Matrices and Statistic with Applications

Computer Exercise: Sparse matrices. Solution of sparse LS
problems

NGSSC, LU, SLU, UU
September, 2020

The tasks within this Lab are related to (i) sparse matrices and the effect of utilizing that, and (ii)
solving LS problems by iterative methods. You are welcome to extend some of the exercises with
additional tasks, relevant to the theme of this lab.

At the end, the results of the exercise have to be sketched and shown to the lab-consultant.

The tasks require programs and data files, which can be downloaded from
http://user.it.uu.se/-maya/Courses/NGSSC/index_Stat_2020.html.

Make a copy of these files in some of your directories.

Exercise 1 (For R users: R packages for sparse matrix handling)

Check the description of the packages *SparseM’ and ’spam’ (on the web or from the provided files
’Spam_package.pdf’ and ’SparseM _package.pdf’.

Install the packages and load them.

Exercise 2 (IBD matrices and how do we handle them (pen and paper))

”Identity by descent (IBD) matrix estimation is a central component in mapping of Quantitative Trait
Loci (QTL) using variance component models. A large number of algorithms have been developed
for estimation of IBD between individuals in populations at discrete locations in the genome for use
in genome scans to detect QTL affecting various traits of interest in experimental animal, human and
agricultural pedigrees.”

Background: The task originates in variance component analysis in animal breeding, using the so-
called Average Information Restricted Maximum Likelihood (AI-REML) method. The estimation of
the variance components o by REML for genetic mapping of quantitative traits can be formulated as
an optimization problem, which reads as follows

find min L (D)
s.t.op > 0,09 >0, ()

where the log-likelihood function, L, defined by
= —2In(l) = C + In(det(V)) + In(det(XTV X)) 4+ y' Py 3)
is derived from the linear mixed model determined by the basic relation

y=Xb+ Qu-+e. 4)

Here y is a vector of n observations, X is the n x r design matrix for fixed effects,) is the n x ¢ design
matrix for ¢ random effects, b is the vector of unknown fixed effects, u is the vector of ¢ unknown
random effects, and e is a vector of n residuals. We assume that the entries of e are identically and
independently distributed and there is a single observation for each individual in the pedigree. This
assumption implies that the variance-covariance matrix for the vector y determined by equation (4) is
of the form

V =02A+ 0’1 =0,A+ ool (5)

Here, 01 > 0 denotes the variance of the random effects and oo > 0 denotes the residual variance.
The matrix X (n,r) is assumed to be full column rank.
Let A be an IBD matrix, assumed to be positive semi-definite (thus, can be singular) and not neces-
sarily sparse.
We will consider the scenario when A is singular. A general technique to circumvent the singularity
is to add a diagonal matrix D to A, where D = ¢ % I and consider V = A + D instead. Here [is the
identity matrix of the corresponding size and o is a properly chosen scalar parameter.
In some of the broadly used QTL analysis methods, one creates and performs operations with the
following matrices:

P=v !l _vixxTv-ix)-txTy-!

referred to as “’the projection matrix”, and

y'PAPAPy yT"PAPPy tr(AP) —yT PAPy
HI = T T GL = — T
yt PAPPy y' PPPy tr(P) —y* PPy

which arise from a nonlinear solution procedure.

Suggest a numerical algorithm to compute the entries of HI and LG as cheap as possible. Remember
that V' is a sparse matrix. What is the computational complexity of your algorithm in terms of the size
of the matrix A? Make some simplified derivations.

Hints: Observe that PV P = P. Would a spectral decomposition of A be of help? Or some other
decomposition?

Exercise 3 (Operations with sparse matrices)

For this exercise, you could use both Mat lab and R .

Load the matrix X20 from the file 20.dat. The file contains only the lower triangular part of a
sparse (symmetric) IBD matrix.

1. Recover the full-sized matrix from its lower-triangular part (let us name it A).
2. Visualize the structure of the matrix (spy)

3. Compute the eigenvalues and the singular values of A. Plot both, compute the rank of A. What
kind of matrix do you have to work with?

4. Convert A into Matlab sparse format. How much memory is saved (in terms of matrix en-
tries)?

5. Use sparse SVD (svds) to compute the largest and the smallest singular values of A. Try
svds (A, g) for ¢ = 0.1,0.01,0.00001, 0 and compare with what you have obtained when
computing all singular values of A. Try to explain the effect which you see for ¢ = 0?

6. Check the possible permutation methods available in Mat lab, apply them to V' and recom-
pute the Cholesky factor for each of them (>> lookfor permutation) Which is the best
reordering strategy for the matrix V' in terms of least fill-in?

7. Consider the matrices A, V' (defined as above with 0 = 0.01), Make sure that the resulting
matrix is still sparse.

Use the algorithm you suggested to compute the entries of I and G L. Think about the compu-
tational complexity, keep in mind that those computations have to be embedded in a nonlinear
solver, which requires the matrices to be recomputed at each nonlinear iteration. (Note, one
particular X and y are to be downloaded from the Lab directory.)

8. It is required to try to do at least parts of the exercise in R :

(a) Load the package spam.
(b) Browse the user manual for the package (available at the web-page).
(c) Import the matrix X20 from 20 . dat and create the matrix V' as above.

(d) Compute the Cholesky factor and plot it with the tools available in spam. Attach the plot
to the report.

Keywords: as.spam, chol.spam, diag.spam, display

set.seed (13)

nz=128

ln=nz"2

smat=spam (0, 1n, 1n)

is = sample(ln,nz)

js = sample(ln,nz)

system.time (for (i in 1l:nz) smat[is[i], Js[i]] <- 1)
system.time (smat [cbind(is, js)] <- 1l:nz)

par (mfcol=c(1l,1),pty="s")

display (smat, cex=100)

Exercise 4 (One more IBD matrix, thanks to Xia Chen)
Load 80.dat Is it a sparse matrix? What kind of matrix is that (symmetric, full-rank, positive
definite, ...) Can you apply the algorithm you suggested in Exercise 2 to handle this matrix?

Exercise 5 (Experience with CGLS)

The exercise is in Matlab.

Download the files cgls.m, hb_file_read.m, welll850.dat and welll850_rhs.mtx.
The two .mtx files contain a matrix A and a right hand side vector b from the *Matrix-market’
collection. We aim at solving Ax = b using the CGLS method. The function hb_file_read.m will
load the data in Matlab.

Tasks:

e Solve the LS problem using SVD or QR (or by y=2). Keep track of the computing time and
check the size of the relative residual.

e Solve the LS problem using CGLS and try several stopping criteria for the method. Observe the
number of iterations as a function of the stopping criterion.

e Compare the QR/SVD solution and the iterative solution. What is your conclusion regarding
accuracy and computing time?

Download a larger sparse LS matrix as

load EternityII_A.mat
AA=Problem.A’;
bb=rand(size (AA,1),1);

Does the iterative method win? In what sense?

