Matrices and Statistics with Applications
Solution of large sparse Least Square problems

Maya Neytcheva
SeSE, September 2020

Least square problems I

Given $A(m,n)$ with full column rank, $b(n,1)$, consistent with A. We want to solve

$$Ax = b$$

in the Least Squares sense, thus, $x = (A^T A)^{-1} A^T b$.

We do not want to form $A^T A$ because
- it is usually badly conditioned
- it is in general full even if A is sparse.

$A^T A$ is symmetric positive definite and we have a method for such systems.

The Conjugate Gradient (CG) method

Initialize: $r^{(0)} = Ax^{(0)} - b$, $g^{(0)} = r^{(0)}$

For $k = 0, 1, \ldots$, until convergence

\[
\tau_k = \begin{pmatrix} r^{(k)} & r^{(k)} \\ Ag^{(k)} & g^{(k)} \end{pmatrix} \\
\begin{pmatrix} r^{(k+1)} & r^{(k+1)} \\ Ag^{(k+1)} & g^{(k+1)} \end{pmatrix} = r^{(k+1)} + \beta^k g^k
\]

end

$r^{(k)}$ – iteratively computed residuals
g^k – search directions
CG: the algorithm

\[x = x_0 \]
\[r = A \times x - b \]
\[\delta_0 = (r, r) \]
\[g = -r \]
Repeat: \[h = A \times g \]
\[\tau = \delta_0 / (g, h) \]
\[x = x + \tau \times g \]
\[\delta_1 = (r, r) \]
\[g = -r + \beta \times g \]
Computational complexity of one CG iteration: \(O(N) \), where \(A(N, N) \), sparse.

Rate of convergence of the CG method

Theorem: Let \(A \) is symmetric and positive definite.
Suppose that for some set \(S \), containing all eigenvalues of \(A \), for some polynomial \(P(\lambda) \in \Pi_k^+ \), and some constant \(M \) there holds
\[\max_{\lambda \in S} |P(\lambda)| \leq M. \]
Then,
\[\|x_{\text{exact}} - x^{(k)}\|_A \leq M\|x_{\text{exact}} - x^{(0)}\|_A. \]
\[\|e^k\|_A \leq 2 \left[\frac{\lambda(A) + 1}{\lambda(A) - 1} \right]^k \|e^0\|_A \]
\[\lambda(A) \text{ - the condition number of } A, \|x\|_A^2 = (x, Ax) \]

Optimality properties of the CG method

Opt1: Mutually orthogonal search directions: \((g^{k+1}, Ag^j) = 0, j = 0, \cdots, k \)
Opt2: There holds \(r^{(k+1)} \perp K_m(A, r^{(0)}), i.e., (r^{(k+1)}, Ar^{(k)}) = 0, j = 0, \cdots, k \)
Opt3: Optimization property: \(\|r^{(k)}\| \) smallest possible at any step, since CG minimizes the functional \(f(x) = 1/2(x, Ax) - (x, b) \)
Opt4: \((e^{(k+1)}, Ag^j) = (g^{k+1}, Ag^j) = (r^{(k+1)}, r^{(k)}) = 0, j = 0, \cdots, k \)
Opt5: Finite termination property: there are no breakdowns of the CG algorithm.
Reasoning: if \(g^j = 0 \) then \(\tau_j \) is not defined. The vectors \(g^j \) are computed from the formula \(g^j = r^{(k)} + \beta_j g^{k-1} \). Then \(0 = (r^{(k)}, g^j) = -(r^{(k)}, r^{(k)}) + \beta_j (r^{(k)}, g^{k-1}, 0) \Rightarrow r^{(k)}0, i.e., the solution is already found.
As soon as \(x^{(k)} \neq x_{\text{exact}}, \) then \(r^{(k)} \neq 0 \) and then \(g^{k+1} \neq 0 \). However, we can generate at most \(n \) mutually orthogonal vectors in \(R^n \), thus, CG has a finite termination property.

Rate of convergence (cont)

Repeat:
\[\|e^k\|_A \leq \varepsilon \|e^0\|_A \]
Seek now the smallest \(k \), such that
\[\|e^k\|_A \leq \varepsilon \|e^0\|_A \]
we want \(\left(\frac{\lambda + 1}{\lambda - 1} \right)^k > \frac{2}{\varepsilon} \)
\[\Rightarrow k \ln \left(\frac{\lambda + 1}{\lambda - 1} \right) > \ln \left(\frac{2}{\varepsilon} \right) \]
\[\Rightarrow k > \ln \left(\frac{2}{\varepsilon} \right) / \ln \left(\frac{\lambda + 1}{\lambda - 1} \right) \]
\[\Rightarrow k > \frac{1}{2} \sqrt{\lambda} \ln \left(\frac{2}{\varepsilon} \right) \]
Definition of a Krylov subspace, based on a vector $v \in \mathbb{R}^n$ and a matrix $B \in \mathbb{R}^{n \times n}$,

$$K_k(B, v) = \text{span}\{v, Bv, B^2v, \ldots, B^{k-1}v\}.$$

Through the iterations, CG constructs a Krylov subspace, based on A and b.
Remarkably, the solution x lies in that space!

CGLS: solve the normal equation for $A \in \mathbb{R}^{n \times m}$

History:
CG has appeared in a paper by Hestenes and Stiefel (1952). In that paper and in a followup paper by Stiefel (1952), a version of CG for solving the normal equation has been presented.
First result for using a preconditioned CG for solving Least Square problems appears in a paper by Peter Läuchli (1959).

CGLS

Recall the definition of a Krylov subspace, based on a vector $v \in \mathbb{R}^n$ and a matrix $B \in \mathbb{R}^{n \times n}$,

$$K_k(B, v) = \text{span}\{v, Bv, B^2v, \ldots, B^{k-1}v\}.$$

The standard CG method minimizes the following functional

$$f(x) = \frac{1}{2} (x, Ax) - (x, b).$$

Let A be rectangular and denote A^\dagger be its pseudoinverse. Denote $\hat{x} = A^\dagger b$ - the pseudoinverse solution and the corresponding residual $\hat{r} = A\hat{x}$. Then, in the CG framework, \hat{x}^k minimizes the following error functional:

$$E_{\mu}(\hat{x}^k) = (\hat{x} - x^k)^T (A^T A)^\mu (\hat{x} + x^k)$$

where $\hat{x}^k = (x)^0 + K_k(A^T A, (s)^0), \ s^0 = A^T (b - Ax^0)$.

CGLS - Conjugate Gradient for Least Square problems, i.e., CG for the normal equation

Remember, we do not want to form $A^T A$!!

CGLS

Recall the definition of a Krylov subspace, based on a vector $v \in \mathbb{R}^n$ and a matrix $B \in \mathbb{R}^{n \times n}$,

$$K_k(B, v) = \text{span}\{v, Bv, B^2v, \ldots, B^{k-1}v\}.$$

The standard CG method minimizes the following functional

$$f(x) = \frac{1}{2} (x, Ax) - (x, b).$$

Let A be rectangular and denote A^\dagger be its pseudoinverse. Denote $\hat{x} = A^\dagger b$ - the pseudoinverse solution and the corresponding residual $\hat{r} = A\hat{x}$. Then, in the CG framework, \hat{x}^k minimizes the following error functional:

$$E_{\mu}(\hat{x}^k) = (\hat{x} - x^k)^T (A^T A)^\mu (\hat{x} + x^k)$$

where $\hat{x}^k = (x)^0 + K_k(A^T A, (s)^0), \ s^0 = A^T (b - Ax^0)$.
\[E_\mu(x^k) = (\hat{x} - x^k)^T (A^T A)^\mu (\hat{x} + x^k) \]

Values of \(\mu \) of practical interest:
- \(\mu = 0 \) minimizes \(\|\hat{x} - x^k\|^2 \)
- \(\mu = 1 \) minimizes \(\|\hat{r} - r^k\|^2 = \|\hat{r}\|^2 - \|r^k\|^2 \)
 (due to the orthogonality relation \(\hat{r} \perp \hat{r} - r^k \))
- \(\mu = 2 \) minimizes \(\|A^T (\hat{r} - r^k)\|^2 \)
- \(\mu = 0 \) - feasible only for consistent systems.
- \(\mu = 1 \) - CGLS

Properties of CGSL:
- \(E_\mu(x^k) \) decreases monotonically.
- For \(\mu = 1, 2 \), \(E_\nu(x^k) \) decreases monotonically for all \(\nu \leq \mu \).
- For \(\mu = 1 \) also \(r^k \) decreases monotonically.
- The rate of convergence is estimated as follows:
 \[E_\mu(x^k) < 2 \left(\frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1} \right)^k E_\mu(x^0), \]
 where \(\kappa = \kappa(A^T A) \).
- For \(\mu = 1 \), both \(\|\hat{r} - r^k\| \) and \(\|\hat{x} - x^k\| \) decrease monotonically, however \(\|A^T r^k\| \) does oscillate (not due to roundoff errors).

Algorithm CGLS

Unpreconditioned CG
\[x = x_0, \ r = b - A^* x \]
\[\text{delta0} = (r,r) \]
\[g = -r \]
Repeat: \(h = A^* g \)
\[\tau = \text{delta0}/(g,h) \]
\[x = x + \tau \cdot g \]
\[r = r - \tau \cdot h \]
\[\text{delta1} = (r,r) \]
if \(\text{delta1} < \epsilon \) stop
\[\beta = \text{delta1}/\text{delta0} \]
\[g = r + \beta \cdot g \]

Unreconditioned CGLS
\[x = x_0, \ r = b - A^* x \]
\[\text{delta0} = (s,s) \]
\[g = s = A^T * r \]
Repeat: \(h = A^* s \)
\[\tau = \text{delta0}/(h,h) \]
\[x = x + \tau \cdot s \]
\[r = r - \tau \cdot h \]
\[\text{delta1} = (s,s) \]
if \(\text{delta1} < \epsilon \) stop
\[\beta = \text{delta1}/\text{delta0} \]
\[g = s + \beta \cdot g \]

Note: \(x, g \in \mathbb{R}^n, \ r, h \in \mathbb{R}^m, (A \in \mathbb{R}^{n \times m}) \)

With \(s = A^T (b - Ax) \), by construction, \(x \) minimizes
\[s^T (A^T A)^{-1} s \]
over the space \(K_k(A^T A, A^T b) \).
Thus, \(s^k \in T_k, \ T_k = \{A^T(b - Ax) \mid x \in K_k(A^T A, A^T b)\} \) and any vector from \(T_k \) can be expressed as
\[s^k = (I - A^T A P_{k-1} A^T A) A^T b = R_k(A^T A) A^T b, \]
where \(P_{k-1} \) is a polynomial of degree \(k - 1 \) and \(R_k \) is a residual polynomial of degree less than or equal \(k \) and is normalized at zero, thus \(R_k(0) = 1 \).
Consider the singular value decomposition of A, $A = U\Sigma V^T$. Then

$$b = \sum_{i=1}^{m} b_i u_i, \quad A^T b = \sum_{i=1}^{n} b_i \sigma_i v_i$$

and

$$\|s^k\|_{(A^T A)^{-1}} = \min_{R \in \Pi_k} \|R_k(A^T A)A^T b^k\|_{(A^T A)^{-1}}$$

Any polynomial from Π_k will give an upper bound. For the choice $R_n(\sigma^2) = \left(1 - \frac{\sigma^2}{\sigma_1^2}\right) \left(1 - \frac{\sigma^2}{\sigma_2^2}\right) \cdots \left(1 - \frac{\sigma^2}{\sigma_n^2}\right)$ we get $\|s_n\|_{(A^T A)^{-1}} = 0$, which shows the final termination property of CGLS.

If A has only q distinct singular values, then CGLS will converge in at most q iterations.

A good preconditioner for CGLS: the distinct singular values of the preconditioned matrix should be very few!

The normal equations for the preconditioned problem in factored form:

$$C^{-T} A^T (AC^{-1} y - b) = C^{-T} A^T (Ax - b) = 0.$$

The convergence now depends on the condition number $\kappa(AC^{-1})$.

Preconditioning

CG:

$$Ax = b \rightarrow C^{-1}Ax = C^{-1}b$$

such that $\kappa(C^{-1}A)$ is small, as close as possible to 1. For CG the important role is played by the eigenvalues of $\kappa(C^{-1}A)$.

Algorithm: Preconditioned CGLS
Algorithm: Preconditioned CGLS

x = x0,

r = b - A*x;

g = s = A^T*r

delta0 = (s,s)

Repeat: h = A*s

tau = delta0/(h,h)

x = x + tau*s

r = r - tau*h

s = A^T*r

delta1 = (s,s)

if delta1 <= eps, stop

beta = delta1/delta0

g = s + beta*g

Preconditioned CGLS

x = x0,

r = b - A*x;

g = s = C^{-1} A^T*r

delta0 = (s,s)

Repeat: t = C^{-1}s; h = A*s

tau = delta0/(h,h)

x = x + tau*t

r = r - tau*h

s = C^{-1}A^T*r

delta1 = (s,s)

if delta1 <= eps, stop

beta = delta1/delta0

g = s + beta*g