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The task of this computer lab is to test some iterative solution methods and obtain some experi-
ence regarding their rate of convergence.
At the end, the results of two exercises have to be sketched and commented, and given to the
lab-consultant. It is recommended to use the publishing facilities, provided in R and Matlab .
Some of the tasks require some data files which can be downloaded via
http://http://user.it.uu.se/�maya/Courses/NGSSC/STAT Labs/MN/.

You have at your disposal some matrices from Matrix Market (*.mtx). You can easily load them
in R or Matlab , however elementary utility is provided (hb_file_read) for your conve-
nience. The syntax to use it in Matlab is the following: [A,b]=hb_file_read(’rw5151’);.
It reads the matrix (as sparse) in A, loads a right-hand vector if such exists or, otherwise, returns
a random vector b matching the size of the matrix. In most cases it is the matrix, which matters.

Exercise 1 (Convergence of the unpreconditioned CG method)
Consider the solution of Ax = b by the standard conjugate gradient, where
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The exact solution is x̂ = [1; 1; � � � ; 1]T . Starting with x0 = [0; 0; � � � ; 0]T run the unprecondi-
tioned conjugate gradient method.
In the lab directory you find straightforward implementations of the unpreconditioned CG in
R and Matlab , cg.m and cg.r, however you may use your own implementation of the stan-
dard CG method. Those, who work in Matlab , may use the MatlabCG, called for example as

x it=pcg(A,b,1e-6,size(A,1));

1



The matrix A can be generated in various ways. One lazy possibility is the following:
A = 2*eye(n);
A = A + diag(-ones(n-1,1),1);
A = A + diag(-ones(n-1,1),-1);
A(n,n)=1;

1. Run experiments for a number of different sizes of the matrix A, say, n = 10; 50; 100.

For how many iterations does the method converges? Monitor the current CG iterates (the
approximations of the solution x produced during each iteration. What do you observe?

2. It is very instructive to derive the exact form of the CG iterates and see how the method
proceeds. One finds that after k iterations
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�
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for 1 � k � n� 1 and x(n) = x̂.

Hence, the information travels one step at a time from left to right and it takes n steps
before the last component has changed at all.

Therefore, in order to speedup the convergence of the iterative solution methods, one needs
good preconditioners.

Exercise 2 (A doubly stochastic matrix, PSMIGR 3: US inter-county migration 1965-1970)

This is a real unsymmetric sparse matrix of size 3140 � 3140 with 543162 nonzero entries. It
is supplied to the Matrix Market (http://math.nist.gov/MatrixMarket/) by Paul
Slater, University of California at Santa Barbara in November 1983 and originates from a demo-
graphical study.

1. Study the matrix - its sparsity pattern, conditioning, scaling. Compute all its eigenvalues
and plot them. Is the matrix strongly nonsymmetric or not? Is it well- or ill-conditioned?

2. Solve a system with the PSMIGR-matrix using the GMRES iterative method, implemented
by the Matlab commands gmres. If you have an implementation of GMRES in R , use
that one.

[x,flag,relres,iter,resvec] = gmres(A,b,restart,tol,maxit);

with maxit = n , restart = n, tol = 1e� 6, n - equal to the size of A.

Plot the convergence history of each run (for instance, as semilogy(resvec,’o’)).
Compute the exact solution by the direct Matlab solver and compare the difference be-
tween that one and the iteratively computed solution. Does the difference match the stop-
ping tolerance?
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3. Repeat the experiment with restart = 10. Plot the convergence history and compare with
that when full GMRES was used.

Did we save any computing resources? Which and how much?

4. Investigate the possibility to use some incomplete LU-factorization preconditioner, ob-
tained using Matlab command luinc or ilu for newer Matlab versions. Try, for in-
stance, [L,U] = luinc(A,tau)with tau=0.1 or tau=1e-5. If it works, compare
the convergence and the accuracy of the computed solution. What are your conclusions?

Exercise 3 (Eigenvalue problem)
You are given two matrices, which originate from Markov Chain models - rw136 (136x136)
and rw5151 (5151x5151). Those are referred to as transition matrices and are (right) stochastic
matrices, thus, their row sum is (nearly) equal to the vector [1; 1; � � � ; 1],X

j=1

nA(k; j) = 1; for any k = 1; 2; � � � ; n:

The primal interest is in the steady state probabilities of the chain, which is ordinarily the ap-
propriately scaled left eigenvector corresponding to the eigenvalue unity (see http://en.
wikipedia.org/wiki/Stochastic matrix about existence and unicity of such vector
etc., http://math.nist.gov/MatrixMarket/data/NEP/mvmrwk/mvmrwk.html,
http://www.cise.ufl.edu/research/sparse/matrices/Bai/rw136.html or
http://www.cise.ufl.edu/research/sparse/matrices/Bai/rw5151.html).
The left eigenvector, corresponding to eigenvalue 1, satisfies the relation

qA = q:

By transposing the above, we see that q is the eigenvector of AT , corresponding to the eigenvalue
1.

Tasks:

1. Load the two matrices and compute all their eigenvalues. Find the left eigenvector, corre-
sponding to the eigenvalue equal to 1.

2. Are the matrices stochastic? Is this influence the stationary vector? Suggestion: make the
matrices exactly left stochastic and recompute the stationary eigenvector. What is the order
of the difference in the vectors?

How much time does it take to compute all the eigenvalues and eigenvectors for the two
sizes?

3. In Matlab , for sparse matrices, one can use the command eigs to compute a few eigen-
solutions at some part of the spectrum. One can try [V,D]=svds(A,5,1), which will
compute the 5 eigensolutions, closest to 1. This, clearly, saves computational time and
memory.

How does one compute only part of the spectrum in R ?
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4. Use the routine Arnoldi.m to compute the matrices V and H in the Arnoldi decompo-
sition AV = V H . The eigenvalues of H must be the same as those of A and V must have
mutually orthogonal column vectors. Is that true? Comment on that.

Exercise 4 (In case you have nothing else to do)
Have some fun with the iterative solution methods: Peaks and plateaus

Background: In the so-called Galerkin methods, typical representatives of which are the Full Or-
thogonalization method (FOM), Biconjugate gradient (BICG) method and the Lanczos method,
the approximation x(k) is chosen such that the corresponding residual is orthogonal to a certain
space. The methods in this class suffer some numerical instabilities and various minimum- and
quasi-minimum residual methods have been developed to overcome these instabilities.
Examples of such pairs of methods are
1: GMRES and FOM
2: QMR and BICG
3: Minres and Lanczos
4: GCG-RM and GCG-OR.
The convergence behaviour of pairs of such methods shows striking similarities. One essential
result shown is a relation between residuals of these pairs, called the effect of peaks and plateaus.
Whenever a peak appears in the convergence plot of the orthogonal residual method, there is a
plateau under it for the corresponding norm-minimizing method. Several peaks may sit on the
top of what appears to be a single plateau, where there are unacceptably small improvements in
the residual norm over a number of consecutive iterations. In addition, whenever the residual
norm plot for the norm-minimizing method rapidly decreases, the corresponding residual norm
plot for the orthogonal residual method also rapidly decreases. Thus, the corresponding residual
plots appear to track each other if the arithmetic used is exact. In finite precision arithmetic
one extremely high peak could lead to loss of accuracy and then the convergence plot of the
orthogonal method will not meet the convergence plot of the corresponding minimal residual
method at the end of the plateau under this peak.
Denote by r(k) and r(k;G) the residual of a minimal residual method and the residual of the cor-
responding Galerkin orthogonal residual method. It is shown that if the residuals are computed
exactly at step k, they satisfy the following relation

kr(k;G)k �
kr(k)kq

1� kr(k)k2

kr(k�1)k2

:

Whenever kr(k)k2

kr(k�1)k2 is close to unity, then kr(k;G)k is much larger than kr(k)k.
The following test illustrates the effect of peaks and plateaus.

1. load the matrix A_pp and the corresponding rhs vector b_pp.

2. Solve the corresponding system A_pp*x=b_pp by the BICG and the QMR methods:
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[x_qmr,f_qmr,rres_qmr,it_qmr,rvec_qmr] = qmr(A_pp,b_pp,1e-6,size(A_pp,1));
[x_bcg,f_bcg,rres_bcg,it_bcg,rvec_bcg] = bicg(A_pp,b_pp,1e-6,size(A_pp,1));

Plot the convergence histories of both methods on one figure.

semilogy(rvec_qmr,’o-’)
hold
semilogy(rvec_bcg,’*-r’)

What do you see?

3. Check whether the accuracy of the solution is affected from the erratic convergence be-
haviour of the BICG method.
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