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Definition and motivation

Domain decomposition (DD) is a “divide and 
conquer” technique for arriving at the solution of 
problem defined over a domain from the solution of 
related problems posed on subdomains
Motivating assumption #1: the solution of the 
subproblems is qualitatively or quantitatively 
“easier” than the original
Motivating assumption #2: the original problem does 
not fit into the available memory space
Motivating assumption #3 (parallel context): the 
subproblems can be solved with some concurrency



Remarks on definition

“Divide and conquer” is not a fully satisfactory 
description

“divide, conquer, and combine” is better
combination is often through iterative means

True “divide-and-conquer” (only) algorithms are 
rare in computing (unfortunately)
It might be preferable to focus on “subdomain 
composition” rather than “domain decomposition”

We often think we know all about “two” because two is “one and 
one”.  We forget that we have to make a study of “and.”

A. S. Eddington (1882-1944)



Remarks on definition

Domain decomposition has generic and specific 
senses within the universe of parallel computing

generic sense: any data decomposition (considered in 
contrast to task decomposition)
specific sense: the domain is the domain of definition of an 
operator equation (differential, integral, algebraic)

In a generic sense the process of constructing a 
parallel program consists of

Decomposition into tasks
Assignment of tasks to processes
Orchestration of processes

Communication and synchronization

Mapping of processes to processors



Subproblem structure

The subdomains may be of the same or 
different dimensionality as the original

2D
2D

2D

1D
0D



Plan of presentation
Imperative of domain decomposition (DD) for 
terascale computing
Basic DD algorithmic concepts

Schwarz
Schur
Schwarz-Schur combinations

Basic DD convergence and scaling properties
En route:

mention some “high watermarks” for DD-based 
simulations



Prime sources for domain decomposition
1996 1997 2001 2004



Other sources for domain decomposition
1992

1994 1995

+ DDM.ORG and other proceedings volumes, 1988-2004



Platforms for high-end simulation
ASCI roadmap: go 
to 100 Teraflop/s by 
2005
Use variety of 
vendors

Compaq
Cray
Intel
IBM
SGI

Rely on commodity 
processor/memory 
units, with tightly 
coupled network
Massive software 
project to rewrite 
physics codes for 
distributed shared 
memory??



Chip
(2 processors)

Compute Card
(2 chips, 2x1x1)

Node Board
(32 chips, 4x4x2)

16 Compute Cards

System
(64 cabinets, 64x32x32)

Cabinet
(32 Node boards, 8x8x16)

2.8/5.6 GF/s
4 MB

5.6/11.2 GF/s
0.5 GB DDR

90/180 GF/s
8 GB DDR

2.9/5.7 TF/s
256 GB DDR

180/360 TF/s
16 TB DDR

IBM’s BlueGene/L, 64K procs, 180 Tflop/s

For the BGL academic 
consortium:
Full single rack
4.8 TFlop/s peak
70% of peak LINPACK
$2M per rack



Algorithmic requirements from architecture

Must run on physically distributed memory units 
connected by message-passing network, each serving 
one or more processors with multiple levels of cache 

“horizontal” aspects “vertical” aspects

T3E



Building platforms is the “easy” part

Algorithms must be
highly concurrent and straightforward to load balance
latency tolerant
cache friendly (good temporal and spatial locality)
highly scalable (in the sense of convergence)

Domain decomposition “natural” for all of these

Domain decomposition also “natural” 
for software engineering

Fortunate that its theory was built 
in advance of requirements!



The earliest DD paper?

What Schwarz proposed…

Solve PDE in circle 
with BC taken from 
interior of square

Solve PDE in square 
with BC taken from 
interior of circle

A
nd iterate!



Rationale
Convenient analytic means (separation of variables) are 
available for the regular problems in the subdomains, 
but not for the irregular “keyhole” problem defined by 
their union
Schwarz iteration defines a functional map from the 
values defined along (either) artificial interior boundary 
segment completing a subdomain (arc or segments) to an 
updated set of values
A contraction map is derived for the error
Rate of convergence is not necessarily rapid – this was 
not a concern of Schwarz
Subproblems are not solved concurrently – neither was 
this Schwarz’ concern



Other early DD papers



Rationale

For Kron: direct Gaussian elimination has 
superlinear complexity

union of subproblems and the connecting problem 
(each also superlinear) could be solved in fewer 
overall operations than one large problem

For Przemieniecki: full airplane structural 
analysis would not fit in memory of available 
computers

individual subproblems fit in memory



Rationale

(N/P) < M

Let problem size be N, number of subdomains 
be P, and memory capacity be M
Let problem solution complexity be  Na, (a≥1)
Then subproblem solution complexity is  (N/P)a

Let the cost of connecting the subproblems be 
c(N,P)
Kron wins if

Przemieniecki wins if 

P (N/P)a + c(N,P) < Na

or   c(N,P) < Na (1-P1-a)

NB: Kron 
does not win 

directly if 
a=1 !



Contemporary interest

Goal is algorithmic scalability: 
fill up memory of arbitrarily large machines to 
increase resolution, while preserving nearly constant* 
running times with respect to proportionally smaller 
problem on one processor

*at worst logarithmically growing



Two definitions of scalability

“Strong scaling”
execution time decreases in 
inverse proportion to the 
number of processors
fixed size problem overall

“Weak scaling”
execution time remains constant, 
as problem size and processor 
number are increased in 
proportion
fixed size problem per processor
also known as “Gustafson 
scaling”

poorlog T

log p
good

N constant

Slope
= -1

T  

p

good

poor

N ∝ p

Slope
= 0



Strong scaling illus. (1999 Bell Prize)
Newton-Krylov-Schwarz (NKS) algorithm for compressible and 
incompressible Euler and Navier-Stokes flows 
Used in NASA application FUN3D (M6 wing results below with 11M dof)

128 nodes 
43min

3072 nodes 
2.5min, 
226Gf/s

15µs/unknown 
70% efficient
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Finite Element Tearing and Interconnection (FETI) algorithm for 
solid/shell models
Used in Sandia applications Salinas, Adagio, Andante



Decomposition strategies for Lu=f  in Ω

Operator decomposition

Function space decomposition

Domain decomposition
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Consider the implicitly discretized parabolic case



Operator decomposition

Consider ADI
fuyux
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Iteration matrix consists of four multiplicative 
substeps per timestep

two sparse matrix-vector multiplies
two sets of unidirectional bandsolves

Parallelism within each substep
But global data exchanges between bandsolve substeps



Function space decomposition

Consider a spectral Galerkin method
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Perhaps                                                        are diagonal 
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Parallelism across spectral index
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SPMD parallelism w/domain decomposition

Partitioning of the grid 
induces block structure on 
the system matrix 
(Jacobian)

Ω1

Ω2

Ω3

A23A21 A22
rows assigned 

to proc “2”



DD relevant to any local stencil formulation

finite differences finite elements finite volumes

• All lead to sparse Jacobian matrices 

J=

node i

row i
• However, the inverses are generally 
dense; even the factors suffer 
unacceptable fill-in in 3D
• Want to solve in subdomains only, and 
use to precondition full sparse problem



Digression for notation’s sake
We need a convenient notation for 
mapping vectors (representing 
discrete samples of a continuous 
field) from full domain to subdomain 
and back
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Schwarz domain decomposition method

Consider restriction and extension 
operators for subdomains,           ,      
and for possible coarse grid,
Replace discretized                   with

Solve by a Krylov method
Matrix-vector multiplies with

parallelism on each subdomain
nearest-neighbor exchanges, global reductions
possible small global system (not needed for parabolic case)
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Krylov bases for sparse systems

E.g., conjugate gradients (CG) for symmetric, positive definite 
systems, and generalized minimal residual (GMRES) for 
nonsymmetry or indefiniteness 
Krylov iteration is an algebraic projection method for converting 
a high-dimensional linear system into a lower-dimensional linear 
system
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Krylov bases for sparse systems



Krylov bases, cont.



Krylov bases, cont.



Krylov bases, cont.



Remember this formula of Schwarz …

For  a “good” approximation, B-1, to A-1:
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Now, let’s compare!

Operator decomposition (ADI)
natural row-based assignment requires global all-to-
all, bulk data exchanges in each step (for transpose)

Function space decomposition (Fourier)
Natural mode-based assignment requires global all-to-
all, bulk data exchanges in each step (for transform)

Domain decomposition (Schwarz)
Natural domain-based assignment requires local
surface data exchanges, global reductions, and 
optional small global problem

(Of course, domain decomposition can be interpreted 
as a special operator or function space decomposition)



Schwarz subspace decomposition



Schwarz subspace decomposition



Four steps in creating a parallel program

P0

Tasks Processes Processors

P1

P2 P3

p0 p1

p2 p3

p0 p1

p2 p3

Partitioning

Sequential
computation

Parallel
program
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Decomposition of computation in tasks
Assignment of tasks to processes
Orchestration of data access, communication, synchronization
Mapping processes to processors



Krylov-Schwarz parallelization summary
Decomposition into concurrent tasks

by domain

Assignment of tasks to processes
typically one subdomain per process

Orchestration of communication between processes
to perform sparse matvec – near neighbor communication
to perform subdomain solve – nothing
to build Krylov basis – global inner products
to construct best fit solution – global sparse solve (redundantly)

Mapping of processes to processors
typically one process per processor



Krylov-Schwarz kernel in parallel

local 
scatter

Jac-vec 
multiply

precond 
sweep

daxpy inner     
product

Krylov 
iteration

…
P1:

P2:

Pn:
M

What happens if, for instance, in this 
(schematicized) iteration, arithmetic 
speed is doubled, scalar all-gather is 
quartered, and local scatter is cut by 
one-third?  Each phase is 
considered separately. Answer is to 
the right.

…
P1:

P2:

Pn:
M



Krylov-Schwarz compelling in serial, too
As successive workingsets “drop” into a level of memory, 
capacity (and with effort conflict) misses disappear, leaving 
only compulsory misses, reducing demand on main memory 
bandwidth
Cache size is not easily manipulated, but domain size is

Traffic decreases as 
cache gets bigger or 
subdomains get smaller



Estimating scalability of stencil computations 
Given complexity estimates of the leading terms of:

the concurrent computation (per iteration phase)
the concurrent communication
the synchronization frequency

And a bulk synchronous model of the architecture including:
internode communication (network topology and protocol reflecting horizontal 
memory structure)
on-node computation (effective performance parameters including vertical 
memory structure)

One can estimate optimal concurrency and optimal execution 
time

on per-iteration basis, or overall (by taking into account any granularity-
dependent convergence rate)
simply differentiate time estimate in terms of (N,P) with respect to P, equate to 

zero and solve for P in terms of N



Estimating 3D stencil costs (per iteration)

grid points in each 
direction n, total work 
N=O(n3)
processors in each 
direction p, total procs
P=O(p3)
memory per node 
requirements O(N/P)

concurrent execution time per 
iteration A n3/p3

grid points on side of each 
processor subdomain n/p
Concurrent neighbor commun. 
time per iteration B n2/p2

cost of global reductions in each 
iteration  C log p or C p(1/d)

C includes synchronization 
frequency

same dimensionless units for 
measuring A, B, C 

e.g., cost of scalar floating point 
multiply-add



3D stencil computation illustration
Rich local network, tree-based global reductions

total wall-clock time per iteration

for optimal p,            , or  

or (with                        ),

without “speeddown,”  p can grow with n
in the limit as 
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3D stencil computation illustration 
Rich local network, tree-based global reductions

optimal running time

where

limit of infinite neighbor bandwidth, zero neighbor latency (   )

(This analysis is on a per iteration basis; complete analysis 
multiplies this cost by an iteration count estimate that generally 
depends on n and p.)
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Scalability results for DD stencil computations

With tree-based (logarithmic) global 
reductions and scalable nearest neighbor 
hardware:

optimal number of processors scales linearly with 
problem size

With 3D torus-based global reductions and 
scalable nearest neighbor hardware:

optimal number of processors scales as three-fourths
power of problem size (almost “scalable”)

With common network bus (heavy 
contention):

optimal number of processors scales as one-fourth
power of problem size (not “scalable”)



Factoring convergence rate into estimates 

In terms of N and P, where for d-dimensional 
isotropic problems, N=h-d and P=H-d, for mesh 
parameter h and subdomain diameter H, 
iteration counts may be estimated as follows:

Ο(P1/3)Ο(P1/2)1-level Additive Schwarz

Ο(1)Ο(1)2-level Additive Schwarz

Ο((NP)1/6)Ο((NP)1/4)Domain Jacobi (δ=0)
Ο(N1/3)Ο(N1/2)Point Jacobi

in 3Din 2DPreconditioning Type

Krylov-Schwarz iterative methods typically converge in a 
number of iterations that scales as the square-root of the 
condition number of the Schwarz-preconditioned system



Where do these results come from?
Point Jacobi result is well known (see any book on the 
numerical analysis of elliptic problems)
Subdomain Jacobi result has interesting history

Was derived independently from functional analysis, linear algebra, and 
graph theory

Schwarz theory is neatly and abstractly summarized in Section 
5.2 Smith, Bjorstad & Gropp (1996) and Chapter 2 of Toselli & 
Widlund (2004)

condition number, κ ≤ ω [1+ρ(ε)] C0
2

C0
2 is a splitting constant for the subspaces of the decomposition

ρ(ε) is a measure of the orthogonality of the subspaces
ω is a measure of the approximation properties of the subspace solvers 
(can be unity for exact subdomain solves)
These properties are estimated for different subspaces, different 
operators, and different subspace solvers and the “crank” is turned



Comments on the Schwarz results
Original basic Schwarz estimates were for:

self-adjoint elliptic operators
positive definite operators
exact subdomain solves, 
two-way overlapping with 
generous overlap, δ=O(H) (original 2-level result was O(1+H/δ))

Subsequently extended to (within limits):
nonself-adjointness (e.g, convection) 
indefiniteness (e.g., wave Helmholtz) 
inexact subdomain solves
one-way overlap communication (“restricted additive Schwarz”)
small overlap

T
ii RR ,

1−
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Comments on the Schwarz results, cont.

Theory still requires “sufficiently fine” coarse mesh
However, coarse space need not be nested in the fine space or in the 
decomposition into subdomains

Practice is better than one has any right to expect

“In theory, theory and practice are the same ...
In practice they’re not!”

Wave Helmholtz (e.g., acoustics) is delicate at high 
frequency:

standard Schwarz Dirichlet boundary conditions can lead to 
undamped resonances within subdomains,
remedy involves Robin-type transmission boundary conditions 
on subdomain boundaries,

0=Γu

0)/( =∂∂+ Γnuu α

— Yogi Berra



Illustration of 1-level vs. 2-level tradeoff

Thermal Convection 
Problem (Ra = 1000)

1 proc

N.45

N.24

N0

2 – Level DD
Exact Coarse 
Solve

2 – Level DD  
Approx. Coarse 
Solve

1 – Level 
DD3D Results

512 procs

Total Unknowns
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Temperature iso-lines 
on slice plane, velocity 
iso-surfaces and 
streamlines in 3D c/o J. Shadid and R. Tuminaro

Newton-Krylov solver with Aztec non-restarted GMRES with 1-level domain decomposition 
preconditioner, ILUT subdomain solver, and ML 2-level DD with Gauss-Seidel subdomain solver. 
Coarse Solver: “Exact” = SuperLU (1 proc), “Approx” = one step of ILU (8 proc. in parallel)



“Unreasonable effectiveness” of Schwarz
When does the sum of partial inverses equal the 
inverse of the sums?  When the decomposition is right!
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— the Schwarz formula!
Good decompositions are a compromise between 
conditioning and parallel complexity, in practice



Schur complement substructuring

Given a partition
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Condense:

Properties of the Schur complement:
smaller than original A, but generally dense
expensive to form, to store, to factor, and to solve

better conditioned than original A, for which κ(A)=O(h-2)
for a single interface, κ(S)=O(h-1)

Therefore, solve iteratively, with action of S on each Krylov 
vector



Schur preconditioning
Note the factorization of the system matrix 

Hence a perfect preconditioner is
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Schur preconditioning
Let  M-1 be any good preconditioner for  S
Let                                           

Then B-1 is a good preconditioner for A, for recall
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Schur preconditioning

So, instead of                               , use full system 

Here, solves with       may be done approximately 
since all degrees of freedom are retained
Once this simple block decomposition is understood, 
everything boils down to two more profound 
questions:

How to approximate  S cheaply

How should the relative quality of  M and         compare
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Schur preconditioning

How to approximate  S cheaply?
Many techniques for a single interface
Factorizations of narrow band approximations
Spectral (FFT-implementable) decompositions
Algebraic “probing” of a specified sparsity pattern for 
inverse

For separator sets more complicated than a single 
interface, we componentize, creating the 
preconditioner of the union from the sum of 
preconditioners of the individual pieces



Schwarz-on-Schur

Beyond a simple interface, preconditioning the Schur 
complement is complex in and of itself; Schwarz is 
used on the reduced problem
Neumann-Neumann

Balancing Neumann-Neumann
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Numerous other variants allow inexact subdomain solves, 
combining additive Schwarz-like preconditioning of the 
separator set components with inexact subdomain 
solves on the subdomains



As an illustration of the algorithmic structure, we 
consider the 2D Bramble-Pasciak-Schatz (1984) 
preconditioner for the case of many subdomains

Schwarz-on-Schur
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For this case                                      , which is not as 
good as the single interface case, for which
The Schur complement has the block structure

for which the following block diagonal preconditioner 
improves conditioning only to 

Note that we can write M-1 equivalently as

Schwarz-on-Schur
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If we replace the diagonal vertex term of M-1 with a 
coarse grid operator

then

where C may still retain dependencies on other bad 
parameters, such as jumps in the diffusion coefficients
The edge term can be replaced with cheaper components
There are numerous variations in 2D and 3D that 
conquer various additional weaknesses
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Schwarz polynomials

Polynomials of Schwarz projections that are combinations of 
additive and multiplicative may be appropriate for certain 
implementations
We may solve the fine subdomains concurrently and follow with a 
coarse grid (redundantly/cooperatively) 
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This leads to algorithm “Hybrid II” in S-B-G’96:                                       

Convenient for “SPMD” (single prog/multiple data)



Onward to nonlinearity
Linear versus nonlinear problems

Solving linear algebraic problems often constitutes 90% of 
the running time of a large simulation
The nonlinearity is often a fairly straightforward outer loop, 
in that it introduces no new types of messages or 
synchronizations, and has overall many fewer 
synchronizations than the preconditioned Krylov method  or 
other linear solver inside it

We can wrap Newton, Picard, fixed-point or other 
iterations outside, linearize, and apply what we know
We consider both Newton-outside and Newton-inside 
methods



Newton-Krylov-Schur-Schwarz: 
a solver “workhorse”

Newton
nonlinear solver
asymptotically 

quadratic
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preconditioner
parallelizable 
by structure
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parallelizable 
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Jacobian-free Newton-Krylov
In the Jacobian-Free Newton-Krylov (JFNK) method, a 
Krylov method solves the linear Newton correction 
equation, requiring Jacobian-vector products
These are approximated by the Fréchet derivatives

(where       is chosen with a fine balance between 
approximation and floating point rounding error) or 
automatic differentiation, so that the actual Jacobian 
elements are never explicitly needed

One builds the Krylov space on a true F’(u) (to within 
numerical approximation)
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How to accommodate preconditioning
Krylov iteration is expensive in memory and in 
function evaluations, so subspace dimension k must be 
kept small in practice, through preconditioning the 
Jacobian with an approximate inverse, so that the 
product matrix has low condition number in

Given the ability to apply the action of           to a 
vector, preconditioning can be done on either the left, 
as above, or the right, as in, e.g., for matrix-free:
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Philosophy of Jacobian-free NK
To evaluate the linear residual, we use the true F’(u) , giving a 
true Newton step and asymptotic quadratic Newton 
convergence
To precondition the linear residual, we do anything convenient 
that uses understanding of the dominant physics/mathematics 
in the system and respects the limitations of the parallel 
computer architecture and the cost of various operations:

Jacobian blocks decomposed for parallelism (Schwarz)
Jacobian of lower-order discretization
Jacobian with “lagged” values for expensive terms 
Jacobian stored in lower precision 
Jacobian of related discretization 
operator-split Jacobians 
physics-based preconditioning



Nonlinear Schwarz preconditioning
Nonlinear Schwarz has Newton both inside and 
outside and is fundamentally Jacobian-free
It replaces                with a new nonlinear system 
possessing the same root, 
Define a correction            to the     partition (e.g., 
subdomain) of the solution vector by solving the 
following local nonlinear system:

where                  is nonzero only in the 
components of the     partition
Then sum the corrections:                            to get 
an implicit function of u
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Nonlinear Schwarz – picture
F(u)
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Nonlinear Schwarz – picture
F(u)
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Nonlinear Schwarz – picture
F(u)

u

Fi’(ui)

Ri

Rj

δiu+δju

1
1

1
1

0 0

1
1

1
1

0 0 RiuRiF

RjuRjF



Nonlinear Schwarz, cont.
It is simple to prove that if the Jacobian of  F(u) is 
nonsingular in a neighborhood of the desired root 
then                   and                have the same unique 
root
To lead to a Jacobian-free Newton-Krylov algorithm 
we need to be able to evaluate for any                :

The residual 
The Jacobian-vector product

Remarkably, (Cai-Keyes, 2000) it can be shown that 

where                   and 
All required actions are available in terms of            !
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Experimental example of nonlinear Schwarz

Vanilla Newton’s method Nonlinear Schwarz

Difficulty at 
critical Re

Stagnation 
beyond 

critical Re

Convergence 
for all Re



Multiphysics coupling: nonlinear Schwarz

Given initial iterate
For k=1, 2, …, until convergence, do

Define by
Define by

Then solve                               in matrix-free manner

Jacobian:
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State of the art
Domain decomposition is the dominant paradigm in contemporary 
terascale PDE simulation 
Several freely available software toolkits exist, and successfully scale 
to thousands of tightly coupled processors for problems on quasi-
static meshes
Concerted efforts underway to make elements of these toolkits 
interoperate, and to allow expression of the best methods, which tend 
to be modular, hierarchical, recursive, and above all — adaptive!
Many challenges loom at the “next scale” of computation
Implementation of domain decomposition methods on parallel 
computers has inspired many useful variants of domain 
decomposition methods 
The past few years have produced an incredible variety of interesting 
results (in both the continuous and the discrete senses) in domain 
decomposition methods, with no slackening in sight



Closing inspiration

“… at this very moment the search is on – every numerical analyst 
has a favorite preconditioner, and you have a perfect chance to 
find a better one.” 

- Gil Strang (1986)
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