

$$S = \{(1,1), (1,2), \{(i,i-1), (i,i), (i,i+1)\}_{i=1}^n, (n,n-1), (n,n)\}.$$

Then, when computing the ith row of G we need only the entries of the matrix A, namely,

$$A^i = egin{bmatrix} a_{i-1,i-1} & a_{i-1,i} & a_{i-1,i+1} \ a_{i,i-1} & a_{i,i} & a_{i,i+1} \ a_{i+1,i-1} & a_{i+1,i} & a_{i+1,i+1} \end{bmatrix}$$

Given $A \in \mathbb{R}^{n \times n}$ and \mathcal{S} for i=1:n,

Extract from A the small matrix A^i , needed to compute the entries of G(i,:) Solve with A^i

Store row G(i,:)

end

For all rows, the steps can be performed fully in parallel!

Example:

We want to find G with the same sparsity pattern as A, i.e.,

$$A = \begin{bmatrix} 2 & -1 & 0 & 0 \\ -1 & 3 & -2 & 0 \\ 0 & -2 & 4 & -1 \\ 0 & 0 & -1 & 2 \end{bmatrix} \qquad G = \begin{bmatrix} g_{11} & g_{12} & 0 & 0 \\ g_{21} & g_{22} & g_{23} & 0 \\ 0 & g_{32} & g_{33} & g_{34} \\ 0 & 0 & g_{43} & g_{44} \end{bmatrix}$$

Example, cont.

$$A^{-1} = \frac{1}{19} \begin{bmatrix} 13 & 7 & 4 & 2 \\ 7 & 14 & 8 & 4 \\ 4 & 8 & 10 & 5 \\ 2 & 4 & 5 & 12 \end{bmatrix}$$

$$G = \begin{bmatrix} \frac{3}{5} & \frac{1}{5} & 0 & 0\\ \frac{1}{3} & \frac{2}{3} & \frac{1}{3} & 0\\ 0 & \frac{4}{13} & \frac{6}{13} & \frac{3}{13}\\ 0 & 0 & \frac{1}{7} & \frac{4}{7} \end{bmatrix} \qquad GA = \begin{bmatrix} 1 & 0 & -0.40 & 0\\ 0 & 1 & 0 & -0.33\\ -0.31 & 0 & 1 & 0\\ 0 & -0.28 & 0 & 1 \end{bmatrix}$$

Example, cont.

Note: the second row of G is the second row of the matrix

$$B = \begin{bmatrix} 2 & -1 & 0 & 0 \\ -1 & 3 & -2 & 0 \\ 0 & -2 & 4 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}^{-1}, GB = \begin{bmatrix} 1 & 0 & -0.4 & 0 \\ 0 & 1 & 0 & 0 \\ -0.31 & 0 & 1.2308 & 0.4615 \\ 0 & -0.2857 & 0.5714 & 1.1429 \end{bmatrix}.$$

However, if we compute AG then

$$AG = \begin{bmatrix} 0.8667 & -0.2667 & -0.3333 & 0\\ 0.4000 & 1.1846 & 0.0769 & -0.4615\\ -0.6667 & -0.1026 & 1.0366 & 0.3516\\ 0 & -0.3077 & -0.1758 & 0.9121 \end{bmatrix}$$

i.e., the matrix G is computed as a left-side approximate inverse of A and as such is somewhat less accurate than as a right-side approximate inverse. The drawback of the above method is that in general even if A is symmetric, G is not!

Implicit Methods

Let A be in a factored form.

Suppose $A = LD^{-1}U$ is a triangular matrix factorization of A. If A is a band matrix then L and U are also band matrices.

Let $L = I - \widetilde{L}$; $U = I - \widetilde{U}$, where \widetilde{L} and \widetilde{U} are strictly lower and upper triangular matrices correspondingly.

Lemma 1 Using the above notations it can be shown that

(i)
$$A^{-1} = DL^{-1} + \widetilde{U}A^{-1}$$
, (ii) $A^{-1} = U^{-1}D + A^{-1}\widetilde{L}$.

Proof

$$A = LD^{-1}U \Longrightarrow A^{-1} = U^{-1}DL^{-1}$$
$$\Longrightarrow (I - \widetilde{U})A^{-1} = DL^{-1} \Longrightarrow A^{-1} = DL^{-1} + \widetilde{U}A^{-1}.$$

Also

$$A^{-1}(I - \widetilde{L}) = U^{-1}D \Longrightarrow A^{-1} = U^{-1}D + A^{-1}\widetilde{L}.$$

Algorithm to compute A^{-1}

$$\begin{aligned} &\text{for } r=n,n-1,\cdots,1 \\ &(A^{-1})_{r,r}=D_{r,r}+\sum_{s=1}^{\min(q,n-r)}\widetilde{U}_{r,r+s}(A^{-1})_{r+s,r} \\ &\text{for } k=1,2,\cdots,q \\ &(A^{-1})_{r-k,r}=\sum_{s=1}^{\min(q,n-r+k)}\widetilde{U}_{r-k,r-k+s}(A^{-1})_{r-k+s,r} \rightsquigarrow (i) \\ &(A^{-1})_{r,r-k}=\sum_{t=1}^{\min(q,n-r+k)}(A^{-1})_{r,r-k+t}\widetilde{L}_{r-k+t,r-k} \rightsquigarrow (ii) \\ &\text{endfor} \\ &\text{endfor} \\ &q \text{ is the bandwidth.} \end{aligned}$$

A drawback:

Consider an spd matrix

$$A = \begin{bmatrix} 1 & -2 & 1 \\ -2 & 5 & -3 \\ 1 & -3 & 4 \end{bmatrix}. \quad \text{Then} \quad A_{band} = \begin{bmatrix} 1 & -2 & 0 \\ -2 & 5 & -3 \\ 0 & -3 & 4 \end{bmatrix}$$

is indefinite.

A general framework for computing approximate inverses

Frobenius norm minimization

$$||A||_I = \sqrt{\sum_{i=1}^n \sum_{i=1}^n a_{ij}^2} = \sqrt{tr(AA^H)}$$

Let a sparsity pattern \mathcal{S} be given. Consider the functional

$$F_W(G) = ||I - GA||_W^2 = tr(I - GA)W(I - GA)^T,$$

where the weight matrix W is spd If $W \equiv I$ then $||I - GA||_I$ is the Frobenius norm of I - GA.

Clearly $F_W(G) \ge 0$. If $G = A^{-1}$ then $F_W(G) = 0$. Hence, we want to compute the entries of G in order to minimize $F_W(G)$, i.e. to find $\hat{G} \in S$, such that

$$||I - \hat{G}A||_W \le ||I - GA||_W, \ \forall G \in S.$$

The following properties of $tr(\cdot)$ will be used:

$$trA = trA^T$$
, $tr(A+B) = trA + trB$.

$$F_W(G) = tr(I - GA)W(I - GA)^T$$

$$= tr(W - GAW - W(GA)^T + GAW(GA)^T)$$

$$= trW - trGAW - tr(GAW)^T + trGAWA^TG^T.$$
(1)

Minimize F_W w.r.t. G, consider the entries $g_{i,j}$ as variables. The necessary condition for a minimizing point are

$$\frac{\partial F_W(G)}{\partial g_{ij}} = 0, \ (i,j) \in \mathcal{S}. \tag{2}$$

From (1) and (2) we get $-2(WA^T)_{ij} + 2(GAWA^T)_{ij} = 0$, or

$$(GAWA^T)_{ij} = (WA^T)_{ij}, \ (i,j) \in \mathcal{S}.$$
(3)

The equations (3) may or may not have a solution, depending on the particular matrix A and the choice of S and W.

Choices of W:

Choise 1: Let A be spd Choose $W = A^{-1}$ which is also spd

$$\Longrightarrow (GA)_{ij} = \delta_{ij}, \ (i,j) \in S,$$

i.e. the formula for the explicit method can be seen as a special case of the more general framework for computing approximate inverses using weighted Frobenius norms.

Choise 2: Let $W = (A^T A)^{-1}$.

$$\implies (G)_{ij} = (A^{-1})_{ij}, (i,j) \in S,$$

which is the formula for the implicit method. In this case the entries of G are the corresponding entries of the exact inverse.

Improvement via diagonal compensation

Let A be symmetric and five-diagonal. Suppose we know that the two of the off-diagonals contain small entries. Such matrix appears if we solve the anisotropic problem, for instance:

$$-\frac{\partial^2 u}{\partial x^2} - \varepsilon \frac{\partial^2 u}{\partial y^2} = f,$$

where $\varepsilon > 0$ is small.

We choose a tridiagonal sparsity pattern S_3 for G, where the two nonzero off-diagonals will correspond to the off-diagonals of A, containing bigger elements, i.e. they are not necessarily next to the main diagonal. Then we construct an approximate inverse in the following way:

- Step 1: Let \widetilde{A} be A with deleted small entries, i.e. $\widetilde{A} \in \mathcal{S}_3$.
- Step 2: Compute \widetilde{G} : $(\widetilde{G}A)_{ij} = \delta_{ij}, \ (i,j) \in S_3.$
- Step 3: Find $G = \bar{G} + D$, where $\bar{G} = \frac{1}{2}(\tilde{G} + \tilde{G}^T)$ and D is diagonal, computed from the following imposed condition on G, i.e.

$$GA\mathbf{e} = \mathbf{e},$$

and
$$e = (1, 1, \dots, 1)^T$$
.

The diagonal compensation technique prescribes the spd property of A.

Constructing an spd approximate inverse

The methods described till now do not guarantee that G will be such a matrix.

We want now to compute an spd approximate inverse of an spd matrix.

Let S be a symmetric sparsity pattern. We seek G of the form

$$G = L_G^T L_G, L_G \in \mathcal{S}_L.$$

Clearly G will be spd

Theorem 1 A matrix G of the form $G = L_G^T L_G$ which is an spd approximation of A^{-1} can be computed from the following relation:

$$min_{X \in \mathcal{S}_L} \frac{\frac{1}{n} tr X A X^T}{\left(det(X A X^T) \right)^{\frac{1}{n}}} = \frac{\frac{1}{n} tr L_G A L_G^T}{\left(det(L_G A L_G^T) \right)^{\frac{1}{n}}}.$$
 (4)

Proof:

 $X \in \mathcal{S}_L$ is lower triangular. Let $X = D(I - \widetilde{X})$, where $\widetilde{X} \in \mathcal{S}_{\widetilde{L}}$ is strictly lower triangular. Then $\widetilde{X} = I - D^{-1}X$. Let denote also $D = diag(d_1, d_2, \cdots, d_n)$. Then

$$\frac{\frac{1}{n}trXAX^{T}}{(det(XAX^{T}))^{\frac{1}{n}}} = \frac{\frac{1}{n}\sum_{i}(XAX^{T})_{ii}}{(det(X)^{2}det(A))^{\frac{1}{n}}}$$

$$= \frac{\frac{1}{n}\sum_{i}\left(D(I-\widetilde{X})A(I-\widetilde{X})^{T}D\right)_{ii}}{(det(X)^{2}det(A))^{\frac{1}{n}}} = \frac{\frac{1}{n}\sum_{i}d_{i}^{2}\left((I-\widetilde{X})A(I-\widetilde{X})^{T}\right)_{ii}}{\left(\prod_{i}d_{i}^{2}\right)^{\frac{1}{n}}(det(A))^{\frac{1}{n}}}$$

$$= \frac{\frac{1}{n}\sum_{i}\alpha^{2}}{\left(\prod_{i}\alpha^{2}\right)^{\frac{1}{n}}} \cdot \frac{\left(\prod_{i}((I-\widetilde{X})A(I-\widetilde{X})^{T})_{ii}\right)^{\frac{1}{n}}}{(det(A))^{\frac{1}{n}}}$$

$$= Expression_A \cdot Expression_B. \tag{5}$$

In the above notations $\alpha_i^2 = d_i^2 \left((I - \widetilde{X}) A (I - \widetilde{X})^T \right)_{ii}$.

 $Expression_B$ does not depend on d_i . The problem of minimizing $Expression_B$ is a particular case of the already considered problem of minimizing the functional $F_W(G)$ with a special choice of the corresponding matrices - $W=A,\ A=I,\ G=\widetilde{X}$. In other words, the solution of the problem

$$\min_{\widetilde{X} \in S_{\widetilde{L}}} \prod_{i} \left((I - \widetilde{X}) A (I - \widetilde{X})^{T} \right)_{ii} = \min_{\widetilde{X} \in S_{\widetilde{L}}} tr(I - \widetilde{X}) A (I - \widetilde{X})^{T} \quad (6)$$

will be also the solution of minimizing $Expression_B$.

Further, $Expression_A \ge 1, \ \forall \alpha$, being the ratio of the arithmetic and geometric mean, and takes the value 1 when $\alpha_i^2 = 1$.

Thus, we minimize $Expression_A$ computing

$$d_{i} = \frac{1}{\left((I - \widetilde{X})A(I - \widetilde{X})^{T} \right)_{ii}^{\frac{1}{2}}}.$$
 (7)

Let \widetilde{L}_G be the solution of (7). Note that it is strictly lower triangular. Let the entries d_i of D are computed from the relations (7), where instead of \widetilde{X} \widetilde{L}_G is used. Then the matrix $L_G^T L_G$, where $L_G = D(I - \widetilde{L}_G)$, will be the searched approximation of A^{-1} :

- $(L_G A L_G^T)_{ii} = 1$ by construction;
- The equality (4) gives a measure of the quality of the approximate inverse constructed (the K-condition number (Igor Kaporin).

Let A=tridiag(-1,4,-1). Find $L_G^TL_G$ - an approximate inverse of A, where L_G is bidiagonal. Thus, $\mathcal{S}_{\widetilde{L}}=\{\{(i-1,i)\}_{i=2}^n\}$.

First we compute a strictly lower bidiagonal matrix $\widetilde{\boldsymbol{L}}$ from the condition

$$(\widetilde{L}A)_{i,j} = (A)_{i,j}, \ i,j \in \mathcal{S}_{\widetilde{L}},$$

which gives us

$$\widetilde{L} = \begin{bmatrix} 0 & & & & & \\ \frac{1}{4} & 0 & & & & \\ & \frac{1}{4} & 0 & & & \\ & & \ddots & & \\ & & \frac{1}{4} & 0 & \\ & & & \frac{1}{4} & 0 \end{bmatrix}.$$

Then d_i are found to be

$$d_1 = \frac{1}{2}, d_i = \frac{2}{\sqrt{15}}, i = 1, 2, \dots, n.$$

$$L_G = \begin{bmatrix} \frac{1}{2} & 0 & \cdots & 0 & 0 \\ \frac{1}{2\sqrt{15}} & \frac{2}{\sqrt{15}} & \cdots & 0 & 0 \\ & & \ddots & & \\ 0 & 0 & \cdots & \frac{1}{2\sqrt{15}} & \frac{2}{\sqrt{15}} \end{bmatrix}, \quad L_G^T L_G = \begin{bmatrix} \frac{4}{15} & \frac{1}{15} & 0 & \cdots & 0 \\ \frac{1}{15} & \frac{17}{60} & \frac{1}{15} & \cdots & 0 \\ & & \ddots & & \\ 0 & \cdots & \frac{1}{2\sqrt{15}} & \frac{2}{\sqrt{15}} \end{bmatrix},$$

and

$$L_G^T L_G A = \begin{bmatrix} 1 & 0 & -\frac{1}{15} & \cdots & 0 \\ \frac{7}{15} & 1 & \frac{7}{60} & \cdots & 0 \\ & & \ddots & & \\ & & \ddots & & \\ 0 & \cdots & & \frac{7}{60} & 1 \end{bmatrix}.$$

Extensions

- When minimizing $||I-AG||_F$, minimize the 2-norm of each column separately, $||\mathbf{e}_k-A\mathbf{g}_k||_F, k=1,\cdots,n$
- ullet use adaptive \mathcal{S} (much more expensive)
- lacktriangle used the sparsity pattern of powers of A
- Modified SPAI: combines
 - Frobenius norm minimization
 - MILU
 - vector probing

MSPAI

Consider the formulation:

$$\min_{G} ||CG - B||_{F} = \min_{G} \left\| \begin{bmatrix} C \\ \rho \mathbf{e}^{T} C \end{bmatrix} G - \begin{bmatrix} B_{0} \\ \rho \mathbf{e}^{T} B_{0} \end{bmatrix} \right\|_{F}$$

 $ho=0, C_0=A, B_0=I$ - the original form $C_0=I, B_0=A$ - explicit approximation of A $ho=[1,1,\cdots,1]$ - MILU Improve existing approximations:

$$\min_{U} \left\| \begin{bmatrix} L \\ \rho \mathbf{e}^{T} L \end{bmatrix} U - \begin{bmatrix} A \\ \rho \mathbf{e}^{T} A \end{bmatrix} \right\|_{F}$$

Finite element setting:

$$A = \sum_{k=1}^{M} R_k^T A_k R_k,$$

with R_k being the Boolean matrices which prescribe the local-to-global correspondence of the numbered degrees of freedom. Is this of interest?

$$B^{-1} = \sum_{k=1}^{M} R_k^T A_k^{-1} R_k.$$

 B^{-1} and A^{-1} are spectrally equivalent, namely, for some $0<\alpha_1<\alpha_2$ there holds

$$\alpha_1 A_{11}^{-1} \le B_{11}^{-1} \le \alpha_2 A_{11}^{-1},$$

Finite element setting:

Consider spd matrices.

$$\min_{M}(\lambda_{min}(A_k)) \le \lambda(A) \le p \max_{M}(\lambda_{max}(A_k)),$$

where p is the maximum degree of the graph representing the discretization mesh. Similarly, there holds

$$\min_{M} (\lambda_{min}(A_k)^{-1}) \le \lambda(B^{-1}) \le p \max_{M} (\lambda_{max}(A_k)^{-1}).$$

Then we obtain

$$\frac{\min(\lambda_{min}(A_k))}{\max(\lambda_{max}(A_k))} \le \frac{\mathbf{x}^T B^{-1} \mathbf{x}}{\mathbf{x}^T A^{-1} \mathbf{x}} \le \frac{\max(\lambda_{max}(A_k))}{\min(\lambda_{min}(A_k))}$$

Thus, the spectral equivalence constants do not depend on the mesh parameter h but they are in general robust neither with respect to problem and mesh-anisotropies, nor to jumps in the problem coefficients as the eigenvalues of A_k depend on those.

- p. 29/47

- p. 30/47

The approximate inverse (mesh(AI))

The exact inverse matrix (mesh(inv(A)))

The difference (mesh(inv(A)-AI))

The product with $A \pmod{AI*A}$

FEM-SPAI: Scalability figures: Constant problem size

#proc	$igg n_{fine}$	$t_{B_{11}^{-1}}/t_{A}$	t_{repl} [s]	$t_{solution}$ [s]	# iter
4	197129	0.005	0.28	7.01	5
16	49408	0.180	0.07	0.29	5
64	12416	0.098	0.02	0.03	5

Problem size: 787456 Solution method: *PCG*

Relative stopping criterium: $< 10^{-6}$

FEM-SPAI: Scalability figures: Constant load per processor

#proc	$t_{B_{11}^{-1}}/t_A$	t_{repl} [s]	$t_{solution}$ [s]	# iter
1	0.0050	-	0.17	5
4	0.0032	0.28	7.01	5
16	0.0035	0.24	4.55	5
64	0.0040	0.23	12.43	5

Local number of degrees of freedom: 197129

Solution method: PCG

Relative stopping criterium: $< 10^{-6}$

Domain decomposition methods

Many different interpretations within the PDE community:

- Parallel computing: data decomposition (independent of numerical method)
- Asymptotic analysis: separation of physical domain into regions with possibly different models
- Preconditioning methods: solution of a large linear system arising from the discretization of the PDE on the whole domain by DDM as a solver or a preconditioner:
 - Overlapping domain decomposition
 - Non-overlapping domain decomposition

TDB - NLA Domain decomposition:

Domain decomposition - decomposition of the spatial domain into several subdomains. Search the global true solution through (iteratively) solving subproblems while enforcing suitable continuity requirements between neighbor subdomains.

- Flexible localized treatment of complex and irregular geometries, singularities etc.
- Efficient often optimal convergence rate
- Easy to parallelize (coarse grain parallelization)

TDB-NLA Schwarz 1870 (alternating method)

$A\mathbf{u} = \mathbf{f}$

Matrix form of Alternating Schwarz

Decompose A as $A_i A_{\partial \Omega_i \setminus \Gamma_i} A_{\Gamma_i}$.

Let $I_{\Omega_i \to \Gamma_j}$ be the discrete operator that interpolates the nodes in the interior of Ω_i to Γ_j . Then:

$$A_{\Omega_1} \mathbf{u}_{\Omega_1}^k = \mathbf{f}_1 - A_{\Gamma_1} I_{\Omega_2 \to \Gamma_1} \mathbf{u}_{\Omega_2}^{k-1}$$
$$A_{\Omega_2} \mathbf{u}_{\Omega_2}^k = \mathbf{f}_2 - A_{\Gamma_2} I_{\Omega_1 \to \Gamma_2} \mathbf{u}_{\Omega_1}^k$$

Gauss-Seidel method for the system

$$\begin{bmatrix} A_{\Omega_1} & A_{\Gamma_1} I_{\Omega_2 \to \Gamma_1} \\ A_{\Gamma_2} I_{\Omega_1 \to \Gamma_2} & A_{\Omega_2} \end{bmatrix} \begin{bmatrix} \mathbf{u}_{\Omega_1} \\ \mathbf{u}_{\Omega_2} \end{bmatrix} = \begin{bmatrix} \mathbf{f}_1 \\ \mathbf{f}_2 \end{bmatrix}$$

Rearrange as a simple iteration:

$$\mathbf{u}_{\Omega_{1}}^{k} = \mathbf{u}_{\Omega_{1}}^{k-1} + A_{\Omega_{1}}^{-1} (\mathbf{f}_{1} - A_{\Omega_{1}} \mathbf{u}_{\Omega_{1}}^{k-1} - A_{\Gamma_{1}} I_{\Omega_{2} \to \Gamma_{1}} \mathbf{u}_{\Omega_{2}}^{k-1})$$

$$\mathbf{u}_{\Omega_{2}}^{k} = \mathbf{u}_{\Omega_{2}}^{k-1} + A_{\Omega_{2}}^{-1} (\mathbf{f}_{2} - A_{\Omega_{2}} \mathbf{u}_{\Omega_{2}}^{k-1} - A_{\Gamma_{1}} I_{\Omega_{1} \to \Gamma_{2}} \mathbf{u}_{\Omega_{2}}^{k})$$

Additive and multiplicative Schwarz methods:

For the whole system: two-step algorithm

$$\mathbf{u}^{k+1/2} = \mathbf{u}^k + \begin{bmatrix} A_{\Omega_1}^{-1} & 0 \\ 0 & 0 \end{bmatrix} (\mathbf{f} - A\mathbf{u}^k)$$

$$\mathbf{u}^{k+1} = \mathbf{u}^{k+1/2} + \begin{bmatrix} 0 & 0 \\ 0 & A_{\Omega_2}^{-1} \end{bmatrix} (\mathbf{f} - A\mathbf{u}^{k+1/2})$$

Final form

Denote:
$$\mathbf{u}_{\Omega_1} = R_1 \mathbf{u} = \begin{bmatrix} I & 0 \end{bmatrix} \begin{bmatrix} \mathbf{u}_{\Omega_1} \\ \mathbf{u}_{\Omega \setminus \Omega_1} \end{bmatrix}$$

$$\mathbf{u}_{\Omega_2} = R_2 \mathbf{u} = \begin{bmatrix} 0 & I \end{bmatrix} \begin{bmatrix} \mathbf{u}_{\Omega \setminus \Omega_2} \\ \mathbf{u}_{\Omega_2} \end{bmatrix}$$
Then $A_{\Omega_i} = R_i A R_i^T$; let $B_i = R_i^T (R_i A R_i^T)^{-1} R_i$.
$$\mathbf{u}^{k+1} = \mathbf{u}^k + (B_1 + B_2 - B_2 A B_1) (\mathbf{f} - A \mathbf{u}^k)$$

$$\mathbf{u}^{k+1} = \mathbf{u}^k + (B_1 + B_2) (\mathbf{f} - A \mathbf{u}^k)$$

Final form, many subdomains

$$\mathbf{u}^{k+1} = \mathbf{u}^k + \sum_{i=1}^p B_i(\mathbf{f} - A\mathbf{u}^k)$$

$$\mathbf{u}^{k+1/p} = \mathbf{u}^k + B_1(\mathbf{f} - A\mathbf{u}^k)$$

$$\mathbf{u}^{k+2/p} = \mathbf{u}^{k+1/p} + B_2(\mathbf{f} - A\mathbf{u}^{k+1/p})$$

$$\vdots$$

$$\mathbf{u}^{k+1} = \mathbf{u}^{k+(p-1)/p} + B_p(\mathbf{f} - A\mathbf{u}^{k+(p-1)/p})$$

$$\mathbf{u}^{k+1} = \mathbf{u}^k + (I - (I - B_pA(\cdots (I - B_A))))A^{-1}(\mathbf{f} - A\mathbf{u}^k)$$

Problem:

Too slow Convergence deteriorates as p increases (H decreases).

Reason: The only global communication of information between subdomains are through overlapping regions. **Too slow!**

How to speed up? Coarse grid correction.

$$\mathbf{u}^{fine} = \mathbf{u}^{fine} + R^T A_C^{-1} R(\mathbf{f} - A\mathbf{u}^{fine})$$

Two-level additive Schwarz method:

$$\mathbf{u}^{k+1} = \mathbf{u}^k + \left(R^T A_C^{-1} R + \sum_{i=1}^p R^T A_i^{-1} R \right) \mathbf{r}^k$$

Final keywords

- multiplicative is faster than additive
- overlapping or nonoverlapping; large overlap is better for convergence
- deteorating convergence when increasing the number of subdomains (if implemented straightforwardly)
- stabilization with a coarse grid corrrection, nearly optimal convergence
- used as a preconditiner
- used in a Multigrid setting as a smoother
- attractive for parallel computations (FETI, BETI, ...)