The SparseM Package

June 6, 2008

Version 0.78

Author Roger Koenker <rkoenker@uiuc.edu> and Pin Ng <Pin.Ng@NAU.EDU>
Maintainer Roger Koenker <rkoenker @uiuc.edu>

Depends R (>= 1.9), methods, stats, utils

LazyLoad Yes

ZipData No

Description Basic linear algebra for sparse matrices

License GPL (>=2)

Title Sparse Linear Algebra

URL http://www.econ.uiuc.edu/~roger/research/sparse/sparse.html

R topics documented:

SparseM.hb L 2
SparseM.image e e 4
SparseM.ontology L e e e e 5
SparseMLOPS e e e e e e e e e e 7
SparseMLsolve L L e 8
characteror NULL-class i 10
Isq . . o e 10
matrix.coo-Class e e e e e e e 12
Matrix.CSC-Class e e e e e e e e e e 12
matrix.csc.hb-class 13
matrix.csr-class L. e e e e 14
matrix.csr.chol-class 16
matrix.ssc-class L. e e e e e e 17
matrix.ssc.hb-class e e 18
matrix.ssr-Class L. e e e e 19
mslm-class e 20

2 SparseM.hb

numericor NULL-class 20
slm-class 21
SIm. . e 22
sImLfit . . L 24
slmmethods 25
summary.mslm-class 27
summary.slm-class L 27
triogramX L e e e e e e e e e 27

Index 29

SparseM.hb Harwell-Boeing Format Sparse Matrices
Description

Read, and extract components of data in Harwell-Boeing sparse matrix format.

Usage

read.matrix.hb (file)
model .matrix (object, ...)
model.response (data, type)

Arguments

file file name to read from or

data, object an object of either 'matrix.csc.hb’ or "matrix.ssc.hb’ class

bl

type One of “"any"’, ‘"numeric"’, ‘"double"’. Using the either of latter two coerces
the result to have storage mode ‘"double"’

additional arguments to model.matrix

Details

Sparse coefficient matrices in the Harwell-Boeing format are stored in 80-column records. Each
file begins with a multiple line header block followed by two, three or four data blocks. The header
block contains summary information on the storage formats and storage requirements. The data
blocks contain information of the sparse coefficient matrix and data for the right-hand-side of the
linear system of equations, initial guess of the solution and the exact solutions if they exist. The
function model.matrix extracts the X matrix component. The function model.response
extracts the y vector (or matrix). The function model .guess extracts the guess vector. The
function model . xexact extracts the xexact vector. This function is written in R replacing a prior
implementation based on iohb.c which had memory fault difficulties. The function write.matrix.hb
has been purged; users wishing to write matrices in Harwell-Boeing format are advised to convert
SparseM matrices to Matrix classes and use writeHB from the Matrix package. Contributions of
code to facilitate this conversion would be appreciated!

SparseM.hb 3

Value

The function read.matrix.hb returns a list of classmatrix.csc.hbormatrix.ssc.hb
depending on how the coefficient matrix is stored in the file.

ra ra component of the csc or ssc format of the coefficient matrix, X.
ja ja component of the csc or ssc format of the coefficient matrix, X.
ia ia component of the csc or ssc format of the coefficient matrix, X.
rhs.ra ra component of the right-hand-side, y, if stored in csc or ssc format; right-hand-

side stored in dense vector or matrix otherwise.

rhs. ja ja component of the right-hand-side, y, if stored in csc or ssc format; a null
vector otherwise.

rhs.ia ia component of the right-hand-side, y, if stored in csc or ssc format; a null
vector otherwise.

xexact vector of the exact solutions, b, if they exist; a null vector otherwise.

guess vector of the initial guess of the solutions if they exist; a null vector otherwise.

dimension dimenson of the coefficient matrix, X.

rhs.dim dimenson of the right-hand-side, y.

rhs.mode storage mode of the right-hand-side; can be full storage or same format as the
coefficient matrix, for the moment the only allowed mode is "F" for full, or
dense mode.

The function model . mat rix returns the X matrix of classmatrix.csr. The functionmodel . response
returns the y vector (or matrix). The function model . guess returns the guess vector (or matrix).
The function model . xexact returns the xexact vector (or matrix).

Author(s)

Pin Ng

References

Duff, I.S., Grimes, R.G. and Lewis, J.G. (1992) User’s Guide for Harwell-Boeing Sparse Matrix
Collection at http://math.nist.gov/MatrixMarket/collections/hb.html

See Also

s1m for sparse version of 1m

SparseM. ops for operators on class matrix.csr

SparseM. solve for linear equation solving for class matrix.csr
SparseM. image for image plotting of class matrix.csr
SparseM.ontology for coercion of class matrix.csr

http://math.nist.gov/MatrixMarket/collections/hb.html

4 SparseM.image

Examples

read.matrix.hb(system.file("data","lsg.rra",package = "SparseM"))-> hb.o
class (hb.o) # —> [1] "matrix.csc.hb"

model .matrix (hb.o)->X

class (X) # -> "matrix.csr"

dim(X) # -> [1] 1850 712

y <- model.response (hb.o) # extract the rhs

length(y) # [1] 1850
read.matrix.hb(system.file ("data", "rua_32_ax.rua",package = "SparseM"))-> hb.o
X <-= model.matrix (hb.o)

y <- model.response (hb.o) # extract the rhs

g <- model.guess (hb.o) # extract the guess

a <- model.xexact (hb.o) # extract the xexact

fit <= solve(t(X) %*% X, t(X) %$x% y) # compare solution with xexact solution

SparseM. image Image Plot for Sparse Matrices

Description

Display the pattern of non-zero entries of a matrix of class matrix.csr ormatrix.csc

Usage
image (x, ...)

Arguments
X a matrix of class matrix.csr ormatrix.csc
... additional arguments.

Details

The pattern of the non-zero entries of a sparse matrix is displayed. By default nonzero entries of
the matrix appear as gray blocks and zero entries as white background.

References

Koenker, R and Ng, P. (2002). SparseM: A Sparse Matrix Package for R,
http://www.econ.uiuc.edu/~roger/research

See Also

SparseM.ops, SparseM.solve, SparseM.ontology

http://www.econ.uiuc.edu/~roger/research

SparseM.ontology

Examples

a <— rnorm(20x5)

A <- matrix(a,20,5)

Alrow (A)>col (A)+4|row (A)<col (A)+3] <= 0

b <= rnorm(20%5)

B <- matrix (b, 20,5)

Blrow (A)>col (A)+2|row (A)<col (A)+2] <= 0

image (as.matrix.csr (A)$*x%as.matrix.csr (t (B)))

SparseM.ontology Sparse Matrix Class

Description

This group of functions evaluates and coerces changes in class structure.

Usage

as.matrix.
as.matrix.
as.matrix.
as.matrix.
is.matrix.
is.matrix.
is.matrix.
is.matrix.

Arguments

X
nrow
ncol

eps

Details

csr(x, nrow = 1, ncol 1, eps = .MachineS$double.eps,
csc(x, nrow = 1, ncol = 1, eps = .MachineS$Sdouble.eps,
ssr(x, nrow = 1, ncol = 1, eps = .MachineS$double.eps,
ssc(x, nrow = 1, ncol = 1, eps = .MachineS$Sdouble.eps,
csr(x, ...)
csc(x, ...)
ssr(x, ...)
ssc(x,)

is a matrix, or vector object, of either dense or sparse form
number of rows of matrix
number of columns of matrix

A tolerance parameter: elements of X such that abs(x) < eps set to zero. This
argument is only relevant when coercing matrices from dense to sparse form.
Defaults to eps = .Machine$double.eps

other arguments

The function matrix . csc acts like mat rix to coerce a vector object to a sparse matrix object of
class matrix.csr. This aspect of the code is in the process of conversion from S3 to S4 classes.
For the most part the S3 syntax prevails. An exception is the code to coerce vectors to diagonal ma-
trix form which uses as (v, "matrix.diag.csr". The generic functions as.matrix.xxx
coerce a matrix x into a matrix of storage class matrix.xxx. The argument matrix x may be of
conventional dense form, or of any of the four supported classes: matrix.csr, matrix.csc,
matrix.ssr, matrix.ssc. The generic functions is.matrix.xxx evaluate whether the

o e e
—_— — — —

6 SparseM.ontology

argument is of class matrix.xxx. The function as.matrix transforms a matrix of any sparse
class into conventional dense form. The primary storage class for sparse matrices is the com-
pressed sparse Tow matrix.csr class. An n by m matrix A with real elements a;;, stored in
matrix.csr format consists of three arrays:

ra: areal array of nnz elements containing the non-zero elements of A, stored in row order. Thus,
if i<j, all elements of row i precede elements from row j. The order of elements within the rows is
immaterial.

ja: an integer array of nnz elements containing the column indices of the elements stored in ra.

ia: an integer array of n+/ elements containing pointers to the beginning of each row in the arrays
ra and ja. Thus ia [i] indicates the position in the arrays ra and ja where the ith row begins.
The last, (n+1)st, element of ia indicates where the n+1 row would start, if it existed.

The compressed sparse column class matrix.csc is defined in an analogous way, as are the
matrix.ssr, symmetric sparse row, and matrix.ssc, symmetric sparse column classes.

Note

as.matrix.ssrand as.matrix.ssc should ONLY be used with symmetric matrices.

as.matrix.csr (x), when x is an object of class matrix.csr.chol (that is, an object re-
turned by a call to chol (a) when a is an object of class matrix.csr or matric.csc), by
default returns an upper triangular matrix, which is not consistent with the result of chol in the
base package. To get an lower triangular mat ric.csr matrix, use either as.matrix.csr (x,
upper.tri = FALSE) ort (as.matrix.csr(x)).

References

Koenker, R and Ng, P. (2002). SparseM: A Sparse Matrix Package for R,
http://www.econ.uiuc.edu/~roger/research

See Also

SparseM. hb for handling Harwell-Boeing sparse matrices.

Examples

nl <- 10

p <- 5

a <— rnorm(nlxp)
alabs(a)<0.5] <= 0

A <- matrix(a,nl,p)

B <— t (A)%*x%A

A.csr <- as.matrix.csr
A

B

(A)

.csc <— as.matrix.csc (A)
.8sr <- as.matrix.ssr (B)
B.ssc <- as.matrix.ssc(B)

is.matrix.csr (A.csr) # —-> TRUE
is.matrix.csc(A.csc) # —-> TRUE
is.matrix.ssr (B.ssr) # —-> TRUE
is.matrix.ssc(B.ssc) # —-> TRUE

http://www.econ.uiuc.edu/~roger/research

SparseM.ops 7

A.csr)
A.csc)
B.ssr)
B.ssc)
as.matrix.csr(rep(0,9),3,3) #sparse matrix of all zeros

as.matrix (
as.matrix(
as.matrix(
(

as.matrix

as(4,"matrix.diag.csr") #identity matrix of dimension 4
SparseM.ops Basic Linear Algebra for Sparse Matrices
Description

Basic linear algebra operations for sparse matrices of class matrix.csr.

Arguments
x matrix of class matrix.csr.
% matrix of class matrix.csr or a dense matrix or vector.
value replacement values.
i,3 vectors of elements to extract or replace.
nrow optional number of rows for the result.
lag an integer indicating which lag to use.

differences an integer indicating the order of the difference.

Details

Linear algebra operations for matrices of class matrix.csr are designed to behave exactly as
for regular matrices. In particular, matrix multiplication, kronecker product, addition, subtraction
and various logical operations should work as with the conventional dense form of matrix stor-
age, as does indexing, rbind, cbind, and diagonal assignment and extraction. The method diag
may be used to extract the diagonal of a matrix.csr object, to create a sparse diagonal see
SparseM.ontology.

The function det computes the determinant of the argument matrix. If the matrix is of class
matrix.csr then it must be symmetric, or an error will be returned. If the matrix is of class
matrix.csr.chol then the determinant of the Cholesky factor is returned, ie the product of the
diagonal elements. For the log determinant, use det (x, logarithm=TRUE).

The function norm is used to check for symmetry by computing the maximum of the elements of
the difference between the matrix and its transpose. Optionally, this sup norm can be replaced by
the Hilbert-Schmidt norm, or the 11 norm.

References

Koenker, R and Ng, P. (2002). SparseM: A Sparse Matrix Package for R,
http://www.econ.uiuc.edu/~roger/research

http://www.econ.uiuc.edu/~roger/research

8 SparseM.solve

See Also

s1m for sparse linear model fitting. SparseM.ontology for coercion and other class relations
involving the sparse matrix classes.

Examples
nl <- 10
n2 <- 10
p <- 6

y <— rnorm(nl)

a <- rnorm(nl*p)
alabs(a)<0.5] <- 0

A <- matrix(a,nl,p)

A.csr <— as.matrix.csr (A)
b <- rnorm(n2+*p)
blabs(b)<1.0] <= 0

B <- matrix(b,n2,p)

B.csr <- as.matrix.csr (B)

matrix transposition and multiplication
A.csr%*x%t (B.csr)

kronecker product
A.csr %x% matrix(1:4,2,2)

SparseM.solve Linear Equation Solving for Sparse Matrices

Description

chol performs a Cholesky decomposition of a symmetric positive definite sparse matrix x of class
matrix.csr.

backsolve performs a triangular back-fitting to compute the solutions of a system of linear equa-
tions in one step.

backsolve and forwardsolve can also split the functionality of backsolve into two steps.
solve combines chol and backsolve and will compute the inverse of a matrix if the right-
hand-side is missing.

Usage

chol (x, pivot = FALSE, ...)

backsolve (r, x, k = NULL, upper.tri = NULL, transpose = NULL, twice = TRUE,
forwardsolve(l, x, k = ncol(l), upper.tri = FALSE, transpose = FALSE)
solve(a, b, ...)

SparseM.solve 9

Arguments
a symmetric positive definite matrix of class matrix.csr.
r object of class matrix.csr.chol returned by the function chol.
1 object of class matrix.csr.chol returned by the function chol.
X,b vector(regular matrix) of right-hand-side(s) of a system of linear equations.
k inherited from the generic; not used here.
pivot inherited from the generic; not used here.
upper.tri inherited from the generic; not used here.
transpose inherited from the generic; not used here.
twice Logical flag: If true backsolve solves twice, see below.
further arguments passed to or from other methods.
Details

chol performs a Cholesky decomposition of a symmetric positive definite sparse matrix a of class
matrix.csr using the block sparse Cholesky algorithm of Ng and Peyton (1993). The struc-
ture of the resulting matrix.csr.chol object is relatively complicated. If necessary it can
be coerced back to a matrix.csr object as usual with as.matrix.csr. backsolve does
triangular back-fitting to compute the solutions of a system of linear equations. For systems of
linear equations that only vary on the right-hand-side, the result from chol can be reused. Con-
trary to the behavior of backsolve in base R, the default behavior of backsolve (C,b) when
Cisamatrix.csr.chol object is to produce a solution to the system Ax = b where C <—
chol (A7), see the example section. When the flag twice is FALSE then backsolve solves the
system C'x = b, up to a permutation — see the comments below. The command solve combines
chol and backsolve, and will compute the inverse of a matrix if the right-hand-side is missing.
The determinant of the Cholesky factor is returned providing a means to efficiently compute the
determinant of sparse positive definite symmetric matrices.

Note

Because the sparse Cholesky algorithm re-orders the positive definite sparse matrix A, the value of
x <—- backsolve (C, b) does not equal the solution to the triangular system C'z = b, but is
instead the solution to the system C Px = Pb for some permutation matrix P (and analogously for
x <- forwardsolve (C, b)). However, a little algebra easily shows that backsolve (C,
forwardsolve (C, b), twice = FALSE) isthe solution to the equation Az = b. Finally,
if C <- chol (&) for some sparse covariance matrix A, and z is a conformable standard normal
vector, then the product y <- as.matrix.csr (C) %% z is normal with covariance matrix
A irrespective of the permutation of the Cholesky factor.

References
Koenker, R and Ng, P. (2002). SparseM: A Sparse Matrix Package for R,
http://www.econ.uiuc.edu/~roger/research

Ng, E. G. and B. W. Peyton (1993), "Block sparse Cholesky algorithms on advanced uniprocessor
computers”, SIAM J. Sci. Comput., 14, pp. 1034-1056.

http://www.econ.uiuc.edu/~roger/research

10 Isq

See Also

s1m for sparse version of 1m

Examples

data (1lsq)

class(lsq) # —-> [1] "matrix.csc.hb"

model .matrix (lsqg)->design.o

class (design.o) # -> "matrix.csr"

dim(design.o) # -> [1] 1850 712

y <- model.response(lsqg) # extract the rhs

length(y) # [1] 1850

t (design.o) $*x%design.o —> XpX

t (design.o) $*x%y —-> Xpy

chol (XpX)->chol.o

backsolve (chol.o,Xpy)-> bl # least squares solutions in two steps
solve (XpX,Xpy) —> b2 # least squares estimates in one step
backsolve (chol.o, forwardsolve(chol.o, Xpy), twice = FALSE) -> b3 # in three steps

character or NULL-class
Class "character or NULL"

Description

A virtual class needed by the "matrix.csc.hb" class

Objects from the Class

A virtual Class: No objects may be created from it.

Methods

No methods defined with class "character or NULL" in the signature.

1lsqg Least Squares Problems in Surveying

Description
One of the four matrices from the least-squares solution of problems in surveying that were used by
Michael Saunders and Chris Paige in the testing of LSQR

Usage

data (1lsq)

Isq 11

Format

A list of class matrix.csc.hb or matrix.ssc.hb depending on how the coefficient matrix
is stored with the following components:

ra ra component of the csc or ssc format of the coefficient matrix, X.

ja ja component of the csc or ssc format of the coefficient matrix, X.

ia ia component of the csc or ssc format of the coefficient matrix, X.

rhs.ra ra component of the right-hand-side, y, if stored in csc or ssc format; right-hand-side stored in
dense vector or matrix otherwise.

rhs.ja ja component of the right-hand-side, y, if stored in csc or ssc format; a null vector otherwise.
rhs.ia ia component of the right-hand-side, y, if stored in csc or ssc format; a null vector otherwise.
xexact vector of the exact solutions, b, if they exist; a null vector o therwise.
guess vector of the initial guess of the solutions if they exist; a null vector otherwise.
dim dimenson of the coefficient matrix, X.
rhs.dim dimenson of the right-hand-side, y.

rhs.mode storage mode of the right-hand-side; can be full storage or same format as the coefficient
matrix.

References

Koenker, R and Ng, P. (2002). SparseM: A Sparse Matrix Package for R,
http://www.econ.uiuc.edu/~roger/research

Matrix Market, http://math.nist.gov/MatrixMarket/data/Harwell-Boeing/lsqg/
lsg.html

See Also

read.matrix.hb

Examples

data (1lsq)

class(lsq) # -> [1] "matrix.csc.hb"

model .matrix (lsqg)—->X

class (X) # -> "matrix.csr"

dim(X) # -> [1] 1850 712

y <- model.response(lsqg) # extract the rhs
length(y) # [1] 1850

http://www.econ.uiuc.edu/~roger/research
http://math.nist.gov/MatrixMarket/data/Harwell-Boeing/lsq/lsq.html
http://math.nist.gov/MatrixMarket/data/Harwell-Boeing/lsq/lsq.html

12 matrix.csc-class

matrix.coo-class Class "matrix.coo"”

Description

A new class for sparse matrices stored in coordinate format

Objects from the Class

Objects can be created by calls of the form new ("matrix.coo", ...).

Slots

ra: Object of class numeric, areal array of nnz elements containing the non-zero elements of A.

ja: Object of class integer, an integer array of nnz elements containing the column indices of
the elements stored in ‘ra’.

ia: Object of class integer, an integer array of nnz elements containing the row indices of the
elements stored in ‘ra’.

dimension: Object of class integer, dimension of the matrix

Methods
as.matrix.csr signature (x = "matrix.coo"): ...
as.matrix signature(x = "matrix.coo"): ..
dim signature(x = "matrix.coo"): ..

See Also

matrix.csr—class

matrix.csc—-class Class "matrix.csc"

Description

A new class for sparse matrices stored in compressed sparse column format

Objects from the Class

Objects can be created by calls of the form new ("matrix.csc", ...).

matrix.csc.hb-class 13

Slots

ra: Object of class numeric, areal array of nnz elements containing the non-zero elements of A,
stored in column order. Thus, if i<j, all elements of column i precede elements from column
j- The order of elements within the column is immaterial.

ja: Object of class integer, an integer array of nnz elements containing the row indices of the
elements stored in ‘ra’.

ia: Object of class integer, an integer array of n+1 elements containing pointers to the begin-
ning of each column in the arrays ‘ra’ and ‘ja’. Thus ‘ia[i]” indicates the position in the arrays
‘ra’ and ‘ja’ where the ith column begins. The last, (n+1)st, element of ‘ia’ indicates where
the n+1 column would start, if it existed.

dimension: Object of class integer, dimension of the matrix

Methods
as.matrix.csr signature (x = "matrix.csc"): ..
as.matrix.ssc signature (x = "matrix.csc"): ..
as.matrix.ssr signature (x = "matrix.csc"): ..
as.matrix signature(x = "matrix.csc"): ..
chol signature(x = "matrix.csc"): ..
dim signature(x = "matrix.csc"): ...
t signature(x = "matrix.csc"): ..

See Also

matrix.csr—-class

matrix.csc.hb-class
Class "matrix.csc.hb"”

Description

A new class consists of the coefficient matrix and the right-hand-side of a linear system of equations,
initial guess of the solution and the exact solutions if they exist stored in external files using the
Harwell-Boeing format.

Objects from the Class

Objects can be created by calls of the form new ("matrix.csc.hb", ...).

14 matrix.csr-class

Slots

ra: Object of class numeric, ra component of the csc or ssc format of the coefficient matrix, X.
ja: Object of class integer, ja component of the csc or ssc format of the coefficient matrix, X.
ia: Object of class numeric, ia component of the csc or ssc format of the coefficient matrix, X.

rhs.ra: Object of class numeric, ra component of the right-hand-side, y, if stored in csc or ssc
format; right-hand-side stored in dense vector or matrix otherwise.

guess: Object of class numeric or NULL vector of the initial guess of the solutions if they exist;
a null vector otherwise.

xexact: Object of class numeric or NULL vector of the exact solutions, b, if they exist; a
null vector otherwise.

dimension: Object of class integer, dimenson of the coefficient matrix, X.
rhs.dim: Object of class integer, dimenson of the right-hand-side, y.

rhs.mode: Object of class character or NULL storage mode of the right-hand-side; can be
full storage or same format as the coefficient matrix.

Methods

model.matrix signature (object = "matrix.csc.hb"): ..

See Also

model .matrix, model.response, read.matrix.hb,matrix.ssc.hb-class

matrix.csr—-class Class "matrix.csr"

Description

A new class for sparse matrices stored in compressed sparse row format

Objects from the Class

Objects can be created by calls of the form new ("matrix.csr", ...). and coerced from
various other formats. Coercion of integer scalars and vectors into identity matrices and diagonal
matrices respectively is accomplished by as (x, "matrix.diag.csr") which generates an ob-
ject that has all the rights and responsibilties of the matrix.csr class. The default matrix.csr object
is a scalar (1 by 1) matrix with element 0.

matrix.csr-class

Slots

15

ra: Object of class numeric, areal array of nnz elements containing the non-zero elements of A,
stored in row order. Thus, if i<j, all elements of row i precede elements from row j. The order

of elements within the rows is immaterial.

ja: Object of class integer, an integer array of nnz elements containing the column indices of

the elements stored in ‘ra’.

ia: Object of class integer, an integer array of n+1 elements containing pointers to the begin-
ning of each row in the arrays ‘ra’ and ‘ja’. Thus ‘ia[i]’ indicates the position in the arrays ‘ra’
and ‘ja’ where the ith row begins. The last, (n+1)st, element of ‘ia’ indicates where the n+1

row would start, if it existed.

dimension: Object of class integer, dimension of the matrix

Methods
%*% signature(x = "matrix.csr", y = "matrix.csr"):..
%*% signature(x = "matrix.csr", y = "matrix"):..
%*% signature(x = "matrix.csr", y = "numeric"): ..
%*% signature (x = "matrix", y = "matrix.csr"):..
%*% signature(x = "numeric", y = "matrix.csr"):..
as.matrix.csc signature (x = "matrix.csr"): ..
as.matrix.ssc signature (x = "matrix.csr"): ..
as.matrix.ssr signature (x = "matrix.csr"): ..
as.matrix.coo signature (x = "matrix.csr"): ..
as.matrix signature(x = "matrix.csr"): ..
chol signature(x = "matrix.csr"): ..
diag signature(x = "matrix.csr"): ..
diag<- signature(x = "matrix.csr"):..
dim signature(x = "matrix.csr"): ..
image signature(x = "matrix.csr"):..
solve signature(a = "matrix.csr"): ..
t signature(x = "matrix.csr"): ..
diff signature(x = "matrix.csr"): ..

See Also

matrix.csc-class

16 matrix.csr.chol-class

matrix.csr.chol-class
Class "matrix.csr.chol”

Description

A class of objects returned from Ng and Peyton’s (1993) block sparse Cholesky algorithm

Objects from the Class

Objects can be created by calls of the form new ("matrix.csr.chol", ...).

Slots

nrow: Object of class integer, number of rows in the linear system of equations
nnzlindx: Object of class numeric, number of non-zero elements in lindx
nsuper: Object of class integer, number of supernodes

lindx: Object of class integer, vector of integer containing, in column major order, the row
subscripts of the non-zero entries in the Cholesky factor in a compressed storage format

x1lindx: Object of class integer, vector of integer of pointers for lindx

nnzl: Object of class numeric, number of non-zero entries, including the diagonal entries, of
the Cholesky factor stored in Inz

1nz: Object of class numeric, contains the entries of the Cholesky factor
log.det: Object of class numeric, log determinant of the Cholesky factor

x1lnz: Object of class integer, column pointer for the Cholesky factor stored in Inz
invp: Object of class integer, vector of integer of inverse permutation vector
perm: Object of class integer, vector of integer of permutation vector

xsuper: Object of class integer, array containing the supernode partioning

det: Object of class numeric, determinant of the Cholesky factor

ierr: Object of class integer, error flag

time: Object of class numeric execution time

Methods

backsolve signature(r = "matrix.csr.chol"): ..

as.matrix.csr signature(x = "matrix.csr.chol", upper.tri=TRUE):...
See Also

chol, backsolve

matrix.ssc-class 17

matrix.ssc—-class Class "matrix.ssc"

Description

A new class for sparse matrices stored in symmetric sparse column format

Objects from the Class

Objects can be created by calls of the form new ("matrix.ssc", ...).

Slots

ra: Object of class numeric, a real array of nnz elements containing the non-zero elements of
the lower triangular part of A, stored in column order. Thus, if i<j, all elements of column i
precede elements from column j. The order of elements within the column is immaterial.

ja: Object of class integer, an integer array of nnz elements containing the row indices of the
elements stored in ‘ra’.

ia: Object of class integer, an integer array of n+1 elements containing pointers to the begin-
ning of each column in the arrays ‘ra’ and ‘ja’. Thus ‘ia[i]” indicates the position in the arrays
‘ra’ and ‘ja’ where the ith column begins. The last, (n+1)st, element of ‘ia’ indicates where
the n+1 column would start, if it existed.

dimension: Object of class integer, dimension of the matrix

Methods
as.matrix.cs¢ signature(x = "matrix.ssc"): ..
as.matrix.csr signature (x = "matrix.ssc"): ..
as.matrix.ssr signature (x = "matrix.ssc"): ..
as.matrix signature(x = "matrix.ssc"): ..
dim signature(x = "matrix.ssc"): ..

See Also

matrix.csr—-class

18 matrix.ssc.hb-class

matrix.ssc.hb-class
Class "matrix.ssc.hb"

Description

A new class consists of the coefficient matrix and the right-hand-side of a linear system of equations,
initial guess of the solution and the exact solutions if they exist stored in external files using the
Harwell-Boeing format.

Objects from the Class

Objects can be created by calls of the form new ("matrix.ssc.hb", ...).

Slots

ra: Object of class numeric, ra component of the csc or ssc format of the coefficient matrix, X.
ja: Object of class integer, ja component of the csc or s sc format of the coefficient matrix, X.
ia: Object of class integer, ia component of the csc or ssc format of the coefficient matrix, X.

rhs.ra: Object of class numeric, ra component of the right-hand-side, y, if stored in csc or ssc
format; right-hand-side stored in dense vector or matrix otherwise.

guess: Object of class numeric or NULL vector of the initial guess of the solutions if they
exist; a null vector otherwise.

xexact: Object of class numeric or NULL vector of the exact solutions, b, if they exist; a
null vector otherwise.

dimension: Object of class integer, dimenson of the coefficient matrix, X.
rhs.dim: Object of class integer, dimenson of the right-hand-side, y.

rhs.mode: Object of class character or NULL storage mode of the right-hand-side; can be
full storage or same format as the coefficient matrix.

Extends

Class "matrix.csc.hb", directly.

Methods

model.matrix signature (object = "matrix.ssc.hb"): ..

See Also

model .matrix, model.response, read.matrix.hb,matrix.csc.hb-class

matrix.ssr-class 19

matrix.ssr—-class Class "matrix.ssr"

Description

A new class for sparse matrices stored in symmetric sparse row format

Objects from the Class

Objects can be created by calls of the form new ("matrix.ssr", ...).

Slots

ra: Object of class numeric, a real array of nnz elements containing the non-zero elements of
the lower triangular part of A, stored in row order. Thus, if i<j, all elements of row i precede
elements from row j. The order of elements within the rows is immaterial.

ja: Object of class integer, an integer array of nnz elements containing the column indices of
the elements stored in ‘ra’.

ia: Object of class integer, an integer array of n+1 elements containing pointers to the begin-
ning of each row in the arrays ‘ra’ and ‘ja’. Thus ‘ia[i]” indicates the position in the arrays ‘ra’
and ‘ja’ where the ith row begins. The last, (n+1)st, element of ‘ia’ indicates where the n+1
row would start, if it existed.

dimension: Object of class integer, dimension of the matrix

Methods
as.matrix.cs¢ signature (x = "matrix.ssr"): ..
as.matrix.csr signature (x = "matrix.ssr"): ..
as.matrix.ssr signature (x = "matrix.ssr"): ..
as.matrix signature(x = "matrix.ssr"): ..
dim signature(x = "matrix.ssr"): ..

See Also

matrix.csr—-class

20 numeric or NULL-class

mslm-class Class "mslm"

Description

A sparse extension of 1m

Objects from the Class

Objects can be created by calls of the form new ("msIm", ...).

Slots

coefficients: Object of class numeric estimated coefficients
chol: Object of class matrix.csr.chol generated by the function chol
residuals: Object of class "numeric" residuals

fitted: Object of class "numeric" fitted values

Extends

Class "1m", directly. Class "s1m", directly. Class "oldClass", by class "Im".

Methods
coef signature (object = "mslm"): ...
fitted signature (object = "mslm"): ..
residuals signature (object = "mslm"): ..
summary signature (object = "mslm"): ..
See Also
slm

numeric or NULL-class
Class "numeric or NULL"

Description

A virtual class needed by the "matrix.csc.hb" class

Objects from the Class

A virtual Class: No objects may be created from it.

slm-class 21

Methods

No methods defined with class "numeric or NULL" in the signature.

slm-class Class "slm"

Description

A sparse extension of 1m

Objects from the Class

Objects can be created by calls of the form new ("s1lm", ...).

Slots

coefficients: Object of class numeric estimated coefficients
chol: Objectof classmatrix.csr.chol generated by function chol
residuals: Object of class "numeric" residuals

fitted: Object of class "numeric" fitted values

Extends

Class "1m", directly. Class "oldClass", by class "Im".

Methods
coef signature (object = "slm"): ..
fitted signature (object = "slm"): ..
residuals signature (object = "sIm"): ..
summary signature (object = "slm"): ..
See Also

slm

22

slm

slm

Fit a linear regression model using sparse matrix algebra

Description

This is a function to illustrate the use of sparse linear algebra to solve a linear least squares problem
using Cholesky decomposition. The syntax and output attempt to emulate 1m () but may fail to do
so fully satisfactorily. Ideally, this would eventually become a method for 1m. The main obstacle
to this step is that it would be necessary to have a model.matrix function that returned an object in
sparse csr form. For the present, the objects represented in the formula must be in dense form. If
the user wishes to specify fitting with a design matrix that is already in sparse form, then the lower
level function s1m. fit () should be used.

Usage

slm(formula,

Arguments

formula

data

weights

na.action

method

contrasts

data, weights, na.action, method = "csr", contrasts =

a formula object, with the response on the left of a ~ operator, and the terms,
separated by + operators, on the right. Asin 1m (), the response variable in the
formula can be matrix valued.

a data.frame in which to interpret the variables named in the formula, or in the
subset and the weights argument. If this is missing, then the variables in the
formula should be on the search list. This may also be a single number to handle
some special cases — see below for details.

vector of observation weights; if supplied, the algorithm fits to minimize the sum
of the weights multiplied into the absolute residuals. The length of weights must
be the same as the number of observations. The weights must be nonnegative
and it is strongly recommended that they be strictly positive, since zero weights
are ambiguous.

a function to filter missing data. This is applied to the model.frame after any
subset argument has been used. The default (with na.fail) is to create an
error if any missing values are found. A possible alternative is na . omit, which
deletes observations that contain one or more missing values.

there is only one method based on Cholesky factorization

a list giving contrasts for some or all of the factors default = NULL appearing in
the model formula. The elements of the list should have the same name as the
variable and should be either a contrast matrix (specifically, any full-rank matrix
with as many rows as there are levels in the factor), or else a function to compute
such a matrix given the number of levels.

additional arguments for the fitting routines

NULL,

slm

Value

A list of class s1m consisting of:

coefficients estimated coefficients

chol cholesky object from fitting
residuals residuals
fitted fitted values
terms terms
call call
Author(s)
Roger Koenker
References

Koenker, R and Ng, P. (2002). SparseM: A Sparse Matrix Package for R,

http://www.econ.uiuc.edu/~roger/research

See Also

23

slm.methods for methods summary, print, fitted, residuals and coef associated
with class s1m, and s1m. fit for lower level fitting functions. The latter functions are of special
interest if you would like to pass a sparse form of the design matrix directly to the fitting process.

Examples

data (1lsq)

X <- model.matrix (lsqg) #extract the design matrix

y <- model.response(lsq) # extract the rhs

X1l <- as.matrix (X)

slm.time <- unix.time (slm(y~X1-1) -> slm.o) # pretty fast

Im.time <- unix.time (lm(y~X1-1) -> 1lm.o) # very slow
cat ("slm time =", slm.time, "\n")
cat ("slm Results: Reported Coefficients Truncated to 5 ",

sum.slm <- summary (slm.o)
sum.slm$coef <—- sum.slmS$Scoef[1:5,]

sum.slm
cat ("1lm time =", lm.time, "\n")
cat ("1lm Results: Reported Coefficients Truncated to 5 ","\n")

sum.lm <- summary (lm.o)
sum.lm$coef <—- sum.lmS$Scoef[1:5,]
sum. 1lm

http://www.econ.uiuc.edu/~roger/research

24 slm.fit
slm.fit Internal slm fitting functions
Description
Fitting functions for sparse linear model fitting.
Usage
slm.fit (x,y,method, ...)
slm.wfit (x,y,weights,...)
slm.fit.csr(x, y, ...)
Arguments
X design matrix.
y vector of response observations.
method only csr is supported currently
weights an optional vector of weights to be used in the fitting process. If specified,
weighted least squares is used with weights ‘weights’ (that is, minimizing
Z w; * 61-2
The length of weights must be the same as the number of observations. The
weights must be nonnegative and it is strongly recommended that they be strictly
positive, since zero weights are ambiguous.
additional arguments.
Details
slm.fit and slm.wfit call slm.fit.csr todo Cholesky decomposition and then backsolve
to obtain the least squares estimated coefficients. These functions can be called directly if the user
is willing to specify the design matrix in matrix.csr form. This is often advantageous in large
problems to reduce memory requirements.
Value

A list of class s 1m consisting of:

coef estimated coefficients
chol cholesky object from fitting
residuals residuals

fitted fitted values

df.residual degrees of freedom
terms terms
call call

slm.methods 25

Author(s)

Roger Koenker

References

Koenker, R and Ng, P. (2002). SparseM: A Sparse Matrix Package for R,
http://www.econ.uiuc.edu/~roger/research

See Also

slm

Examples

data (1lsq)

X <- model.matrix (lsqg) #extract the design matrix

y <- model.response(lsqg) # extract the rhs

class (X) # -> "matrix.csr"

class(y) # —-> NULL

slm.fit (X,y)->slm.fit.o # this is much more efficient in memory usage than slm()

slm(y~as.matrix (X)-1) -> slm.o # this requires X to be transformed into dense mode
cat ("Difference between “slm.fit' and 'slm' estimated coefficients =", sum(abs (slm.fit.oScoef
slm.methods Methods for slm objects
Description

Summarize, print, and extract objects from s 1m objects.

Usage
summary.slm(object, correlation, ...)
summary.mslm(object, ...)

print.slm(x, digits, ...)
print.summary.slm(x, digits, symbolic.cor, signif.stars, ...)

fitted.slm(object, ...)
residuals.slm(object, ...)
coef.slm(object, ...)

extractAIC.slm(fit, scale = 0, k =2, ...)

deviance.slm(object, ...)

Arguments

object, x, £it object of class s1m.

digits minimum number of significant digits to be used for most numbers.

http://www.econ.uiuc.edu/~roger/research

26

scale

symbolic.cor

signif.stars

correlation

Value

slm.methods

optional numeric specifying the scale parameter of the model, see ’scale’ in
’step’. Currently only used in the *"Im"” method, where ’scale’ specifies the
estimate of the error variance, and ’scale = 0’ indicates that it is to be estimated
by maximum likelihood.

numeric specifying the "weight" of the equivalent degrees of freedom (edf’)
part in the AIC formula.

logical; if TRUE, the correlation of coefficients will be printed. The default is
FALSE

logical; if TRUE, P-values are additionally encoded visually as “significance
stars” in order to help scanning of long coefficient tables. It defaults to the
‘show.signif.stars’ slot of ‘options’.

logical; if TRUE, the correlation matrix of the estimated parameters is returned
and printed.

additional arguments passed to methods.

print.slmand print.summary.slm return invisibly. fitted.slm, residuals.slm,
and coef . s1mreturn the corresponding components of the s 1m object. extractAIC.slmand
deviance. slmreturn the AIC and deviance values of the fitted object.

Author(s)

Roger Koenker

References

Koenker, R and Ng, P. (2002). SparseM: A Sparse Matrix Package for R,
http://www.econ.uiuc.edu/~roger/research

See Also

slm

Examples

data (1lsq)

X <- model.matrix (lsqg) #extract the design matrix
y <- model.response(lsqg) # extract the rhs
X1 <= as.matrix (X)

slm.time <- unix.time (slm(y~X1-1) -> slm.o) # pretty fast
cat ("slm time =",slm.time, "\n")
cat ("slm Results: Reported Coefficients Truncated to 5 ","\n")

sum.slm <— summary (slm.o)
sum.slm$coef <- sum.slm$Scoef[1:5,]

sum.slm

fitted(slm.o) [1:10]
residuals (slm.o) [1:10]
coef (slm.o) [1:10]

http://www.econ.uiuc.edu/~roger/research

summary.mslm-class 27

summary.mslm-class Class "summary.msim"

Description

Sparse version of summary.lm

Objects from the Class

A virtual Class: No objects may be created from it.

Methods

print signature (x = "summary.mslm"): ...

summary.slm-class Class "summary.slm"

Description

Sparse version of summary.lm

Objects from the Class

A virtual Class: No objects may be created from it.

Methods
print signature (x = "summary.slm"): ..
triogramX A Design Matrix for a Triogram Problem
Description

This is a design matrix arising from a bivariate smoothing problem using penalized triogram fitting.
It is used in the SparseM vignette to illustrate the use of the sparse matrix image function.

Usage

data (triogramX)

Format

A 375 by 100 matrix stored in compressed sparse row format

28 triogramX

References

Koenker, R and Ng, P. (2002). SparseM: A Sparse Matrix Package for R,
http://www.econ.uiuc.edu/~roger/research

http://www.econ.uiuc.edu/~roger/research

Index

=, matrix.csr—-method
(SparseM. ops), 6
*Topic 10
SparseM. hb, 1
+Topic algebra
SparseM. image, 3
SparseM.ontology, 4
SparseM.ops, 6
SparseM.solve, 7
*Topic classes
character or NULL-class,9
matrix.coo-class, 11
matrix.csc-class, 12
matrix.csc.hb-class, 13
matrix.csr—-class, 14
matrix.csr.chol-class, 15
matrix.ssc-class, 16
matrix.ssc.hb-class, 17
matrix.ssr—-class, 18
mslm-class, 19
numeric or NULL-class, 19
slm-class, 20
summary.mslm-class, 26
summary.slm-class, 26
xTopic datasets
1sq, 10
triogramX, 26
+Topic hplot
SparseM.image, 3
+Topic regression
slm, 21
slm.fit,?23
slm.methods, 24
*,matrix.csr-method
(SparseM. ops), 6
+,matrix.csr-method
(SparseM. ops), 6
—-,matrix.csr-method
(SparseM. ops), 6

29

/,matrix.csr-method
(SparseM. ops), 6
<,matrix.csr-method
(SparseM. ops), 6
<=,matrix.csr-method
(SparseM. ops), 6
==,matrix.csr-method
(SparseM. ops), 6
>, matrix.csr-method
(SparseM. ops), 6
>=,matrix.csr-method
(SparseM. ops), 6
[.matrix.coo (SparseM.ops), 6
[.matrix.csr (SparseM.ops), 6
[.matrix.diag.csr (SparseM.ops), 6
[<-.matrix.coo (SparseM.ops), 6
[<-.matrix.csr (SparseM.ops), 6
[<-.matrix.diag.csr
(SparseM. ops), 6
%$*%,ANY, ANY-method (SparseM. ops),
6
*%,matrix, matrix.csr-method
(SparseM. ops), 6
,matrix.csr,matrix-method
(SparseM. ops), 6
,matrix.csr,matrix.csr-method
(SparseM.ops), 6
*%,matrix.csr, numeric-method
(SparseM. ops), 6
*%,numeric, matrix.csr-method
(SparseM. ops), 6
$-methods (SparseM. ops), 6
%, matrix.csr-method
(SparseM. ops), 6
%$%,matrix.csr-method
(SparseM. ops), 6
%$x%,ANY, ANY-method (SparseM. ops),
6

$x%,matrix, matrix.csr-method

o\

o\
o\

*

oe
o

*

o\

o\

30

(SparseM. ops), 6
$x%,matrix.csr,matrix-method

(SparseM. ops), 6
$x%,matrix.csr,matrix.csr-method

(SparseM. ops), 6
$x%,matrix.csr, numeric—-method

(SparseM. ops), 6
$x%,numeric,matrix.csr—-method

(SparseM. ops), 6
$x%-methods (SparseM. ops), 6
&,matrix.csr-method

(SparseM. ops), 6
~,matrix.csr-method

(SparseM. ops), 6
| , matrix.csr—-method

(SparseM. ops), 6

as.matrix, ANY-method
(SparseM.ontology), 4
as.matrix, coo-methods
(SparseM.ontology), 4
as.matrix, csc-methods
(SparseM.ontology), 4
as.matrix, csr—-method
(SparseM.ontology), 4
as.matrix,matrix.coo-method
(SparseM.ontology), 4
as.matrix,matrix.csc—-method
(SparseM.ontology), 4
as.matrix,matrix.csr-method
(SparseM.ontology), 4
as.matrix,matrix.ssc-method
(SparseM.ontology), 4
as.matrix,matrix.ssr—-method
(SparseM.ontology), 4
as.matrix, ssc-methods
(SparseM.ontology), 4
as.matrix, ssr-methods
(SparseM.ontology), 4
as.matrix.coo (SparseM.ontology),
4
as.matrix.coo, ANY-method
(SparseM.ontology), 4
as.matrix.coo,matrix.coo-method
(SparseM.ontology), 4
as.matrix.coo,matrix.csc—-method
(SparseM.ontology), 4
as.matrix.coo,matrix.csr-method
(SparseM.ontology), 4

as

as

as

as

as

as

as

as

as

as

as

as

as

as

as

as

as

as

as

as

as

as

as

as

INDEX

.matrix.coo,matrix.ssc—-method

(SparseM.ontology), 4

.matrix.coo,matrix.ssr-method

(SparseM.ontology), 4

.matrix.csc (SparseM.ontology),

4

.matrix.csc, ANY-method

(SparseM.ontology), 4

.matrix.csc,matrix.coo—-method

(SparseM.ontology), 4

.matrix.csc,matrix.csc-method

(SparseM.ontology), 4

.matrix.csc,matrix.csr-method

(SparseM.ontology), 4

.matrix.csc,matrix.ssc-method

(SparseM.ontology), 4

.matrix.csc,matrix.ssr-method

(SparseM.ontology), 4

.matrix.csr (SparseM.ontology),

4

.matrix.csr, ANY-method

(SparseM.ontology), 4

.matrix.csr,matrix.coo-method

(SparseM.ontology), 4

.matrix.csr,matrix.csc-method

(SparseM.ontology), 4

.matrix.csr,matrix.csr.chol-method

(SparseM.ontology), 4

.matrix.csr,matrix.ssc-method

(SparseM.ontology), 4

.matrix.csr,matrix.ssr-method

(SparseM.ontology), 4

.matrix.ssc (SparseM.ontology),

4

.matrix.ssc, ANY-method

(SparseM.ontology), 4

.matrix.ssc,matrix.coo-method

(SparseM.ontology), 4

.matrix.ssc,matrix.csc-method

(SparseM.ontology), 4

.matrix.ssc,matrix.csr—-method

(SparseM.ontology), 4

.matrix.ssc,matrix.ssc-method

(SparseM.ontology), 4

.matrix.ssc,matrix.ssr-method

(SparseM.ontology), 4

.matrix.ssc.matrix.csr-method

(SparseM.ontology), 4

INDEX

as.matrix.ssr (SparseM.ontology),
4
as.matrix.ssr, ANY-method
(SparseM.ontology), 4
as.matrix.ssr,matrix.coo-method
(SparseM.ontology), 4
as.matrix.ssr,matrix.csc-method
(SparseM.ontology), 4
as.matrix.ssr,matrix.csr-method
(SparseM.ontology), 4
as.matrix.ssr,matrix.ssc-method
(SparseM.ontology), 4
as.matrix.ssr,matrix.ssr—-method
(SparseM.ontology), 4

backsolve, 16
backsolve (SparseM. solve), 7
backsolve, ANY-method
(SparseM. solve), 7
backsolve,matrix.csr.chol-method
(SparseM.solve), 7
backsolve-methods
(SparseM.solve), T

cbind.matrix.csr (SparseM.ops), 6

character or NULL-class,9

chol, 16

chol (SparseM.solve), 7

chol, ANY-method (SparseM. solve), 7T

chol, matrix-method
(SparseM.solve), 7

chol,matrix.csc—method
(SparseM.solve), 7

chol,matrix.csr—-method
(SparseM.solve), 7

coef.slm(slm.methods), 24

coerce,matrix.csr,matrix.diag.csr-method

(SparseM.ontology), 4

31

det,matrix.csr.chol-method
(SparseM. ops), 6
deviance.slm(slm.methods), 24
diag, ANY-method (SparseM. ops), 6
diag,matrix.csr-method
(SparseM. ops), 6
diag.assign,matrix.csr-method
(SparseM. ops), 6
diag<-, ANY-method (SparseM. ops), 6
diag<-,matrix.csr-method
(SparseM.ops), 6
diag<—-,matrix.diag.csr-method
(SparseM. ops), 6
diff,matrix.csr-method
(SparseM. ops), 6
diff<-, ANY-method (SparseM. ops), 6
diff<—-,matrix.csr-method
(SparseM. ops), 6
dim, ANY-method (SparseM. ops), 6
dim,matrix.coo-method
(SparseM. ops), 6
dim,matrix.csc-method
(SparseM. ops), 6
dim,matrix.csr-method
(SparseM. ops), 6
dim,matrix.ssc-method
(SparseM. ops), 6
dim,matrix.ssr-method
(SparseM. ops), 6

extractAIC.slm(slm.methods), 24

fitted.slm(slm.methods), 24
forwardsolve (SparseM.solve),7

forwardsolve,matrix.csr.chol-method

(SparseM. solve),7

coerce,numeric,matrix.diag.csrfmethodimage(SpafseMlimag€L3

(SparseM.ontology), 4
coerce,vector,matrix.csr-method
(SparseM.ontology), 4

coerce,vector,matrix.diag.csr-method

(SparseM.ontology), 4

det,ANY-method (SparseM. ops), 6
det,matrix-method (SparseM. ops), 6
det,matrix.csr-method

(SparseM. ops), 6

image, ANY-method (SparseM. image),
3
image,matrix.csr-method
(SparseM. image), 3
image.matrix.csc-method
(SparseM. image), 3
initialize, ANY-method
(SparseM.ontology), 4
initialize,matrix.coo-method
(SparseM.ontology), 4

32

initialize,matrix.csr-method
(SparseM.ontology), 4

is.matrix, coo-methods
(SparseM.ontology), 4

is.matrix, csc-methods
(SparseM.ontology), 4

is.matrix, csr—-methods
(SparseM.ontology), 4

is.matrix, ssc—-methods
(SparseM.ontology), 4

is.matrix, ssr-methods
(SparseM.ontology), 4

is.matrix.coo (SparseM.ontology),
4

is.matrix.csc (SparseM.ontology),
4

is.matrix.csr (SparseM.ontology),
4

is.matrix.ssc(SparseM.ontology),
4

is.matrix.ssr (SparseM.ontology),
4

1sq, 10

matrix.coo-class, 11
matrix.csc (SparseM.ontology), 4
matrix.csc-class, 15
matrix.csc-class, 12
matrix.csc.hb-class, 17
matrix.csc.hb-class, 13
matrix.csr (SparseM.ontology), 4
matrix.csr-class, 11, 12,16, 18
matrix.csr-class, 14
matrix.csr.chol-class, 15
matrix.diag.csr—-class
(matrix.csr—class), 14
matrix.ssc (SparseM.ontology), 4
matrix.ssc-class, 16
matrix.ssc.hb-class, I3
matrix.ssc.hb-class, 17
matrix.ssr (SparseM.ontology), 4
matrix.ssr—class, 18
model.guess (SparseM. hb), 1
model.guess, matrix.csc.hb-method
(SparseM. hb), 1
model.guess, matrix.ssc.hb-method
(SparseM.hb), 1
model .matrix, 13,17

INDEX

model .matrix (SparseM. hb), 1

model .matrix, ANY-method
(SparseM. hb), 1

model.matrix,matrix.csc.hb-method
(SparseM. hb), 1

model . .matrix,matrix.ssc.hb-method
(SparseM. hb), 1

model .matrix.matrix.ssc.hb
(SparseM. hb), 1

model.response, 13,17

model.response (SparseM. hb), 1

model.response, ANY-method
(SparseM. hb), 1

model .response,matrix.csc.hb-method
(SparseM. hb), 1

model .response,matrix.ssc.hb-method
(SparseM. hb), 1

model.xexact (SparseM. hb), 1

model.xexact,matrix.csc.hb-method
(SparseM. hb), 1

model.xexact,matrix.ssc.hb-method
(SparseM. hb), 1

mslm-class, 19

ncol,matrix.csr-method
(SparseM. ops), 6

norm (SparseM. ops), 6

norm, ANY-method (SparseM. ops), 6

norm,matrix.csr-method
(SparseM.ops), 6

nrow,matrix.csr-method
(SparseM. ops), 6

numeric or NULL-class, 19

Ops.matrix.csr (SparseM.ops), 6
Ops.matrix.diag.csr
(SparseM. ops), 6

print.slm(slm.methods), 24
print.summary.slm(slm.methods),
24

rbind.matrix.csr (SparseM.ops), 6
read.matrix.hb, 13,17
read.matrix.hb (SparseM. hb), 1
residuals.slm(slm.methods), 24

slm, 19, 20,21, 24

slm-class, 20

INDEX

slm.fit,?23

slm.methods, 24

slm.wfit (slm.fit),?23

solve (SparseM. solve),7

solve, ANY-method (SparseM. solve),
7

solve,matrix.csr—-method
(SparseM.solve), 7

SparseM.hb, 1

SparseM. image, 3

SparseM.ontology, 4

SparseM.ops, 6

SparseM.solve, 7

summary.mslm(slim.methods), 24

summary.mslm-class, 26

summary.slm(sim.methods), 24

summary.slm-class, 26

t,ANY-method (SparseM. ops), 6
t,matrix.coo-method
(SparseM. ops), 6
t,matrix.csc-method
(SparseM. ops), 6
t,matrix.csr-method
(SparseM. ops), 6
triogramX, 26

X (triogramX), 26

	SparseM.hb
	SparseM.image
	SparseM.ontology
	SparseM.ops
	SparseM.solve
	character or NULL-class
	lsq
	matrix.coo-class
	matrix.csc-class
	matrix.csc.hb-class
	matrix.csr-class
	matrix.csr.chol-class
	matrix.ssc-class
	matrix.ssc.hb-class
	matrix.ssr-class
	mslm-class
	numeric or NULL-class
	slm-class
	slm
	slm.fit
	slm.methods
	summary.mslm-class
	summary.slm-class
	triogramX
	Index

