
TDB − NLA Some repetition

Note: many issues related to iterative solution of linear systems of equations are
contradictory:

numerical efficiency vs computational efficiency

numerical efficiency vs parallelization

– p. 1/33

TDB − NLA Scalability of sparse direct solvers

Example 1: Multiphace flow simulation (2D)

Block preconditioner Direct solver (MUMPS)
DOF N1/N2 time(s) MB N1 time(s) MB

131 072 4/10 16.98 185 3 7.2 352

528 392 4/10 72.61 646 3 53.4 1 409

1 176 578 4/10 170 1 429 3 193.75 3 126

2 097 152 4/10 306.05 2 587 Out of memory

Multiface flow: Direct vs iterative: run time and memory consumption

72.61/16.98 = 4.28 53.4/7.2 = 7.4

170/72.61 = 2.34 193.75/53.4 = 3.62

306.05/170 = 1.8 ?

– p. 2/33

TDB − NLA Scalability of sparse direct solvers, cont.

Example 2: Linear elasticity, 2D

Assembly time (s) Solution time (s)

N Abaqus Iterative Abaqus Iterative
time iterations

2D

6043 1 0.2178 1.098 1.02 (0.4863) 13 (1,1)
23603 3.326 0.8857 4.718 4.225 (1.995) 12 (1,1)
93283 13.02 3.978 18.05 19.38 (9.813) 11 (2,1)

370883 50.54 17.71 72.98 89.34 (49.43) 11 (2,1)
1479043 269.1 77.7 317.5 431.8 (257.6) 12 (2,1)

4.2969 4.1422
3.8258 4.5870
4.0432 4.6099

– p. 3/33

TDB − NLA Scalability of sparse direct solvers, cont.

Example 2: Linear elasticity, 3D

Assembly time (s) Solution time (s)

N Abaqus Iterative Abaqus Iterative
time iterations

2D

6043 1 0.2178 1.098 1.02 (0.4863) 13 (1,1)
23603 3.326 0.8857 4.718 4.225 (1.995) 12 (1,1)
93283 13.02 3.978 18.05 19.38 (9.813) 11 (2,1)

370883 50.54 17.71 72.98 89.34 (49.43) 11 (2,1)
1479043 269.1 77.7 317.5 431.8 (257.6) 12 (2,1)

3D

12512 1.525 1.899 3.049 8.009 (3.465) 12 (2,1)
89700 14.09 8.756 43.29 63.34 (33.08) 13 (2,1)

678116 110.3 65.8 1347 749.3 (506.8) 15 (4,1)

Hybrid solvers!

– p. 4/33

TDB − NLA Parallel Algorithms for Scientific Computing

Preconditioning techniques - the task to
combine numerical and parallel

efficiency

– p. 5/33

TDB − NLA Some repetition, cont.

Assume A, B and b are distributed and the initial guess x(0) is replicated.

g(0) = Ax(0) − b, g(0) = replicate(g(0))

h = C−1g(0)

δ0 = (g(0),h) h = replicate(h)

d(0) = −h

For k = 0, 1, · · · until convergence

(1) h = Ad(k)

(2) τ = δ0/(h,d(k))

(3) x(k+1) = x(k) + τd(k)

(4) g(k+1) = g(k) + τh, g(k+1) = replicate(g(k+1))

(5) h = C−1g(k+1),

(6) δ1 = (g(k+1),h) h = replicate(h)

(7) β = δ1/δ0, δ0 = δ1

(8) d(k+1) = −h+ βd(k)

– p. 6/33

TDB − NLA Preconditioners

Requirements:

Numerical efficiency

The condition number κ(C−1A) should be as small as possible
and independent of problem, discretization and method
parameters.
Wishes: κ(C−1A) = O(1)

Eigenvalues clusteres in small intervals on the real axes or in a few
tight clusters, well separated from the origin.

Computational efficiency

The construction of C should be computationally cheap

The solution of systems with C should be much cheaper (easier)
than with A

Papallel efficiency
Both the construction and the solution with the preconditioner
should be parallelizable

Clearly the goals are contradicting.

– p. 7/33

TDB − NLA Types of preconditioners

Left preconditioning Ax = b =⇒ C−1Ax = C−1b

eig(XY) = eig(Y X) up to some zero eigenvalues.

Right Preconditioning Ax = b =⇒ AC−1y = b,x = C−1y

Symmetric preconditioning

Ax = b =⇒ C−1
1 AC−1

2 y = C−1
1 b,x = C−1

2 y

Approximate inverse (multiplicative preconditioning)
C ≈ A−1. Then no solution but only multiplication with C occur.

Implicitly defined preconditioners [C−1]Ax = [C−1]b

Variable (nonlinear) preconditioners C changes from one iteration to
another or a number of times through the iterative process.
Flexible GMRES, GCG, GCR.

Inner-outer iterations (inner stopping tolerance)

– p. 8/33

TDB − NLA Types of preconditioners

’Given-the-matrix’ - only the matrix is given and the origin of the problem
is not known or is not to be used during the solution process.
Very general, thus, expected to be less numerically efficient.

’Given-the-problem’ - we are in a position to use knowledge about the
mesh, discretization technique, the origin of the problem (the PDE, for
instance)

L discretize
=⇒ A

(approx) ⇓ ⇓ (approx)

C discretize
=⇒ C

Examples:
Linear elasticity (Korn’s inequality)
Navier-Stokes

– p. 9/33

Start with LU factorizationA(m,n)

for k = 1, 2 · · ·m− 1

d = 1/a
(k)
kk

for i = k + 1, · · ·m
ℓ
(k)
ik

= −a
(k)
ik

d

for j = k + 1, · · ·n
a
(k+1)
ij = a

(k)
ij + ℓika

(k)
kj

end

end

end

The operational count for the LU factorization can be obtained by integrating the
loops:

FlopsLU =

m−1∫

1

m∫

k

n∫

k

djdidk ≈ n3/3 (m = n)

– p. 10/33

Block LU factorizationA(m,n)

for k = 1, 2 · · ·m− 1

D = (A
(k)
kk

)−1

for i = k + 1, · · ·m
L
(k)
ik

= −A
(k)
ik

D

for j = k + 1, · · ·n
A

(k+1)
ij = A

(k)
ij + LikA

(k)
kj

end

end

end

The block version offers possibility to use BLAS3.

– p. 11/33

Incomplete LU factorizationA(n, n)

for k = 1, 2 · · ·m− 1

d = 1/a
(k)
kk

for i = k + 1, · · ·m
ℓ
(k)
ik

= −a
(k)
ik

d

for j = k + 1, · · ·n
a
(k+1)
ij = a

(k)
ij + ℓika

(k)
kj

when some condition holds true, drop a
(k+1)
ij

end

end

end

Most often used conditions:
- a(k)ij too small compared to some (relative) value

- a(k)ij does not belong to a chosen sparsity pattern

Loss of information.

– p. 12/33

Incomplete LU factorizationA(n, n)

How much ILU can improve the convergence of an iterative process?
Example: 2D, Discrete Laplace operator L(spd).

λmin(A) = h2, λmax(A) = O(1), κ(L) = λmax(A)/λmin(A) = O(h−2).

The convergence estimate for the CG method is:

‖ek‖L ≤ 2

[
κ(L) + 1

κ(L)− 1

]k
‖e0‖L

k >
1

2

√
κ ln(

2

ε
)

⇒ k = O(h−1).
Let C = LLT , where L is some ILU-obtained approximation of the exact
Cholesky factor of L. Then

κ(C−1L) = O(h−1).

Thus, only the constant is improved!

– p. 13/33

Incomplete Factorization
Preconditioners

pointwise and block ILU

ILU and IC (when A is spd)

MILU and MIC (Modified incomplete LU factorization)

Instead of dropping a
(k+1)
ij , let a(k+1)

k+1,k+1 = a
(k+1)
k+1,k+1 + a

(k+1)
ij

Reference: Ivar Gustafsson, A class of first order factorization methods,
BIT, 18 (1978), pp. 142-156.
The information is not fully wasted; preserving positive definiteness.

– p. 14/33

Incomplete Factorization
Preconditioners

RILU (Relaxed ILU)

Instead of dropping a
(k+1)
ij , let a(k+1)

k+1,k+1 = a
(k+1)
k+1,k+1 + ωa

(k+1)
ij

Implemented in IFPACK (part of Trilinos, Sandia Nat. Lab.)
User manual: For most situations, RelaxValue should be set to zero.
- For certain kinds of problems, e.g., reservoir modeling, there is a
conservation principle involved such that any operator should obey a
zero row-sum property. MILU was designed for these cases and you
should set the RelaxValue to 1.
- For other situations, setting RelaxValue to some nonzero value may
improve the stability of factorization, and can be used if the computed
ILU factors are poorly conditioned.

– p. 15/33

ILU preconditioners, cont.

ILU, based on apriori chosen spartity pattern (ILU(0)):
the nonzero pattern of L and U coincides with that of the lower/upper
part of A

ILUT: threshhold-based ILU
Reference: Yousef Saad, A dual threshold incomplete LU factorization,
Numerical Linear Algebra with Applications, 1 (1994), 387–402.

– p. 16/33

ILU preconditioners, cont.

ILU(p)

For all nonzero elements aij define uij = aij , lev(uij) = 0

For i = 2, · · · , n do
For k = 1, · · · , k − 1 and if uij 6= 0 do

Compute lik = uik/ukk, set lev(lik) = lev(uik)

Compute ui∗ = ui∗ − likuk∗

Update the levels of ui∗ as follows
level(fij) = level(lij) + level(ukj) + 1

Replace any element in row i with lev(uij) > p by zero.
EndFor

EndFor

– p. 17/33

ILU preconditioners, cont.

ILUT (Generic ILU with threshhold), Y. Saad, 1994
0 row(1:n) = 0
1 do i=2:n
2 row(1:n) = a(i,1:n) % sparse copy
3 for k=1:i-1 and where row(k) is nonzero, do
4 row(k)=row(k)/a(kk)
5 apply a dropping rule to row(k)
6 if row(k)6=0
7 row(k+1,n)=row(k+1,n)-row(k)*u(k,k+1:n) % sparse update
8 endif
9 enddo
10 apply a dropping rule to row(1:n)
11 l(i,1:i-1)=row(1:i-1) % sparse copy
12 u(i,i:n) = row(i:n) % sparse copy
13 row(1:n) = 0
14 enddo
15 enddo

– p. 18/33

ILU preconditioners, cont.

ILUT: Dropping rules

5: an element is dropped if it is less than the relative tolerance τi, equal to
τ‖row(k)‖ (using the original row)

10: Drop all entries less than τi, keep the largest p entries in the L- and
U -part and the diagonal element, which is always kept.

Observe, that sort operations are included.

– p. 19/33

ILU preconditioners, cont.

BILUT Block-ILUT
H. Sudan & H. Klie (ConocoPhillips); R. Li & Y. Saad (University of Minnesota):
A flexible variant of GMRES (FGMRES) is implemented using the CUDA
programming model on the GPU platform using the Single Instruction Multiple
Threads (SIMT) paradigm by taking advantage of thousands of threads
simultaneously executing instructions.
The implementation on the GPU is optimized to reduce memory overhead per
floating point operations, given the sparsity of the linear system. FGMRES relies
on a suite of different preconditioners such as BILU, BILUT and multicoloring
SSOR.

– p. 20/33

ILU preconditioners, cont.

BILUT Block-ILUT
General design of the solver: CUDA, SIMT (Single Instruction Multiple threads)

1. CRS sparse format

2. Reorder using RCM (Recursive Cuthill-McKee)

3. Use Metis to generate a balanced partitioning; reorder and repartition
after long time intervals

4. FGMRES with some preconditioner per timestep.

Slides from the paper follow.

– p. 21/33

ECMOR XII – 12 th European Conference on the Mathematics of Oil Recovery
6-9 September 2010, Oxford, UK

A044
High Performance Manycore Solvers for Reservoir
Simulation
H. Sudan* (ConocoPhillips), H. Klie (ConocoPhillips), R. Li (University of
Minnesota) & Y. Saad (University of Minnesota)

SUMMARY
The forthcoming generation of many-core architectures compels a paradigm shift in algorithmic design to
effectively unlock its full potential for maximum performance. In this paper, we discuss a novel approach
for solving large sparse linear systems arising in realistic black oil and compositional flow simulations. A
flexible variant of GMRES (FGMRES) is implemented using the CUDA programming model on the GPU
platform using the Single Instruction Multiple Threads (SIMT) paradigm by taking advantage of thousands
of threads simultaneously executing instructions. The implementation on the GPU is optimized to reduce
memory overhead per floating point operations, given the sparsity of the linear system. FGMRES relies on
a suite of different preconditioners such as BILU, BILUT and multicoloring SSOR. Additionally, the
solver strategy relies on reordering/partitioning strategies algorithms to exploit further performance.
Computational experiments on a wide range of realistic reservoir cases show a competitive edge when
compared to conventional CPU implementations. The encouraging results demonstrate the potential that
many-core solvers have to offer in improving the performance of near future reservoir simulations.

ECMOR XII – 12 th European Conference on the Mathematics of Oil Recovery
6-9 September 2010, Oxford, UK

4. Numerical Experiments

We consider 4 different simulation cases in our performance study. These cases include an oil-water
case given by the SPE10 synthetic case (Christie and Blunt, 2001) and 3 field cases: a black-oil case
(Case A) and 2 compositional cases (Cases B and C) involving 5 and 8 components, respectively. All
cases are run using the IMPES option with implicit well treatment, so the benchmarks are based on
the solution of the pressure system. Succinct description of these cases is summarized in Table 1.
The four cases yield linear systems that vary significantly in size, sparsity and conditioning. As the
number of mass balance equations increases, we observe that the fraction of the solver responsible for
the total CPU time decreases. In the case of compositional simulation (cases B and C) a fraction of
about 20% is spent in the thermodynamics of the phase behaviour calculation.

 Table 1. Benchmark cases.

Case Size Model
type

%
Solver

N.
wells

N.
Timesteps

Most relevant
characteristics

SPE10 60x220x85 Oil-water 90% 5 1423
(50 days) Highly heterogeneous

A 140x230x44 Black-Oil 81% 83 2524
(34 years)

Waterflooding, highly
heterogeneous

B 128x155x19 5 comp. 75% 445 19429
(35 years)

Highly faulted, water
injection

C 257x228x21 8 comp. 72% 124 1641
(5 years)

Highly
compartmentalized

We first focus our attention on comparing the performance of the FGMRES iterative solver using
BILU(0), BILUT and MC-SSOR on a single core CPU and on the GPU. The fill-in and drop
threshold for BILUT were set 30 and 1.D-4, respectively. The number of SSOR iterations was set to
2. These preconditioners can be considered the main work-horse options in any reservoir simulator
solver available today. In all cases to be shown, the FGMRES solver was assumed to converge when a
relative residual less or equal to 10-4 was achieved.

We hardware specifications are the following:

• Dual Intel Nehalem (Intel Xeon X5570, 2.93 Ghz, 8MB L3 Cache), 16GB RAM
• NVIDIA Tesla C2050 (installed with Intel Intel Nehalem X5570), 448 cores, 3.22 GB RAM

The Intel Nehalem family architecture is considered the fastest multicore CPU available nowadays.
All runs are carried out on Linux. Our in-house simulator was compiled using the –O2 option and
linked with the GPU Solver already compiled as a form of a library. The resulting object code was run
it on the two hardware platforms mentioned above. Since we are mainly concerned with maintaining
accuracy in real field simulations, we restrict our analysis to a double precision version of the GPU
solver library. Hence, the compiler option for the C interface to CUDA was set to –arch sm_20 in
order to enable the double precision option and global memory cache.

Tables 2, 3 and 4 shows the solver performance using the BILU(0), BILUT and MC-SSOR
preconditioners on the GPU for isolated systems obtained from the 4 cases considered. The BILU set
of preconditioners rely on METIS partitioning. We are omitting the RCM reordering since it did not
show a major influence in the CPU timings for the cases considered. We can note that the BILUT
becomes more effective than BILU(0) as the problems sizes increases. The MC-SSOR strategy
outperforms these two BILU strategies in all cases. Most the gain here is due to the inexpensive
construction of the preconditioner for the MC-SSOR. In each case, we can observe that the CPU
Spmv operation is practically negligible compared to the application of the preconditioner.

ECMOR XII – 12 th European Conference on the Mathematics of Oil Recovery
6-9 September 2010, Oxford, UK

The left side of Figure 2 compares the performance of the GPU-based solver using the BILU(0)
preconditioner relative to the CPU-based solver using the ILU preconditioner upon completion of the
simulation. The right side of Figure 2 shows the relative simulation performance using these two
solvers. Note that the solver time represents a fraction of the whole simulation (see column 4 on Table
1). The GPU BILU(0) solver shows a gain factor of approximately 3x with respect to Intel Nehalem.
It is worth to mention that the GPU BILU solver is weaker than the ILU sequential implementation as
the iterative solver generally takes more iterations. Nevertheless, GPU solver is still able to
outperform, since thousands of GPU threads are exploited in each of the FGMRES iterations.

Table 2. Comparative performance assessment using the GPU BILU(0) solver.

Cases Prec Prec.
Setup (s)

Prec.
Appl. (s)

Matvec
(s)

Remainder
(s)

Total
(s)

METIS
(s)

N.
Iterations

SPE10 BILU(0) 1.06 3.54 0.35 0.58 5.53 1.32 168
A BILU(0) 0.25 0.58 0.06 0.30 1.19 1.03 58
B BILU(0) 0.08 0.23 0.03 0.09 0.43 0.20 55
C BILU(0) 0.08 0.08 0.01 0.02 0.19 0.14 22

Table 3. Comparative performance assessment using the GPU BILUT solver.

Cases Prec Prec.
Setup (s)

Prec.
Appl. (s)

Matvec
(s)

Remainder
(s)

Total
(s)

METIS
(s)

N.
Iterations

SPE10 BILUT 1.06 2.88 0.27 0.56 4.77 1.32 120
A BILUT 0.82 0.75 0.06 0.33 1.96 1.03 58
B BILUT 0.28 0.50 0.03 0.10 0.91 0.20 51
C BILUT 0.27 0.11 0.01 0.03 0.42 0.14 19

Table 4. Comparative performance assessment using the GPU CS-SSOR(2) solver.

Cases Prec Prec.
Setup (s)

Prec.
Appl. (s)

Matvec
(s)

Remainder
(s)

Total
(s)

N.
Iterations

SPE10 MC-SSOR 0.02 1.88 0.16 0.77 2.83 91
A MC-SSOR 0.02 0.81 0.06 0.26 1.15 59
B MC-SSOR 0.01 0.22 0.03 0.09 0.35 50
C MC-SSOR 0.01 0.13 0.02 0.05 0.21 34

The results shown at the right side of Figure 2 are a immediate consequence of Amdahl’s Law when a
fraction of the original code is only parallelized, namely, the performance improvement PI is given by
PI=1/(s + p), where s represents the sequential fraction and p represents the parallel fraction of the
simulation code. For instance, the solver component of Case C represents 72% of the total time and
the GPU solver is about 2.8 times faster than the CPU Intel Nehalem, thus the expected performance
improvement in the simulation is approximately given by PI = 1/(.28 + .72/2.8) ~ 1.8x. This can be
seen clearly reflected in the right side of Figure 2.

5. Conclusions and Future Work

We have evaluated the current capabilities that many-core GPU on a set of realistic black-oil and
compositional reservoir scenarios. Despite that the study focused only on the solver component of the
simulator and that there is still room for further improvements in the proposed implementation, the
results provide clear indication of the enormous potential that many-core GPU can offer in near future
simulation studies.

Block ILU preconditioners

LDLT and LDU preconditioners

Let A = DA − LA − UA.
Symmetric Gauss-Seidel preconditioner:

C = (DA − LA)D−1
A

(DA − UA)

Note: C = (DA − LA)D−1
A

(DA − UA) = DA − LA − UA + LD−1
A

U =

A+ LD−1
A

U

A = LU =

I1 0 · · · 0

L2,1 I2 · · · 0

...
... · · ·

...
Ln,1 Ln,2 · · · In

D1 U1,2 · · · U1,n

0 D2 · · · U2,n

...
... · · ·

...
0 0 · · · Dn

yi = yi −
i−1∑

j=1

Ljiyj xi = D−1
i (yi −

n∑

j=i+1

Uijxj)

– p. 22/33

Block ILU preconditioners, cont.

Attractive: D - diagonal.
How do we obtain a permutation, such that we get D - diagonal?
Use multicoloring algorithm:
For 1 = 1 : n

Set color(i)=0
endfor
For 1 = 1 : n

Set color(i)=min(k > 0 : k 6=color(j) for j ∈ Adj(i)
endfor

where Adj(i) = {j 6= i : aij 6= 0}.

– p. 23/33

TDB − NLA Power(q)-pattern Method

Building of power(q)-pattern – ILU(p,q)

Perform multi-coloring analysis for |A|q and obtain

corresponding permutation π

the number of colors B and local block sizes bi

Permute Aπ := πAπ−1

Apply a modified ILU(p) factorization to Aπ

Central result: For q = p+ 1 we obtain only diagonal elements in the diagonal
blocks of L and U . No fill-ins here!
p - fill-ins levels
q - describes the degree of parallelism

– p. 24/33

TDB − NLA ILU(p,q)

LU sweeps, solve in parallel LUz = r

Re-formulate into a block-form

Use fine-grained parallelism on the block level

Parallelism = N/Num blocks

xi := D−1
Li (ri −

i−1∑

j=1

Li,jxj)

zi := D−1
Ui (xi −

B−i∑

j=1

Ui,jzi+j)

ILU(p,q) constructs D−1
Li

and D−1
Ui

to be with diagonal elements only

– p. 25/33

TDB − NLA Block-tridiagonal matrices

Let A be block-tridiagonal, and expressed as A = DA + LA + UA .

One can envisage three major versions of the factorization algorithm:

(i) A = (D + LA)D−1(D + UA)

(ii) A = (D−1+LA)D(D−1+UA)

(iii) A = (I − L̃A)D−1(I − ŨA)

Di = Aii −Ai,i−1D
−1
i−1Ai−1,i, i ≥ 2, D1 = A11

Di = (Aii−Ai,i−1Di−1Ai−1,i)
−1, i ≥ 1, D0 = 0 (Inverse free substitutions),

where L̃A = LAD, ŨA = DUA.

Here A−1 = (I − ŨA)−1D(I − L̃A)−1

(I − ŨA)−1 = (I + Ũ2s

A) . . . (I + Ũ2
A)(I + ŨA) and similarly for (I − L̃A)−1.

– p. 26/33

TDB − NLA Block-tridiagonal matrices, cont.

Ω1 Ω3Ω2

Consider a two-dimensional domain partitioned in strips. Assume that points on
the lines of intersection are only coupled to their nearest neighbors in the
underlying mesh (and we do not have periodic boundary conditions).
Hence, there is no coupling between subdomains except through the “glue” on
the interfaces.

– p. 27/33

TDB − NLA Block-tridiagonal matrices, cont.

When the subdomains are ordered lexicographically from left to right, a domain
Ωi becomes coupled only to its pre- and postdecessors Ωi−1 and Ωi+1,
respectively and the corresponding matrix takes the form of a block tridiagonal

matrix A = tridiag (Ai,i−1, Ai,i, Ai,i+1), or

A =

A11 A12 0

A21 A22 A23

. . .
. . .

. . .

0 An,n−1 An,n

For definiteness we let the boundary meshline Ωi ∩ Ωi+1 belong to Ωi.
In order to preserve the sparsity pattern we shall factor A without use of
permutations.
Naturally, the lines of intersection do not have to be straight.

– p. 28/33

TDB − NLA Block-tridiagonal matrices, cont.

Ω1

Ω2

Ω3

Ω4

Examples of subdomain decompositions

– p. 29/33

TDB − NLA Block-tridiagonal matrices, cont.

Slides from Y. Saad, MacLahlan follow.

– p. 30/33

MODIFICATION AND COMPENSATION STRATEGIES FOR
THRESHOLD-BASED INCOMPLETE FACTORIZATIONS∗

S. MACLACHLAN† , D. OSEI-KUFFUOR‡ , AND YOUSEF SAAD‡

Abstract. Standard (single-level) incomplete factorization preconditioners are known to success-
fully accelerate Krylov subspace iterations for many linear systems. The classical Modified Incomplete
LU (MILU) factorization approach improves the acceleration given by (standard) ILU approaches,
by modifying the non-unit diagonal in the factorization to match the action of the system matrix
on a given vector, typically the constant vector. Here, we examine the role of similar modifications
within the dual-threshold ILUT algorithm. We introduce column and row variants of the modified
ILUT algorithm and discuss optimal ways of modifying the columns or rows of the computed factors
to improve their accuracy and stability. Modifications are considered for both the diagonal and off-
diagonal entries of the factors, based on one or many vectors, chosen a priori or through an Arnoldi
iteration. Numerical results are presented to support our findings.

Key words. Incomplete factorization preconditioners, algebraic preconditioners, ILUT, modi-
fied ILU

1. Introduction. As physical models become ever more complex, they often re-
sult in the need to solve linear systems that are not only much larger than in the past,
but also intrinsically more difficult. Due to their larger sizes, these systems cannot
practically be solved by direct methods, and this increases the demand for reliable
forms of iterative methods that can be substituted for direct solvers. Iterative tech-
niques based on a combination of a preconditioner and a Krylov subspace accelerator
are the most common alternatives to direct methods, as they offer a good compromise
between cost and robustness. Much of the recent research effort on solving sparse lin-
ear systems by iterative techniques has been devoted to the development of effective
preconditioners that scale well, while offering good reliability.

In this regard, multilevel methods that rely on incomplete LU (ILU) factorizations
have been advocated by many authors in recent years [1, 5–7, 20, 22, 24–26, 34, 36].
While multigrid techniques [12, 38] and their algebraic counterparts (AMG) [31, 41]
are known to be optimally efficient for solving some classes of discretized partial
differential equations on regular meshes, they may become ineffective when faced with
more general types of sparse linear systems. However, the ‘multilevel’ or ‘multistage’
ingredient of multigrid can be easily married with general-purpose qualities of ILU
preconditioners to yield efficient, yet more general-purpose, solvers.

This paper does not aim at exploring new methods within the multilevel ILU
class of techniques. It focuses instead on improving the basic component of ILU-based
preconditioners, namely the ILU factorization itself. Among the various options of
ILU considered in the literature is the Modified ILU factorization (MILU) proposed by
Gustafsson [19] for the symmetric case (Modified Incomplete Cholesky or MIC). Note
that for 5-point matrices, MIC(0), where the nonzero pattern of the resulting factors is
restricted to match that of the original matrix, is equivalent to the method proposed
in 1968 by Dupont, Kendall, and Rachford [16]. The modification in the MIC(0)

∗Work supported by the NSF under grants ACI-0305120 and DMS-0811022, the DOE under
grant DE-FG-08ER25841, and by the Minnesota Supercomputing Institute and the Institute for
Mathematics and its Applications
†Department of Mathematics, Tufts University, 503 Boston Avenue, Medford, MA 02155. email:

scott.maclachlan@tufts.edu
‡Department of Computer Science and Engineering, University of Minnesota, 200 Union Street

S.E., Minneapolis, MN 55455. email: {dosei,saad}@cs.umn.edu

1

22 S. MacLachlan, D. Osei-Kuffour, and Y. Saad

Grid n nnz k cF tsetup tsolve # iters.
65× 65 3969 19593 3 2.54 0.004 0.03 18

129× 129 16129 80137 3 2.57 0.02 0.18 31
257× 257 65025 324105 3 2.59 0.07 1.28 46
513× 513 261121 1303561 3 2.59 0.29 12.49 78
65× 65 3969 19593 4 3.30 0.006 0.03 15

129× 129 16129 80137 4 3.35 0.03 0.17 25
257× 257 65025 324105 4 3.37 0.11 1.05 37
513× 513 261121 1303561 4 3.39 0.43 8.98 61

Table 4.6: Performance of ILU(k) on 2D finite-difference Laplacian with levels of fill,
k = 3, and k = 4.

Grid n nnz τ cF tsetup tsolve # iters.
65× 65 3969 19593 0.010 3.15 0.01 0.03 16

129× 129 16129 80137 0.010 3.35 0.06 0.17 26
257× 257 65025 324105 0.010 3.47 0.22 1.25 43
513× 513 261121 1303561 0.010 3.54 0.92 12.39 75
65× 65 3969 19593 0.016 2.78 0.01 0.03 14

129× 129 16129 80137 0.016 2.89 0.05 0.13 19
257× 257 65025 324105 0.017 2.92 0.20 0.72 26
513× 513 261121 1303561 0.017 2.96 0.78 4.62 38

Table 4.7: Performance of mILUT based on the constant vector on 2D finite-difference
Laplacian.

match the preconditioner complexities of Table 4.5. Thus, in Table 4.6, we give
results for levels of fill (k) of three and four, with slightly smaller and slightly larger
overall complexities. Here, as expected, performance is slightly worse than that of
ILUT when the preconditioner complexity is smaller, and somewhat better when the
preconditioner complexity is larger. If memory requirements do not pose a constraint,
we see that ILU(4) outperforms both ILUT and ILU(3) in terms of iteration counts
and solution time on all grids.

We begin testing the modified ILUT algorithm in the setting of classical modified
ILU; i.e., with the diagonal entries of the U factor modified so that LU1 = A1, where
1 is the vector of all ones. Table 4.7 shows the results of these tests, first for the same
drop tolerance, τ = 0.01, as was used for ILUT in Table 4.5 and, then, with the drop
tolerance adjusted so that the preconditioner complexities, cF , nearly match those of
ILUT.

The results in Table 4.7 are somewhat surprising. As expected, we see some im-
provement in the performance of MILUT over that of ILUT for the same, fixed, drop
tolerance. In part, this is expected because of the well-known theoretical analysis of
modified incomplete factorizations, but it is also to be expected because the precon-
ditioner complexities are somewhat larger than those for ILUT. What is surprising is
that when the drop tolerance is raised (so that fewer nonzero entries are kept in the
preconditioner), the performance of the modified preconditioners uniformly improve.
While unexpected, this is not impossible, as the modification of the diagonal entries in
early rows of the matrix (which, of course, depends on the drop tolerance) has a sign-

TDB − NLA Examples of ILU performance (numerical)

Precond.with Â0 ILU
dt N1/N2 time(s) N1/N2 time(s)

h 4/10 14.58

h/4 4/10 16.98 no convergence

h/5 4/10 16.77

h/10 4/10 14.67 4/42 23.66

h/20 4/10 14.62 4/13 13.23

h/40 4/10 14.11 4/10 10.55

Multiphace flow with convection: Two preconditioners: Run time and number of
iterations, Pe = 1000

– p. 31/33

TDB − NLA Examples of ILU performance, cont.

Precond.with Â0 ILU
dt N1/N2 time(s) N1/N2 time(s)

h 3/10 16.66

h/4 3/10 16.54

h/5 3/10 16.53 no convergence

h/10 3/10 16.28

h/20 3/10 15.82

h/40 3/10 15.59

Problem 2: Two preconditioners: run time and number of iterations, Pe = 1.

– p. 32/33

TDB − NLA ILU - pros and cons

PROS:

Very general, no additional knowledge of the problem is required

Relatively easy to implement

Available in the software packages

CONS:

Method parameters to tune; nonlinear behaviour wrt to τ

Not very nummerically efficient (may not converge)

Problem-dependent behavious

Relatively less degrees of parallelism

– p. 33/33

TDB − NLA Complexity of linear solvers

Time to solve the Poisson model problem on a regular grid with N points

Solver 1D 2D 3D

Sparse Choleski O(N) O(N1.5) O(N2)

Unprecond. CG O(N2) O(N1.5) O(N1.33)

IC-precond. CG O(N1.5) O(N1.25) O(N1.17)

Multigrid O(N) O(N) O(N)

– p. 34/33

