Principal Components Analysis and Handwritten Digits

L. Eldén

Linköping University

September 2020
Application: Handwritten digits, classification

Digitized handwritten digits, 16×16 pixels

Vectorize the image: vector in \mathbb{R}^{256}
Means of digits

0 1 2 3
4 5 6 7
8 9
Set of digits from two classes
Matrix of digits

81 digits in a matrix $A \in \mathbb{R}^{256 \times 81}$:

Each column is a digit.
Principal component analysis

Compute the SVD: $[U, S, V] = \text{svd}(A)$;

Singular values:
First two singular vectors: u_1 and u_2

Principal components: u_1 and u_2
u_1 and u_2 are orthogonal basis vector in a two dimensional subspace of \mathbb{R}^{256}.

Project all the digits in A down to the 2D space: The coordinates of a vector $a \in \mathbb{R}^{256}$ are $u_1^T a$ and $u_2^T a$.

The coordinates of all digits: $(U(:,1:2))^\top A$
PCA for classification etc.

Classical approach: Project to a low-dimensional space (2D or 3D) and plot. Separate classes visually.

PCA = SVD analysis

1. compute the parameters of the method (singular vectors) from training data
2. project the data to a k-dimensional space and perform the analysis on test data (that are manually analyzed)
3. select the value of k that gives best performance for the test data
4. apply the method to real data
Many different variants are possible, see e.g. the books below.

L. Eldén.
Matrix Methods in Data Mining and Pattern Recognition, Second Edition.
SIAM, 2019.

T. Hastie, R. Tibshirani, and J. Friedman.
The Elements of Statistical Learning. Data mining, Inference and Prediction.