
1/58

Computational Methods in Statistics with
Applications

Singular Value Decomposition

Maya Neytcheva, Lars Eldén

SeSe, September 2020

2/58

Matrix factorizations/decompositions

3/58

Matrix factorizations I

I LU, LDU, Cholesky LDLT

I Tridiagonalization QTAQ = T , A - symmetric, T - tridiagonal
Aasen’s algorithm: A = LTLT

I Bidiagonalization QTAV = B , A(m, n), B - upper bi-diagonal
I · · ·
I QR

Golub, Van Loan, Matrix Computations, many editions.
Note: Some of the algorithms are not numerically stable.

4/58

Matrix factorizations

• Eigenvalue decomposition
A - square, normal matrix. If all its eigenvectors are linearly
independent, then A = QDQT , where Q is orthogonal and D is
diagonal, containing the eigenvalues of A.

• Schur decomposition: A = QTQ∗

Any square matrix A is unitary similar to an upper triangular matrix
T , which has the eigenvalues of A on its diagonal.
Note: Eigenvalue-revealing factorization

• Question: Can we diagonalize a general (m × n) matrix using
unitary matrices?

Singular value decomposition SVD

Q1AQ∗2 = Σ



4/58

Matrix factorizations

• Eigenvalue decomposition
A - square, normal matrix. If all its eigenvectors are linearly
independent, then A = QDQT , where Q is orthogonal and D is
diagonal, containing the eigenvalues of A.
• Schur decomposition: A = QTQ∗

Any square matrix A is unitary similar to an upper triangular matrix
T , which has the eigenvalues of A on its diagonal.
Note: Eigenvalue-revealing factorization

• Question: Can we diagonalize a general (m × n) matrix using
unitary matrices?

Singular value decomposition SVD

Q1AQ∗2 = Σ

4/58

Matrix factorizations

• Eigenvalue decomposition
A - square, normal matrix. If all its eigenvectors are linearly
independent, then A = QDQT , where Q is orthogonal and D is
diagonal, containing the eigenvalues of A.
• Schur decomposition: A = QTQ∗

Any square matrix A is unitary similar to an upper triangular matrix
T , which has the eigenvalues of A on its diagonal.
Note: Eigenvalue-revealing factorization

• Question: Can we diagonalize a general (m × n) matrix using
unitary matrices?

Singular value decomposition SVD

Q1AQ∗2 = Σ

5/58

Singular value decomposition

6/58

SVD

Let A(m, n), n ≤ m or n ≥ m, rank(A) = rank(A∗).

Definition
If there exist µ 6= 0 and vectors u and v, such that

Av = µu and A∗u = µv

then µ is called a singular value of A, and u, v are a pair of singular
vectors, corresponding to µ.



7/58

Historical notes

SVD has many different names:
I First derivation of the SVD by Eugenio Beltrami (1873)
I Full proof by Camille Jordan (1874)
I James Joseph Sylvester (1889), independently discovers SVD
I Erhard Schmidt (1907), first to derive an optimal, low-rank

approximation of a larger problem
I Hermann Weyl (1912) - determination of the rank in the

presence of errors
I Eckart-Young decomposition and optimality properties of SVD

(1936), psychometrics
I Numerically efficient algorithms to compute the SVD - works

by Gene Golub 1970 (Golub-Kahan)
8/58

The existence of singular values and vectors ...

... is shown via the following construction:

Av = µu, A∗u = µv

can be written as

Ã
[
v
u

]
=

[
0 A∗

A 0

] [
v
u

]
= µ

[
v
u

]

The matrix Ã is selfadjoint, has real eigenvalues and a complete eigenvector
space.
Furthermore, µ2 is an eigenvalue of A∗A with eigenvector u and of AA∗ with
eigenvector v, because

Av = µu, → A∗Av = µA∗u = µ2v
A∗u = µv, → AA∗u = µAv = µ2u

9/58

Singular Value Decomposition

Theorem (SVD)

Any m× n matrix A with dimensions, say, m ≥ n, can be factorized
as

A = U
[

Σ
0

]
V ∗,

where U ∈ Rm×m and V ∈ Rn×n are orthogonal, and Σ ∈ Rm×n is
diagonal,

Σ = diag(σ1, σ2, . . . , σn),

σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0.

10/58

SVD, A(m × n)



11/58

SVD, observation

12/58

Thin SVD

Partition U = (U1 U2), where U1 ∈ Rm×n,

A = U1ΣV T ,

A = U1

V T@
@@
0

0

m × n m × n

n × n n × n

13/58

Thin SVD

14/58

Fundamental Subspaces I

The range of the matrix A:

R(A) = {y | y = Ax , for arbitrary x}.

Assume that A has rank r :

σ1 ≥ · · · ≥ σr > σr+1 = · · · = σn = 0.

Outer product form:

y = Ax =
r∑

i=1

σiuivT
i x =

r∑

i=1

(σivT
i x)ui =

r∑

i=1

αiui .



15/58

Fundamental Subspaces II

The null-space of the matrix A:

N (A) = {x | Ax = 0}.

Ax =
r∑

i=1

σiuivT
i x

Any vector z =
∑n

i=r+1 βivi is in the null-space:

Az = (
r∑

i=1

σiuivT
i )(

n∑

i=r+1

βivi ) = 0.

16/58

Fundamental Subspaces

Theorem (Fundamental subspaces)

1. The singular vectors u1, u2, . . . , ur are an orthonormal basis in
R(A) and

rank(A) = dim(R(A)) = r .

2. The singular vectors vr+1, vr+2, . . . , vn are an orthonormal
basis in N (A) and

dim(N (A)) = n − r .

3. The singular vectors v1, v2, . . . , vr are an orthonormal basis in
R(AT ).

4. The singular vectors ur+1, ur+2, . . . , um are an orthonormal
basis in N (AT ).

17/58

SVD matrix expansion

A = UΣV T

A =
n∑

i=1

σiuivT
i = + + · · ·

A is represented as a sum of rank-one matrices.

18/58

Rank deficient matrix I

>> A(:,3)=A(:,1)+0.5*A(:,2)

A = 1.0000 1.0000 1.5000
1.0000 2.0000 2.0000
1.0000 3.0000 2.5000
1.0000 4.0000 3.0000

>> [U,S,V]=svd(A,0)

U = 0.2612 -0.7948 -0.5000
0.4032 -0.3708 0.8333
0.5451 0.0533 -0.1667
0.6871 0.4774 -0.1667



19/58

Rank deficient matrix II

S = 7.3944 0 0
0 0.9072 0
0 0 0

V = 0.2565 -0.6998 0.6667
0.7372 0.5877 0.3333
0.6251 -0.4060 -0.6667

SVD is rank-revealing!

20/58

Best approximation / Eckart-Young Property, 1936 I

2-norm, Frobenius norm

‖A‖2 = sup
x 6=0

‖Ax‖
‖x‖ , ‖A‖F =


∑

i ,j

a2
ij




1/2

One can show that ‖A‖2 =

(
max

1≤i≤n
λi (ATA)

) 1
2

= σ1

21/58

Best approximation / Eckart-Young Property, 1936 II

Theorem
Assume that the matrix A ∈ Rm×n has rank r and choose k, such
that r > k. The Frobenius norm matrix approximation problem

min
rank(Z)=k

‖A− Z‖F

has the solution
Z = Ak = UkΣkV T

k ,

where Uk = (u1, . . . , uk), Vk = (v1, . . . , vk), and
Σk = diag(σ1, . . . , σk).

22/58

Best approximation / Eckart-Young Property, 1936 III

Theorem

Let A ∈ Cm×n have rank r and SVD A = UΣV ∗ =
r∑

i=1
σiuiv∗i .

The solution of the problem

min
X
‖A− X‖2

where X belongs to the set of matrices in Cm×n of rank k < r , is

obtained for the matrix X = Ak =
k∑

j=1
σjujv∗j and

‖A− Ak‖2 = σk+1.



23/58

Best approximation / Eckart-Young Property, 1936 IV

Proof:
(1) Observe: UTAkV = diag{σ1, σ2, · · · , σk , 0, · · · , 0}, e.g.
rank(Ak) = k .
UT (A− Ak)V = diag{0, · · · , 0, σk+1, · · · , σr}, then
‖A− Ak‖2 = σk+1.

(2) Assume that there exists a matrix B of rank k , such that
‖A− B‖2 < σk+1.
rank(B)) = k , then there exists a basis x1, · · · , xn−k such that
(B) = span{x1, · · · , xn−k}.
From dimension arguments
span{x1, · · · , xn−k} ∩ span{v1 · · · , vk+1} 6= ∅.

24/58

Best approximation / Eckart-Young Property, 1936 V

Let z belong to the intersection. Then

Az =
k+1∑
i=1

σi (vT
1 z)ui . Thus,

‖A− B‖22 ≥ ‖(A− B)z‖22 = ‖Az‖22 =
k+1∑

i=1

σi (vT
1 z)2 ≥ σk+1.

The latter contradicts to the assumption.

25/58

Image compression, example

Matlab demo

26/58

SVD, geometric view

A = UΣV ∗ AV = UΣ



27/58

Test example borrowed from
Computational Statistics with Application to Bioinformatics
Prof. William H. Press Spring Term, 2008, The University of Texas
at Austin

28/58

Example

Consider some gene expression data, represented by the so-called
’design matrix’ X = {Xij}
Each column of X corresponds to a separate observation, in this
case, a separate micro array experiment under a different condition.
N rows are genes (1:500) and M columns are the corresponding
responses.
Assumptions:
- the individual experiments (columns of X ) have zero mean.
- scale data to unit standard deviation.

29/58

load yeastarray_t2.txt;
size(yeastarray_t2)

ans = 500 300
yclip = prctile(yeastarray_t2(:),[1,99])
yclip = -204 244

data = max(yclip(1),min(yclip(2),yeastarray_t2));
dmean= mean(data,1);
dstd = std(data,1);
data = (data - repmat(dmean,[size(data,1),1]))./...

repmat(dstd,[size(data,1),1]);
genecolormap = [min(1,(1:64)/32); 1-abs(1-(1:64)/32);

min(1,(64-(1:64))/32)]’;
figure(1),clf,colormap(genecolormap);
image(20*data+32)

30/58



31/58

The squares of the singular values are proportional to the portion of
the total variance (L2 norm of X ) that each accounts for.

ssq = diag(S).^2;
semilogy(ssq,’.b’)

32/58

We can produce fake data and compare:

fakedata = randn(500,300);
[Uf Sf Vf] = svd(fakedata,0);
sfsq = diag(Sf).^2;
semilogy(sfsq,’.r’)

33/58

For the data in this example, a sensible use of PCA (i.e., SVD)
would be to project the data into the subspace of the first 20 SVs,
where we can be sure that it is not noise.

% Truncate the first 20 singular values/vectors
strunc = diag(S);
strunc(21:end) = 0;
filtdata20 = U*diag(strunc)*V’;
figure(2),clf,colormap(genecolormap);
image(20*filtdata20+32)

% Truncate the first 5 singular values/vectors
strunc(6:end) = 0;
filtdata5 = U*diag(strunc)*V’;
figure(3),clf,colormap(genecolormap);
image(20*filtdata5+32)

34/58

(a) The original (b) truncate to 20

(c) Truncate to 5



35/58

How to interpret the singular vectors? The first three vectors u are
’eigengenes’, the linear combination of genes that explain the most
data.

plot(U(:,1:3))

36/58

The first three vectors v are ’eigenarrays’, the linear combination of
experiments that explain the most data.

plot(V(:,1:3))

37/58

Consider a toy example

pdata = randn(500,300);
pdata(101:200,51:100) = pdata(101:200,51:100) + 1;
pdata(301:400,201:250) = pdata(301:400,201:250) - 1;
pmean = mean(pdata,1);
pstd = std(pdata,1);
pdata = (pdata - repmat(pmean,[size(pdata,1),1]))./...

repmat(pstd,[size(pdata,1),1]);
colormap(genecolormap)
image(20*pdata+32)

38/58



39/58

Consider a toy example

[Up Sp Vp] = svd(pdata,0);
spsq = diag(Sp).^2;
semilogy(spsq(1:50),’.b’)

Should we expect the eigengenes/eigenarrays to show the separate
main effects?

40/58

41/58

plot(Up(:,1:2)),
plot(Up(:,1:3))

(d) (e)

42/58

plot(Vp(:,1:2)),
plot(Vp(:,1:3))

(f) (g)



43/58

Linear dependence – SVD

Theorem
Let the singular values of A satisfy

σ1 ≥ · · · ≥ σr > σr+1 = · · · = σn = 0.

Then the rank of A is equal to r .

Rank = the number of linearly independent columns of A.

44/58

Linear dependence I

A=[1 1; 1 2; 1 3; 1 4]
singval=svd(A)

% Third col=linear combination of first two
A1=[A A(:,1)+0.5*A(:,2)]
singval1=svd(A1)

45/58

Linear dependence II

Result:

A = 1 1 singval = 5.7794
1 2 0.7738
1 3
1 4

A1 = 1.0000 1.0000 1.5000
1.0000 2.0000 2.0000
1.0000 3.0000 2.5000
1.0000 4.0000 3.0000

singval1 = 7.3944
0.9072

0

46/58

Almost linear dependence I

A2=[A A(:,1)+0.5*A(:,2)+0.0001*randn(4,1)]
singval2=svd(A2)

--------------------------------------

A2 = 1.0000 1.0000 1.4999
1.0000 2.0000 2.0001
1.0000 3.0000 2.5000
1.0000 4.0000 3.0001

singval2 = 7.3944
0.9072
0.0001



47/58

Almost linear dependence? I

Run Matlab demo
~/.../STAT/Labs/Lab_QR_SVD/Small_singular_
values.m

48/58

How to compute the SVD? I

I Matlab:

[U,S,V] = svd(A); [U1,S,V]=svd(A,0);

I R:

(s <- svd(A))
s <- La.svd(A)

I python:

U, S, V = np.linalg.svd(A)

49/58

Computing the SVD in a numerically efficient way

50/58

Golub-Kahan (Golub-Kahan-Lanczos) bidiagonalization

A =




x x x x
x x x x
x x x x
x x x x
x x x x



→ U∗

1 A =




x x x x
0 x x x
0 x x x
0 x x x
0 x x x



→ U∗

1 AV1 =




x x 0 0
0 x x x
0 x x x
0 x x x
0 x x x






51/58

Golub-Kahan (Golub-Kahan-Lanczos) bidiagonalization

U∗4U∗3U∗2U∗1AV1V2 =




x x 0 0
0 x x 0
0 0 x x
0 0 0 x
0 0 0 0




Thus, U∗AV = B , B - bidiagonal.

52/58

Golub-Kahan (Golub-Kahan-Lanczos) bidiagonalization

B = 1 2 0 0
0 3 4 0
0 0 5 6
0 0 0 7

H=[0 B], p=[5 1 6 2 7 3 8 4]
B’ 0]

H(p,p)=
1

1 2
2 3

3 4
4 5

5 6
6 7

7

53/58

I How much does it cost to compute the SVD?
The cost for the bidiagonalization is 4mn2 − 4/3n3.
The cost for SVD: 4m2n + 8mn2 + 9n3.

I How much does it cost to LU-factorize a full matrix?
I And how much does it take to LU-factorize a sparse matrix?

53/58

I How much does it cost to compute the SVD?
The cost for the bidiagonalization is 4mn2 − 4/3n3.
The cost for SVD: 4m2n + 8mn2 + 9n3.

I How much does it cost to LU-factorize a full matrix?

I And how much does it take to LU-factorize a sparse matrix?



53/58

I How much does it cost to compute the SVD?
The cost for the bidiagonalization is 4mn2 − 4/3n3.
The cost for SVD: 4m2n + 8mn2 + 9n3.

I How much does it cost to LU-factorize a full matrix?
I And how much does it take to LU-factorize a sparse matrix?

54/58

Applications of SVD

55/58

Applications of SVD I

I Data compression
I Estimation/inversion
I Sensitivity of linear equations to data errors

The condition number of A is defined as κ(A) = σmax/σmin.
I Low rank approximation
I Image processing
I Distance to singularity Another interpretation of σi :

σi = min{‖A− B‖, s.t.rank(B) ≤ i − 1},

i.e., σi is the distance, measured by the matrix norm, to the
nearest rank i − 1 matrix.

56/58

Applications of SVD II

I General pseudoinverse Let A = UΣV T . Then

A† = V Σ−1UT

is the so-called Moore-Penrose inverse of A.
Let A(m, n),m > n. Then A† = (ATA)−1AT gives the least
square solution of Ax = y , x = A†y .
Let m < n. Then A† = AT (ATA)−1 gives the least-norm
solution of Ax = y



57/58

Applications of SVD, web searching

"Search engines like Google use enormous matrices of
cross-references, which pages link to which other pages, and what
words are on each page. When you do a Google search, the higher
ranks usually go to pages with your key words that have lots of
links to them. But there are billions of pages out there, and storing
a billion by billion matrix is trouble, not to mention searching
through it.
In searching, one only cares about the main directions that the Web
is taking. So the first few singular values create a very good
approximation for the enormous matrix, can be searched relatively
quickly (just a few billion entries) and provide compression ratios of
millions to one. "

58/58

LS via SVD

‖Ax − b‖22 = ‖UT (AVV T x − b)‖22 = ‖Σ(V T x)− UTb‖22

=
r∑

i=1
(σizi − uT

i b)2 +
m∑

i=r+1
(uT

i b)2.

Thus,

min ‖Ax − b‖22 =
r∑

i=1

(σizi − uT
i b)2

︸ ︷︷ ︸
set to 0

+
m∑

i=r+1

(uT
i b)2

︸ ︷︷ ︸
does not depend on x


