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The tasks within this Lab are related to SVD, PCA and Pseudoinverses. You are welcome to extend
some of the exercises with additional tasks, relevant to the theme of this lab.
At the end, the results of the exercise should be sketched and shown to the lab-consultant.
The tasks require programs and data files, which can be downloaded from
http://user.it.uu.se/˜maya/Courses/NGSSC/index_Stat.html.
Make a copy of these files in some of your directories.

Exercise 1 (Easy, optional)
Download the files yeastarray_t2.txt and Gene_test.m.
You have at your disposal the test for the Gene analysis data. You could reproduce the tests and try to
analyse the results from the SVD decomposition.

Exercise 2 (Large data sets and covariance matrices)
Load the file formaya.mat. It contains four files

Name Size Bytes Class Attributes

covmatrix 2500x2500 50000000 double
covmatrix2 2500x2500 50000000 double
cutout 50x50x50766 253830000 int16
cutout2 50x50x50766 253830000 int16

We will work only with covmatrix2 and cutout2.

Tasks:

1. Consider covmatrix2. Find all its eigenvalues and study them.
Explain the very small eigenvalues, some of which are even negative.
How many dominant components are observed? Can you illustrate them graphically?

2. The number of nonzero components in the matrix is 5621641 and the number of entries is
25002 = 6250000, thus, the matrix is full. (Note that there are negative entries in the covariance
matrix.)

A study of the size of the entries shows that some of them are very small by absolute value.

(a) What would be the impact on the PCA if we delete some of the entries, say, that are by ab-
solute value less than 0.005 or 0.05? (This effect can be achieved during the computation
of the covariance matrix - we can neglect some small entries upon computation.)
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(b) What properties of the matrix have to be preserved?

3. Consider the data set cutout2. Note that it is provided in single precision and if we want to
perform algebraic operations with it, we have to convert it to double.

(a) Estimate the computer resources needed to compute the SVD on the matrix? Note that
each cut has very few nonzero elements and the total number of nonzero elements is not
50 ∗ 50 ∗ 50766 = 126915000 but 26392058.

(b) Reshape the data as (50766x2500) and (try to) compute its SVD. In Matlab try to create
the matrix as sparse.

(c) Do a performance study: check the time needed to compute SVD on parts of the reshaped
data, say 2500x2500, 5000x2500 etc. What is the increase factor in computing time?

Exercise 3 (Variable selection)
Consider the data set Oxigen.dat. The data contains measurements, made on men involved in a
physical fitness course at North Carolina State University. The variables are
Age (years), Weight (kg), Oxygen intake rate (ml per kg body weight per minute), time to run 1.5
miles (minutes), heart rate while resting, heart rate while running (same time Oxygen rate measured),
and maximum heart rate recorded while running.
Aerobic fitness (measured by the ability to consume oxygen) should be predicted, in this case, from
six background variables. The goal is to develop an equation to predict fitness based on the exercise
tests rather than on expensive and cumbersome oxygen consumption measurements.

1. Perform variable selection in order to find the best choice of variables that describe the data in
a best way. You should run several variants and then come up with some kind of conclusion.

2. How would you organize the numerical computations? Note that this is a very small example
of a problem for variable selection. In practice we would have 20000 observations and 10000
background variables of which some are maybe strongly related. Thus, all tests on variable
selection must be done in a computationally very efficient way.

Exercise 4 (Generalized inverses)
The task with this exercise is to compare two methods to compute the generalized inverse A+ and
discuss computational cost, measured by time and accuracy of the computed inverse.
Let A ∈ Rm,n. We pose the question to compute A+.
Method 1: via SVD
Compute the thin SVD of A, A = UΣV T . Then A+ = V σ−1UT .
Method 2: via iterations

Theorem 1 (See ref. [1]) Let the real scalar α satisfy

0 < α <
2

λmax(A∗A)
.

Then the sequence {Yk}, obtained as

Y0 = αA∗

Yk+1 = Yk(2 ∗ I −A ∗ Yk)

converges to A+ when k →∞.
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The iterative procedure depends on a parameter, α, that is related to the maximum eigenvalue ofA∗A.
As A∗A is symmetric and positive definite, all its eigenvalues are real and positive.
For not very large matrices, it can be viable to form A∗A explicitly and then compute its maximum
eigenvalue. If A is large, the latter option would be too expensive, both in terms of time and memory.
Therefore, one would prefer to compute an estimate (and upper bound) of λmax(A∗A) and use that to
compute α. To this end, we recall Gershgorin’s theorem, that states that the largest absolute row-sum
(or column-sum) of a symmetric matrix is an upper bound of its largest eigenvalue.

Tasks:
Write a function in Matlab or R, that performs the following:

1. Computes the generalized inverse using SVD. Time the computation.

2. Implements the iterative algorithm, computing explicitly bothA∗A and using the exact λmax(A∗A).
Store the preparation time (to compute α, the time needed for the iterative method to converge
and the number of iterations. As a stopping tolerance use norm(Yk+1 − Yk) ≤ 10−8.

3. Implements the iterative algorithm, computing an approximation of λmax(A∗A) without explic-
itly forming A∗A. Store the preparation time (to compute α, the time needed for the iterative
method to converge and the iterations. Use the same stopping tolerance.

4. Output: the three generalized inverses, the times to compute them and the iterations in the latter
two cases.

Run the code with the following matrices:

- A1 =


1 1
1 2
1 3
1 4


- the data matrix from yeastarray_t2.txt
- A = randn(1000, 250)

Explain the results. Which is the fastest? Will the conclusion remain the same for larger matrices?
How sensitive is the iterative method with respect to α?
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