Matrices and Statistics with Applications A Numerical Point of View

L. Eldén

LiU

September 2020

L. Eldén (LiU)

Computational Statistics

September 2020 1 / 15

"Gone are the days when statisticians used to work with fixed, laboriously compiled and labelled datasets." Christos Dimitrakakis, Computer Science and Engineering, Chalmers, 2014

- Development of computers and computation
- Scientific research involves automated data collection
- Very large and highly inhomogeneous data sets
- Development of new statistical/computational methods for data analysis
- Necessary to use efficient and reliable numerical methods

- Built on the mathematical theory and methods of statistics
- Includes
 - visualization
 - statistical computing
 - Monte Carlo methods
 - Exploratory methods
- Development of computationally-intensive methods for mining and visualization of large, non-homogeneous, multi-dimensional datasets to discover knowledge in the data
- Probability models
- Statements of confidence or of probability
- Model building and evaluation

- Techniques for discovering structure in data with emphasis on large-dimensional datasets
 - Exploratory or visual
 - estimation, clustering, or classification
- Statistical learning
- Methods for analysis of extremely large datasets (large number of observations or large number of dimensions)
- Computationally-intensive methods of analysis (Monte Carlo methods or resampling methods)
- Simulation methods
- Methods for statistical modeling
 - Classical statistical parametric models, semiparametric models or nonparametric models
 - Frequentist or Bayesian approach

- Explicitly or implicitly described models, e.g via differential equations, especially Stochastic Differential Equations.
- Numerical methods for statistical analysis (statistical computing)
- Methods for statistical problems that have a major "computer science" aspect (record matching, for example)

- Large data sets: efficient, stable and robust algorithms (very often from linear algebra)
- Understanding of the influence of floating point round off errors
- Algorithms from state-of-the-art software libraries, often packaged in high level programming systems (MATLAB, R)

Answer, in general: NO!

IEEE double precision arithmetic	
 64 bit format 	
$ullet$ 52 bit mantissa \Longrightarrow relative precision $pprox 10^{-16}$	

Here is one way to see the answer¹:

- According to molecular physics, there are approximately $3 \cdot 10^8$ molecules per meter in a gas at atmospheric conditions essentially the cube root of Avogadro's number.
- The circumference of the earth is $4\cdot 10^7$ meters, so in a circle around the earth, there are around 10^{16} molecules.
- In IEEE double precision arithmetic, there are 2⁵² numbers between 1 and 2, which is also about 10¹⁶.
- So if we put a giant circle around the earth with a distance coordinate ranging from 1 to 2, the spacing of the floating-point numbers along the circle will be about the same as the spacing of the air molecules.

¹due to Nick Trefethen, Oxford

BUT: If one performs computations in a bad way, one can lose all the precision.

Example: Computation of variance using a one-pass method.

Warning: Sometimes computations for ultra-large problems (e.g. in AI) are done using reduced precision arithmetic (for speed). Many standard algorithms give sufficient accuracy, perhaps after some tweaking. Let y be a vector of observed quantities and a matrix X of explaining variables.

Regression model:

$$y \sim X\beta + \epsilon,$$

where ϵ is a random variable.

Least squares method:

Determine the regression coefficients β by solving

$$\min_{\beta} \|y - X\beta\|_2$$

Solve

$$\min_{\beta} \|y - X\beta\|_2$$

- Algorithms, efficiency and stability:
 - Normal equations: solve $X^T X \beta = X^T y$
 - **Q** QR decomposition: X = QR, where Q is orthogonal and R is triangular
 - Singular value decomposition: $X = U\Sigma V^T$, where U and V are orthogonal and Σ is diagonal
- What to do if the explaining variables (columns of X) are (almost) collinear (linearly dependent)?
- How to solve large problems? How large is large?
- How to solve large structured (sparse, Toeplitz, etc.) problems?

How large is large?

Answer: Depends on the hardware.

```
Today (assume for simplicity that X is n \times n)
```

- Small: n ≤ 1000 Takes less than 5 (say) seconds on any computer. Standard methods
- Medium: 1000 ≤ 10000 Takes minutes. Standard methods
- Large: $n > 10^4$

Takes minutes-hours-days. Often only possible to solve if the problem is structured (sparse, Toeplitz, etc.) Iterative methods, sometimes non-standard

• Ultralarge: $n \approx 10^9$ and larger Only special structures and special methods. Answer: Depends on the hardware.

Computation of SVD (Matlab on desktop computer):

dimension	time (s)	time 2002
500	0.05	12
1000	0.5	129
5000	46	

R is based on the same subroutine library: LAPACK

High quality algorithms packaged with graphics and other tools

- MATLAB (Statistics toolbox)
- R

Two commandments of computational statistics:

- Always use a high quality programming environment!
- Never write your own code for standard tasks like solving a linear system, QR, singular value decomposition, etc.!