
Introduction to
Domain Decomposition Methods

David E. Keyes
Department of Applied Physics & Applied Mathematics

Columbia University

As delivered at Kavli Institute for Theoretical Physics, 17 March 2005

Definition and motivation

Domain decomposition (DD) is a “divide and
conquer” technique for arriving at the solution of
problem defined over a domain from the solution of
related problems posed on subdomains
Motivating assumption #1: the solution of the
subproblems is qualitatively or quantitatively
“easier” than the original
Motivating assumption #2: the original problem does
not fit into the available memory space
Motivating assumption #3 (parallel context): the
subproblems can be solved with some concurrency

Remarks on definition

“Divide and conquer” is not a fully satisfactory
description

“divide, conquer, and combine” is better
combination is often through iterative means

True “divide-and-conquer” (only) algorithms are
rare in computing (unfortunately)
It might be preferable to focus on “subdomain
composition” rather than “domain decomposition”

We often think we know all about “two” because two is “one and
one”. We forget that we have to make a study of “and.”

A. S. Eddington (1882-1944)

Remarks on definition

Domain decomposition has generic and specific
senses within the universe of parallel computing

generic sense: any data decomposition (considered in
contrast to task decomposition)
specific sense: the domain is the domain of definition of an
operator equation (differential, integral, algebraic)

In a generic sense the process of constructing a
parallel program consists of

Decomposition into tasks
Assignment of tasks to processes
Orchestration of processes

Communication and synchronization

Mapping of processes to processors

Subproblem structure

The subdomains may be of the same or
different dimensionality as the original

2D
2D

2D

1D
0D

Plan of presentation
Imperative of domain decomposition (DD) for
terascale computing
Basic DD algorithmic concepts

Schwarz
Schur
Schwarz-Schur combinations

Basic DD convergence and scaling properties
En route:

mention some “high watermarks” for DD-based
simulations

Prime sources for domain decomposition
1996 1997 2001 2004

Other sources for domain decomposition
1992

1994 1995

+ DDM.ORG and other proceedings volumes, 1988-2004

Platforms for high-end simulation
ASCI roadmap: go
to 100 Teraflop/s by
2005
Use variety of
vendors

Compaq
Cray
Intel
IBM
SGI

Rely on commodity
processor/memory
units, with tightly
coupled network
Massive software
project to rewrite
physics codes for
distributed shared
memory??

Chip
(2 processors)

Compute Card
(2 chips, 2x1x1)

Node Board
(32 chips, 4x4x2)

16 Compute Cards

System
(64 cabinets, 64x32x32)

Cabinet
(32 Node boards, 8x8x16)

2.8/5.6 GF/s
4 MB

5.6/11.2 GF/s
0.5 GB DDR

90/180 GF/s
8 GB DDR

2.9/5.7 TF/s
256 GB DDR

180/360 TF/s
16 TB DDR

IBM’s BlueGene/L, 64K procs, 180 Tflop/s

For the BGL academic
consortium:
Full single rack
4.8 TFlop/s peak
70% of peak LINPACK
$2M per rack

Algorithmic requirements from architecture

Must run on physically distributed memory units
connected by message-passing network, each serving
one or more processors with multiple levels of cache

“horizontal” aspects “vertical” aspects

T3E

Building platforms is the “easy” part

Algorithms must be
highly concurrent and straightforward to load balance
latency tolerant
cache friendly (good temporal and spatial locality)
highly scalable (in the sense of convergence)

Domain decomposition “natural” for all of these

Domain decomposition also “natural”
for software engineering

Fortunate that its theory was built
in advance of requirements!

The earliest DD paper?

What Schwarz proposed…

Solve PDE in circle
with BC taken from
interior of square

Solve PDE in square
with BC taken from
interior of circle

A
nd iterate!

Rationale
Convenient analytic means (separation of variables) are
available for the regular problems in the subdomains,
but not for the irregular “keyhole” problem defined by
their union
Schwarz iteration defines a functional map from the
values defined along (either) artificial interior boundary
segment completing a subdomain (arc or segments) to an
updated set of values
A contraction map is derived for the error
Rate of convergence is not necessarily rapid – this was
not a concern of Schwarz
Subproblems are not solved concurrently – neither was
this Schwarz’ concern

Other early DD papers

Rationale

For Kron: direct Gaussian elimination has
superlinear complexity

union of subproblems and the connecting problem
(each also superlinear) could be solved in fewer
overall operations than one large problem

For Przemieniecki: full airplane structural
analysis would not fit in memory of available
computers

individual subproblems fit in memory

Rationale

(N/P) < M

Let problem size be N, number of subdomains
be P, and memory capacity be M
Let problem solution complexity be Na, (a≥1)
Then subproblem solution complexity is (N/P)a

Let the cost of connecting the subproblems be
c(N,P)
Kron wins if

Przemieniecki wins if

P (N/P)a + c(N,P) < Na

or c(N,P) < Na (1-P1-a)

NB: Kron
does not win

directly if
a=1 !

Contemporary interest

Goal is algorithmic scalability:
fill up memory of arbitrarily large machines to
increase resolution, while preserving nearly constant*
running times with respect to proportionally smaller
problem on one processor

*at worst logarithmically growing

Two definitions of scalability

“Strong scaling”
execution time decreases in
inverse proportion to the
number of processors
fixed size problem overall

“Weak scaling”
execution time remains constant,
as problem size and processor
number are increased in
proportion
fixed size problem per processor
also known as “Gustafson
scaling”

poorlog T

log p
good

N constant

Slope
= -1

T

p

good

poor

N ∝ p

Slope
= 0

Strong scaling illus. (1999 Bell Prize)
Newton-Krylov-Schwarz (NKS) algorithm for compressible and
incompressible Euler and Navier-Stokes flows
Used in NASA application FUN3D (M6 wing results below with 11M dof)

128 nodes
43min

3072 nodes
2.5min,
226Gf/s

15µs/unknown
70% efficient

0

50

100

150

200

250

0 500 1000 1500 2000 2500 3000 3500 4000

ASCI-White Processors

T
im

e
(s

ec
on

ds
)

Total Salinas FETI-DP

Weak scaling illus. (2002 Bell Prize)

1mdof

4mdof

9mdof

18mdof

30mdof

60mdof

c/o C. Farhat and K. Pierson

Finite Element Tearing and Interconnection (FETI) algorithm for
solid/shell models
Used in Sandia applications Salinas, Adagio, Andante

Decomposition strategies for Lu=f in Ω

Operator decomposition

Function space decomposition

Domain decomposition

∑=
k

kLL

∑∑ Φ=Φ=
k

kk
k

kk uuff ,

kk Ω=Ω U

fuuyx
kk II +=++ +)()1(][ττ LL

Consider the implicitly discretized parabolic case

Operator decomposition

Consider ADI
fuyux

kk II +−=+ +)()2/1(][][2/2/ LL ττ

fuxuy
kk II +−=+ ++)2/1()1(][][2/2/ LL ττ

Iteration matrix consists of four multiplicative
substeps per timestep

two sparse matrix-vector multiplies
two sets of unidirectional bandsolves

Parallelism within each substep
But global data exchanges between bandsolve substeps

Function space decomposition

Consider a spectral Galerkin method
),()(),,(

1
yxtatyxu j

N

j
j Φ=∑

=

Nifuu iiidt
d ,...,1),,(),(),(=Φ+Φ=Φ L

Nifa ijjijdt
da

jij
j ,...,1),,(),(),(=Φ+ΦΦ∑=ΦΦ∑ L

fMKaMdt
da 11 −− +=

Method-of-lines system of ODEs
Perhaps are diagonal
matrices
Parallelism across spectral index
But global data exchanges to transform back to

)],[()],,[(ijij KM ΦΦ≡ΦΦ≡ L

physical variables at each step

SPMD parallelism w/domain decomposition

Partitioning of the grid
induces block structure on
the system matrix
(Jacobian)

Ω1

Ω2

Ω3

A23A21 A22
rows assigned

to proc “2”

DD relevant to any local stencil formulation

finite differences finite elements finite volumes

• All lead to sparse Jacobian matrices

J=

node i

row i
• However, the inverses are generally
dense; even the factors suffer
unacceptable fill-in in 3D
• Want to solve in subdomains only, and
use to precondition full sparse problem

Digression for notation’s sake
We need a convenient notation for
mapping vectors (representing
discrete samples of a continuous
field) from full domain to subdomain
and back

1
3

1

6

5

4

3

2

1

1 00
00

01
00

00
01

u
x
x

x
x
x
x
x
x

uR ≡⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎥
⎦

⎤
⎢
⎣

⎡
=

⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

0
0
0

0

00
00
00
10
00
01

3

1

3

1
11

x

x

x
x

uR T

x1
x2

x3

x4

x5

x6

u1

⎥
⎦

⎤
⎢
⎣

⎡
=

00
00

01
00

00
01

1R
Let Ri be a Boolean operator
that extracts the elements of
the ith subdomain from the
global vector

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

00
00
00
10
00
01

1
TR

Then Ri
T maps the elements

of the ith subdomain back
into the global vector,
padding with zeros

Schwarz domain decomposition method

Consider restriction and extension
operators for subdomains, ,
and for possible coarse grid,
Replace discretized with

Solve by a Krylov method
Matrix-vector multiplies with

parallelism on each subdomain
nearest-neighbor exchanges, global reductions
possible small global system (not needed for parabolic case)

iΩ
iR

0R

TRR 00 ,

T
ii RR ,

fAu =
fBAuB 11 −− =

ii
T
ii

T RARRARB 1
0

1
00

1 −−− ∑+=

T
iii ARRA =

=

Krylov bases for sparse systems

E.g., conjugate gradients (CG) for symmetric, positive definite
systems, and generalized minimal residual (GMRES) for
nonsymmetry or indefiniteness
Krylov iteration is an algebraic projection method for converting
a high-dimensional linear system into a lower-dimensional linear
system

AVWH T≡
=

=

bAx =
=

bWg T=

=

Vyx = =
gHy =

Krylov bases for sparse systems

Krylov bases, cont.

Krylov bases, cont.

Krylov bases, cont.

Remember this formula of Schwarz …

For a “good” approximation, B-1, to A-1:

i
T
ii

T
ii RARRRB 11)(−− ∑=

Now, let’s compare!

Operator decomposition (ADI)
natural row-based assignment requires global all-to-
all, bulk data exchanges in each step (for transpose)

Function space decomposition (Fourier)
Natural mode-based assignment requires global all-to-
all, bulk data exchanges in each step (for transform)

Domain decomposition (Schwarz)
Natural domain-based assignment requires local
surface data exchanges, global reductions, and
optional small global problem

(Of course, domain decomposition can be interpreted
as a special operator or function space decomposition)

Schwarz subspace decomposition

Schwarz subspace decomposition

Four steps in creating a parallel program

P0

Tasks Processes Processors

P1

P2 P3

p0 p1

p2 p3

p0 p1

p2 p3

Partitioning

Sequential
computation

Parallel
program

A
s
s
i
g
n
m
e
n
t

D
e
c
o
m
p
o
s
i
t
i
o
n

M
a
p
p
i
n
g

O
r
c
h
e
s
t
r
a
t
i
o
n

Decomposition of computation in tasks
Assignment of tasks to processes
Orchestration of data access, communication, synchronization
Mapping processes to processors

Krylov-Schwarz parallelization summary
Decomposition into concurrent tasks

by domain

Assignment of tasks to processes
typically one subdomain per process

Orchestration of communication between processes
to perform sparse matvec – near neighbor communication
to perform subdomain solve – nothing
to build Krylov basis – global inner products
to construct best fit solution – global sparse solve (redundantly)

Mapping of processes to processors
typically one process per processor

Krylov-Schwarz kernel in parallel

local
scatter

Jac-vec
multiply

precond
sweep

daxpy inner
product

Krylov
iteration

…
P1:

P2:

Pn:
M

What happens if, for instance, in this
(schematicized) iteration, arithmetic
speed is doubled, scalar all-gather is
quartered, and local scatter is cut by
one-third? Each phase is
considered separately. Answer is to
the right.

…
P1:

P2:

Pn:
M

Krylov-Schwarz compelling in serial, too
As successive workingsets “drop” into a level of memory,
capacity (and with effort conflict) misses disappear, leaving
only compulsory misses, reducing demand on main memory
bandwidth
Cache size is not easily manipulated, but domain size is

Traffic decreases as
cache gets bigger or
subdomains get smaller

Estimating scalability of stencil computations
Given complexity estimates of the leading terms of:

the concurrent computation (per iteration phase)
the concurrent communication
the synchronization frequency

And a bulk synchronous model of the architecture including:
internode communication (network topology and protocol reflecting horizontal
memory structure)
on-node computation (effective performance parameters including vertical
memory structure)

One can estimate optimal concurrency and optimal execution
time

on per-iteration basis, or overall (by taking into account any granularity-
dependent convergence rate)
simply differentiate time estimate in terms of (N,P) with respect to P, equate to

zero and solve for P in terms of N

Estimating 3D stencil costs (per iteration)

grid points in each
direction n, total work
N=O(n3)
processors in each
direction p, total procs
P=O(p3)
memory per node
requirements O(N/P)

concurrent execution time per
iteration A n3/p3

grid points on side of each
processor subdomain n/p
Concurrent neighbor commun.
time per iteration B n2/p2

cost of global reductions in each
iteration C log p or C p(1/d)

C includes synchronization
frequency

same dimensionless units for
measuring A, B, C

e.g., cost of scalar floating point
multiply-add

3D stencil computation illustration
Rich local network, tree-based global reductions

total wall-clock time per iteration

for optimal p, , or

or (with),

without “speeddown,” p can grow with n
in the limit as

pC
p
nB

p
nApnT log),(2

2

3

3

++=

0=
∂
∂

p
T

,023 3

2

4

3

=+−−
p
C

p
nB

p
nA

CA
B

2

3

243
32

≡θ

[] [] n
C
Apopt ⋅⎟

⎠
⎞

⎜
⎝
⎛ −−+−+⎟

⎠
⎞

⎜
⎝
⎛= 3

1
3

13
1

)1(1)1(1
2
3 θθ

0→C
B

n
C
Apopt ⋅⎟
⎠
⎞

⎜
⎝
⎛=

3
1

3

3D stencil computation illustration
Rich local network, tree-based global reductions

optimal running time

where

limit of infinite neighbor bandwidth, zero neighbor latency ()

(This analysis is on a per iteration basis; complete analysis
multiplies this cost by an iteration count estimate that generally
depends on n and p.)

(),log))(,(23 nCBAnpnT opt ρ
ρρ

++=

[] [] ⎟
⎠
⎞

⎜
⎝
⎛ −−+−+⎟

⎠
⎞

⎜
⎝
⎛= 3

1
3

13
1

)1(1)1(1
2
3 θθρ
C
A

0→B

⎥⎦
⎤

⎢⎣
⎡ ++= .log

3
1log))(,(const

C
AnCnpnT opt

Scalability results for DD stencil computations

With tree-based (logarithmic) global
reductions and scalable nearest neighbor
hardware:

optimal number of processors scales linearly with
problem size

With 3D torus-based global reductions and
scalable nearest neighbor hardware:

optimal number of processors scales as three-fourths
power of problem size (almost “scalable”)

With common network bus (heavy
contention):

optimal number of processors scales as one-fourth
power of problem size (not “scalable”)

Factoring convergence rate into estimates

In terms of N and P, where for d-dimensional
isotropic problems, N=h-d and P=H-d, for mesh
parameter h and subdomain diameter H,
iteration counts may be estimated as follows:

Ο(P1/3)Ο(P1/2)1-level Additive Schwarz

Ο(1)Ο(1)2-level Additive Schwarz

Ο((NP)1/6)Ο((NP)1/4)Domain Jacobi (δ=0)
Ο(N1/3)Ο(N1/2)Point Jacobi

in 3Din 2DPreconditioning Type

Krylov-Schwarz iterative methods typically converge in a
number of iterations that scales as the square-root of the
condition number of the Schwarz-preconditioned system

Where do these results come from?
Point Jacobi result is well known (see any book on the
numerical analysis of elliptic problems)
Subdomain Jacobi result has interesting history

Was derived independently from functional analysis, linear algebra, and
graph theory

Schwarz theory is neatly and abstractly summarized in Section
5.2 Smith, Bjorstad & Gropp (1996) and Chapter 2 of Toselli &
Widlund (2004)

condition number, κ ≤ ω [1+ρ(ε)] C0
2

C0
2 is a splitting constant for the subspaces of the decomposition

ρ(ε) is a measure of the orthogonality of the subspaces
ω is a measure of the approximation properties of the subspace solvers
(can be unity for exact subdomain solves)
These properties are estimated for different subspaces, different
operators, and different subspace solvers and the “crank” is turned

Comments on the Schwarz results
Original basic Schwarz estimates were for:

self-adjoint elliptic operators
positive definite operators
exact subdomain solves,
two-way overlapping with
generous overlap, δ=O(H) (original 2-level result was O(1+H/δ))

Subsequently extended to (within limits):
nonself-adjointness (e.g, convection)
indefiniteness (e.g., wave Helmholtz)
inexact subdomain solves
one-way overlap communication (“restricted additive Schwarz”)
small overlap

T
ii RR ,

1−
iA

Comments on the Schwarz results, cont.

Theory still requires “sufficiently fine” coarse mesh
However, coarse space need not be nested in the fine space or in the
decomposition into subdomains

Practice is better than one has any right to expect

“In theory, theory and practice are the same ...
In practice they’re not!”

Wave Helmholtz (e.g., acoustics) is delicate at high
frequency:

standard Schwarz Dirichlet boundary conditions can lead to
undamped resonances within subdomains,
remedy involves Robin-type transmission boundary conditions
on subdomain boundaries,

0=Γu

0)/(=∂∂+ Γnuu α

— Yogi Berra

Illustration of 1-level vs. 2-level tradeoff

Thermal Convection
Problem (Ra = 1000)

1 proc

N.45

N.24

N0

2 – Level DD
Exact Coarse
Solve

2 – Level DD
Approx. Coarse
Solve

1 – Level
DD3D Results

512 procs

Total Unknowns

A
vg

. I
te

ra
tio

ns
 p

er
 N

ew
to

n
St

ep

Temperature iso-lines
on slice plane, velocity
iso-surfaces and
streamlines in 3D c/o J. Shadid and R. Tuminaro

Newton-Krylov solver with Aztec non-restarted GMRES with 1-level domain decomposition
preconditioner, ILUT subdomain solver, and ML 2-level DD with Gauss-Seidel subdomain solver.
Coarse Solver: “Exact” = SuperLU (1 proc), “Approx” = one step of ILU (8 proc. in parallel)

“Unreasonable effectiveness” of Schwarz
When does the sum of partial inverses equal the
inverse of the sums? When the decomposition is right!

{ }ir
iii raAr = T

iii Arra =
Let be a complete set of orthonormal row
eigenvectors for A : or

ii
T

ii rarA Σ=
Then

i
T

ii
T

iiii
T

ii rArrrrarA 111)(−−− Σ=Σ=
and

— the Schwarz formula!
Good decompositions are a compromise between
conditioning and parallel complexity, in practice

Schur complement substructuring

Given a partition

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡

ΓΓΓΓΓ

Γ

f
f

u
u

AA
AA ii

i

iii

Γ
−

ΓΓΓ −≡ iiii AAAAS 1
iiii fAAfg 1−

ΓΓ −≡

Γ

gSu =Γ

Condense:

Properties of the Schur complement:
smaller than original A, but generally dense
expensive to form, to store, to factor, and to solve

better conditioned than original A, for which κ(A)=O(h-2)
for a single interface, κ(S)=O(h-1)

Therefore, solve iteratively, with action of S on each Krylov
vector

Schur preconditioning
Note the factorization of the system matrix

Hence a perfect preconditioner is

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
= Γ

−

Γ S
AAI

IA
A

A iii

i

ii

0
0 1

111
1 0

0

−

Γ

−

Γ
−

−
⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=

IA
A

S
AAI

A
i

iiiii

⎥
⎦

⎤
⎢
⎣

⎡

−⎥
⎦

⎤
⎢
⎣

⎡ −
=

−
Γ

−

−

−
Γ

−

IAA
A

S
SAAI

iii

iiiii
1

1

1

11 0
0

Schur preconditioning
Let M-1 be any good preconditioner for S
Let

Then B-1 is a good preconditioner for A, for recall

Γ111
1 0~

0

~ −

Γ

−

Γ
−

−
⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=

IA
A

M
AAIB

i

iiiii

111
1 0

0

−

Γ

−

Γ
−

−
⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=

IA
A

S
AAI

A
i

iiiii

Schur preconditioning

So, instead of , use full system

Here, solves with may be done approximately
since all degrees of freedom are retained
Once this simple block decomposition is understood,
everything boils down to two more profound
questions:

How to approximate S cheaply

How should the relative quality of M and compare

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡

Γ

−

ΓΓΓΓ

Γ−

f
f

B
u
u

AA
AA

B ii

i

iii 11

iiA

gMSuM 11 −
Γ

− =

iiA~

Schur preconditioning

How to approximate S cheaply?
Many techniques for a single interface
Factorizations of narrow band approximations
Spectral (FFT-implementable) decompositions
Algebraic “probing” of a specified sparsity pattern for
inverse

For separator sets more complicated than a single
interface, we componentize, creating the
preconditioner of the union from the sum of
preconditioners of the individual pieces

Schwarz-on-Schur

Beyond a simple interface, preconditioning the Schur
complement is complex in and of itself; Schwarz is
used on the reduced problem
Neumann-Neumann

Balancing Neumann-Neumann
))()((1

0
11

0
1

0
1 −−−−− −Σ−+= SMIDRSRDSMIMM iii

T
iii

iii
T
iii DRSRDM 11 −− Σ=

Numerous other variants allow inexact subdomain solves,
combining additive Schwarz-like preconditioning of the
separator set components with inexact subdomain
solves on the subdomains

As an illustration of the algorithmic structure, we
consider the 2D Bramble-Pasciak-Schatz (1984)
preconditioner for the case of many subdomains

Schwarz-on-Schur

⎥
⎦

⎤
⎢
⎣

⎡
=

VV
T
EV

EVEE

SS
SS

S

)()(11 −−= hHOSκ
)()(1−= hOSκ

For this case , which is not as
good as the single interface case, for which
The Schur complement has the block structure

for which the following block diagonal preconditioner
improves conditioning only to

Note that we can write M-1 equivalently as

Schwarz-on-Schur

⎥
⎦

⎤
⎢
⎣

⎡
=

−

−
−

1

1
1

0
0

VV

EE

S
S

M

))(log(122 −− HhHO

jjjjiiii Vj VV
T
VEi EE

T
E RSRRSRM ∑∑ −−− += 111

))(log1()(121 −− += HhCSMκ

If we replace the diagonal vertex term of M-1 with a
coarse grid operator

then

where C may still retain dependencies on other bad
parameters, such as jumps in the diffusion coefficients
The edge term can be replaced with cheaper components
There are numerous variations in 2D and 3D that
conquer various additional weaknesses

Schwarz-on-Schur

HH
T
HEi EE

T
E RARRSRM

iiii

111 −−− += ∑

Schwarz polynomials

Polynomials of Schwarz projections that are combinations of
additive and multiplicative may be appropriate for certain
implementations
We may solve the fine subdomains concurrently and follow with a
coarse grid (redundantly/cooperatively)

)(1 AufBuu ii −Σ+← −

)(1
0 AufBuu −+← −

))((11
0

1
0

1 −−−− Σ−+= ii BABIBB
This leads to algorithm “Hybrid II” in S-B-G’96:

Convenient for “SPMD” (single prog/multiple data)

Onward to nonlinearity
Linear versus nonlinear problems

Solving linear algebraic problems often constitutes 90% of
the running time of a large simulation
The nonlinearity is often a fairly straightforward outer loop,
in that it introduces no new types of messages or
synchronizations, and has overall many fewer
synchronizations than the preconditioned Krylov method or
other linear solver inside it

We can wrap Newton, Picard, fixed-point or other
iterations outside, linearize, and apply what we know
We consider both Newton-outside and Newton-inside
methods

Newton-Krylov-Schur-Schwarz:
a solver “workhorse”

Newton
nonlinear solver
asymptotically

quadratic

0)(')()(=+≈ uuFuFuF cc δ
uuu c δλ+=

Krylov
accelerator

spectrally adaptive

FuJ −=δ
}{minarg

},,,{ 2
FJxu

FJJFFVx
+=

≡∈ L

δ

Schur
preconditioner
parallelizable
by structure

FBuJB 11 −− −=δ

Schwarz
preconditioner
parallelizable

by domain

i
T
ii

T
ii RARRRA 11)(~ −− ∑=

1
1

1

0

~0~ −

Γ
−

Γ

−

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=

M
AAI

IA
AB iii

i

ii

Jacobian-free Newton-Krylov
In the Jacobian-Free Newton-Krylov (JFNK) method, a
Krylov method solves the linear Newton correction
equation, requiring Jacobian-vector products
These are approximated by the Fréchet derivatives

(where is chosen with a fine balance between
approximation and floating point rounding error) or
automatic differentiation, so that the actual Jacobian
elements are never explicitly needed

One builds the Krylov space on a true F’(u) (to within
numerical approximation)

)]()([1)(uFvuFvuJ −+≈ ε
ε

ε

How to accommodate preconditioning
Krylov iteration is expensive in memory and in
function evaluations, so subspace dimension k must be
kept small in practice, through preconditioning the
Jacobian with an approximate inverse, so that the
product matrix has low condition number in

Given the ability to apply the action of to a
vector, preconditioning can be done on either the left,
as above, or the right, as in, e.g., for matrix-free:

)]()([1 11 uFvBuFvJB −+≈ −− ε
ε

bBxAB 11)(−− =
1−B

Philosophy of Jacobian-free NK
To evaluate the linear residual, we use the true F’(u) , giving a
true Newton step and asymptotic quadratic Newton
convergence
To precondition the linear residual, we do anything convenient
that uses understanding of the dominant physics/mathematics
in the system and respects the limitations of the parallel
computer architecture and the cost of various operations:

Jacobian blocks decomposed for parallelism (Schwarz)
Jacobian of lower-order discretization
Jacobian with “lagged” values for expensive terms
Jacobian stored in lower precision
Jacobian of related discretization
operator-split Jacobians
physics-based preconditioning

Nonlinear Schwarz preconditioning
Nonlinear Schwarz has Newton both inside and
outside and is fundamentally Jacobian-free
It replaces with a new nonlinear system
possessing the same root,
Define a correction to the partition (e.g.,
subdomain) of the solution vector by solving the
following local nonlinear system:

where is nonzero only in the
components of the partition
Then sum the corrections: to get
an implicit function of u

0)(=uF
0)(=Φ u

thi

thi

)(uiδ

0))((=+ uuFR ii δ
n

i u ℜ∈)(δ

)()(uu ii δ∑=Φ

Nonlinear Schwarz – picture
F(u)

1
1

1
1

0 0

Ri

RiuRiF

u

Nonlinear Schwarz – picture
F(u)

1
1

1
1

0 0

1
1

1
1

0 0

Rj

Riu

RjF

RiF

Rju

Ri

u

Nonlinear Schwarz – picture
F(u)

u

Fi’(ui)

Ri

Rj

δiu+δju

1
1

1
1

0 0

1
1

1
1

0 0 RiuRiF

RjuRjF

Nonlinear Schwarz, cont.
It is simple to prove that if the Jacobian of F(u) is
nonsingular in a neighborhood of the desired root
then and have the same unique
root
To lead to a Jacobian-free Newton-Krylov algorithm
we need to be able to evaluate for any :

The residual
The Jacobian-vector product

Remarkably, (Cai-Keyes, 2000) it can be shown that

where and
All required actions are available in terms of !

0)(=Φ u

nvu ℜ∈,
)()(uu ii δ∑=Φ

0)(=uF

vu ')(Φ

JvRJRvu ii
T
ii)()(1' −∑≈Φ

)(' uFJ = T
iii JRRJ =

)(uF

Experimental example of nonlinear Schwarz

Vanilla Newton’s method Nonlinear Schwarz

Difficulty at
critical Re

Stagnation
beyond

critical Re

Convergence
for all Re

Multiphysics coupling: nonlinear Schwarz

Given initial iterate
For k=1, 2, …, until convergence, do

Define by
Define by

Then solve in matrix-free manner

Jacobian:

Finally { } { }wvuu kk ,, 21 =

{ }0
2

0
1 ,uu

0),(1
21

1
11 =+ −− kk uuuF δ1211),(uuuG δ≡

0),(2
1

2
1

12 =+−− uuuF kk δ2212),(uuuG δ≡

⎩
⎨
⎧

=
=

0),(
0),(

2

1

vuG
vuG

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

∂
∂

⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

∂
∂

⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

≈
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

∂
∂

∂
∂

∂
∂

∂
∂

−

−

I
u
F

v
F

v
F

u
FI

v
G

u
G

v
G

u
G

2
1

2

1
1

1

22

11

State of the art
Domain decomposition is the dominant paradigm in contemporary
terascale PDE simulation
Several freely available software toolkits exist, and successfully scale
to thousands of tightly coupled processors for problems on quasi-
static meshes
Concerted efforts underway to make elements of these toolkits
interoperate, and to allow expression of the best methods, which tend
to be modular, hierarchical, recursive, and above all — adaptive!
Many challenges loom at the “next scale” of computation
Implementation of domain decomposition methods on parallel
computers has inspired many useful variants of domain
decomposition methods
The past few years have produced an incredible variety of interesting
results (in both the continuous and the discrete senses) in domain
decomposition methods, with no slackening in sight

Closing inspiration

“… at this very moment the search is on – every numerical analyst
has a favorite preconditioner, and you have a perfect chance to
find a better one.”

- Gil Strang (1986)

	Definition and motivation
	Remarks on definition
	Remarks on definition
	Subproblem structure
	Plan of presentation
	Platforms for high-end simulation
	IBM’s BlueGene/L, 64K procs, 180 Tflop/s
	Algorithmic requirements from architecture
	Building platforms is the “easy” part
	The earliest DD paper?
	Rationale
	Other early DD papers
	Rationale
	Rationale
	Contemporary interest
	Two definitions of scalability
	Decomposition strategies for Lu=f in
	Operator decomposition
	Function space decomposition
	SPMD parallelism w/domain decomposition
	DD relevant to any local stencil formulation
	Digression for notation’s sake
	Schwarz domain decomposition method
	Krylov bases for sparse systems
	Krylov bases for sparse systems
	Krylov bases, cont.
	Krylov bases, cont.
	Krylov bases, cont.
	Remember this formula of Schwarz …
	Now, let’s compare!
	Schwarz subspace decomposition
	Schwarz subspace decomposition
	Four steps in creating a parallel program
	Krylov-Schwarz parallelization summary
	Krylov-Schwarz kernel in parallel
	Krylov-Schwarz compelling in serial, too
	Estimating scalability of stencil computations
	Estimating 3D stencil costs (per iteration)
	3D stencil computation illustrationRich local network, tree-based global reductions
	3D stencil computation illustration Rich local network, tree-based global reductions
	Scalability results for DD stencil computations
	Factoring convergence rate into estimates
	Where do these results come from?
	Comments on the Schwarz results
	Comments on the Schwarz results, cont.
	Illustration of 1-level vs. 2-level tradeoff
	“Unreasonable effectiveness” of Schwarz
	Schur complement substructuring
	Schur preconditioning
	Schur preconditioning
	Schur preconditioning
	Schur preconditioning
	Schwarz-on-Schur
	Schwarz polynomials
	Onward to nonlinearity
	Jacobian-free Newton-Krylov
	How to accommodate preconditioning
	Philosophy of Jacobian-free NK
	Nonlinear Schwarz preconditioning
	Nonlinear Schwarz – picture
	Nonlinear Schwarz – picture
	Nonlinear Schwarz – picture
	Nonlinear Schwarz, cont.
	Experimental example of nonlinear Schwarz
	Multiphysics coupling: nonlinear Schwarz
	State of the art
	Closing inspiration

