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Abstract

Scalability of Krylov subspace methods suffers from costly global synchronization steps
that arise in dot-products and norm calculations on parallel machines. In this work, a modified
Conjugate Gradient (CG) method is presented that removes the costly global synchronization
steps from the standard CG algorithm by only performing a single non-blocking reduction per
iteration. This global communication phase can be overlapped by the matrix-vector product,
which typically only requires local communication. The resulting algorithm will be referred to
as pipelined CG. An alternative pipelined method, mathematically equivalent to the Conjugate
Residual method that makes different trade-offs with regard to scalability and serial runtime
is also considered. These methods are compared to a recently proposed asynchronous CG
algorithm proposed by B. Gropp. Extensive numerical experiments demonstrate the numerical
stability of the methods. Moreover, it is shown that hiding the global synchronization step
improves scalability on distributed memory machines using the message passing paradigm
and leads to significant speedups compared to standard CG.

1 Introduction

Many high-performance computing applications rely on Krylov subspace methods for their linear
algebra. These Krylov methods exploit the sparsity of the matrices that typically appear in
scientific applications simulating a problem modeled by a partial differential equation (PDE). The
linear systems to be solved are derived by a discretization technique such as finite-differences,
finite-volumes or finite-elements in which neighboring variables are related through a stencil. This
results in matrices with only a few non-zero elements per row.

The building blocks for Krylov subspace methods are the sparse matrix-vector product (spmv),
vector-vector additions and dot-products. Each building block has a different communication
pattern on distributed memory machines, resulting in different scaling properties.

The spmv often requires only local communication. The matrix derived from a PDE can,
possibly after a permutation of rows and columns, be mapped to the underlying machine architec-
ture in such a way that applying a matrix-vector product only requires communication between
neighboring nodes, i.e. nodes that are separated by a small number of hops. In the state-of-the-
art literature, many examples can be found of stencil based codes that scale nearly optimal to
very large parallel machines. In this work, the focus is on sparse and well structured matrices or
matrix-free linear operators such as stencil applications.

Vector operations such as an axpy (y ← αx+ y) can be calculated locally and do not require
communication between nodes. However, on a multicore shared memory system even a simple
axpy operation typically does not scale well over the cores due to memory bandwidth congestion.
But this on-chip communication bottleneck is not the focus of the current article.
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In contrast, we focus on the global communication. A dot-product of two vectors v and w in-
volves such global communication and requires participation of all processes. Since the dot-product
is a single scalar value α =

∑n
i=1 v

T
i wi, this operation needs the result of each local dot-product

and involves a synchronization of all the processes as well. Even if the global communication is
extremely fast, for instance when a special reduction network is available, the explicit synchro-
nization of the involved processes makes a dot-product a costly operation. For large systems the
cost of the global reduction grows as O(log(Pn)), the height of the reduction tree, where Pn is the
number of nodes. This cost model ignores variability due to OS jitter, core speed variability or
load imbalance that start to play an important role for larger systems [22].

Research in reducing the number of global reductions in Krylov methods goes back to the first
implementations of Krylov methods on parallel computers [3]. Variations of the Conjugate Gra-
dient (CG) method with only a single global synchronization point have been presented by Saad
and Meurant [29, 28], by D’Azevedo, Romine [12] and Eijkhout [11] as well as by Chronopoulos
and Gear [9]. Also, a CG variation exists that is based on two three-term recurrences instead of
three two-term recurrences and that only requires one reduction [31]. Yang et al [42, 40, 39, 41]
propose the so called improved versions of the QMR, BiCGStab, BiCG and CGS algorithms
respectively, which reduce the number of synchronizations to just one per iteration for these
methods. The total number of global reductions is reduced even further by s-step Krylov meth-
ods [9, 24, 2, 26, 8, 10, 25, 34, 6], where s matrix-vector products are combined and the resulting
Krylov basis is orthogonalized simultaneously with a single global reduction, leading to a commu-
nication reduction of a factor s. Apart from reducing global communication, these methods are
also aimed at reducing communication with the slow memory. However, with increasing s, the
stability of the s-step Krylov basis deteriorates. In [27], hierarchical or nested Krylov methods are
used that reduce the number of global reductions on the whole machine, but freely allow global
communication on a smaller subset of nodes, where communication is cheaper.

Instead of, or in addition to trying to reduce global synchronizations, several authors have come
up with ways to overlap expensive communication phases with computations. In [15] it is suggested
to overlap the dot-products in CG with the update of the solution vector or with application of a
factored preconditioner. In [13], block Gram-Schmidt is used in the Generalized Minimal Residual
(GMRES) method where communication for one block can be overlapped with computation on
a different block. In the Arnoldi algorithm for eigenvalue computations, Hernandez et al [19]
overlap global communication for reorthogonalization of the Krylov basis with the computations
for orthogonalization of the next basis vector. Recently, we have proposed a pipelined GMRES
solver [16] where the global reductions are overlapped with the calculation of multiple matrix-
vector products. The results of the dot-products are only used with a delay of a few iterations in
the algorithm. In [1] a model is developed for the performance of the pipelined GMRES algorithm
on large clusters. An asynchronous version of CG has been proposed recently by Gropp [18]
where one reduction can be overlapped with the matrix-vector product and the other with the
preconditioner. Overlapping global communication with local work has recently become easier
and more attractive due to the inclusion of non-blocking collectives in the MPI-3 standard [4, 23].

The aim of this work is to hide the latency of global communication due to dot-products in
the preconditioned Conjugate Gradient method. The trade-off between improved scalability and
extra floating point operations should result in speedups on medium to large parallel machines
without significantly sacrificing numerical robustness.

Our main contributions are the development of a preconditioned pipelined CG method that only
has a single non-blocking reduction per iteration. This non-blocking reduction can be overlapped
with the matrix-vector product and with application of the preconditioner. Also, a preconditioned
pipelined Conjugate Residual (CR) method is presented with one non-blocking reduction that can
be overlapped with the matrix-vector product. We show that both methods have much improved
scalability and runtime compared to standard CG.

The paper is outlined as follows. Section 2 reviews the standard preconditioned CG method.
A modified CG method due to Chronopoulos and Gear that will be used to derive pipelined CG is
discussed in Section 2.2. Section 3 presents algorithms that can overlap the global reduction with
the matrix-vector product, with in Section 3.1 first the unpreconditioned pipelined CG method.
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Next, in Section 3.2 the preconditioned pipelined CG method is derived. In Section 3.3 a precon-
ditioned pipelined CR method is derived from pipelined CG. Section 3.4 gives the asynchronous
CG algorithm due to Gropp. We report on extensive numerical tests that show the stability of
the pipelined CG and CR methods in Section 4. Also in Section 4, we hint at the use of a resid-
ual replacement strategy to improve the maximum attainable accuracy of the pipelined methods.
Finally, the results of benchmarks on a parallel distributed memory computer are presented in
Section 5.

2 The Conjugate Gradient algorithm

First, the standard preconditioned conjugate gradient algorithm is reviewed together with the
definition of the Krylov subspace. Then a variation to standard CG due to Chronopoulos and
Gear is presented that only requires a single global reduction per iteration.

2.1 Preconditioned Conjugate Gradients

The mother of all Krylov methods is conjugate gradients, dating back to a paper from 1952 by
Hestenes and Stiefel [20]. Algorithm 1 shows the preconditioned CG iteration [31], which iteratively
solves M−1Ax = M−1b where both A and M are symmetric and positive definite square matrices
of size N ×N .

Algorithm 1 Preconditioned CG

1: r0 := b−Ax0; u0 := M−1r0; p0 := u0
2: for i = 0, . . . do
3: s := Api
4: α := (ri, ui) / (s, pi)
5: xi+1 := xi + αpi
6: ri+1 := ri − αs
7: ui+1 := M−1ri+1

8: β := (ri+1, ui+1) / (ri, ui)
9: pi+1 := ui+1 + βpi

10: end for

The residual vector of the original system is ri = b−Axi, while ui = M−1ri is the residual of
the preconditioned system and pi is called the search direction. If the exact solution is x̂ = A−1b,
then the error is defined as ei = x̂−xi. All subsequent approximations xi lie in a so-called Krylov
subspace Ki(M−1A,M−1r0), which is defined as

Ki(M−1A,M−1r0) = span{u0,M−1Au0, . . . , (M
−1A)i−1u0} . (1)

It is well known that the CG iteration generates a sequence of iterates xi ∈ x0 + Ki(M−1A, u0),

with the property that at step i, ‖ei‖A =
√
eTi Aei is minimized.

In terms of communication, the important steps in Algorithm 1 are: application of the sparse
matrix-vector product (spmv) Api in line 3, application of the preconditioner M−1ri+1 in line 7,
and the two dot-products (s, pi) and (ri+1, ui+1) in lines 4 and 8. All other steps are vector
updates that do not require communication between nodes. We assume that the matrix-vector
product and application of the preconditioner only require communication among neighboring
nodes, which can be implemented in a scalable way. The two dot-products, causing two global
synchronization points per iteration become the bottleneck with increasing parallelism.

Note that even when A and M are both symmetric and positive definite, the left or right
preconditioned systems M−1Ax = M−1b and AM−1u = b with x = M−1u respectively are no
longer symmetric in general. When the preconditioner is available in the form M = LLT , then
one way to preserve symmetry is to use split preconditioning L−1AL−Tu = L−1b. In [15], a split
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preconditioned CG method is presented where the global reductions can be overlapped with local
work. The communication for one reduction can be overlapped with application of L−T and, since
the iteration does not depend on xi, the update for xi can be postponed by one iteration where it
can be overlapped with the second reduction.

Another way to preserve symmetry is based on the observation that M−1A is self-adjoint with
respect to the M inner-product (x, y)M = (x,My) = (Mx, y):

(
M−1Ax, y

)
M

= (Ax, y) = (x,Ay) = (x,M(M−1A)y) = (x,M−1Ay)M . (2)

Replacing the usual Euclidean inner-product in CG with this M inner-product leads to Algo-
rithm 1. Similarly, for right preconditioning, the M−1 inner-product also leads to Algorithm 1.
Furthermore, the iterates generated by split preconditioned CG are identical to those of Algo-
rithm 1 [31].

2.2 Chronopoulos/Gear CG

Several authors have suggested alternatives to CG to reduce the number of global synchronization
points to just one. One such method was presented by Saad [29], and was later improved for
stability by Meurant [28]. This latter method performs an additional dot-product compared to
the standard CG implementation. But, these three dot-products, compared to two for standard
CG, can be combined in a single reduction. Similarly, Chronopoulos and Gear [9] presented
a CG variation with a single global synchronization point that requires one additional axpy
compared to CG. A slight variation to this method was published by D’Azevedo, Romine [12]
and Eijkhout [11]. Also, the three term recurrence version of CG [31] can be implemented with
a single global reduction. All these CG variations have slightly different properties in terms of
memory requirements, total number of flops and stability. The remainder of this work builds on
the method by Chronopoulos and Gear [9] as shown in Algorithm 2.

Algorithm 2 Preconditioned Chronopoulos/Gear CG

1: r0 := b−Ax0; u0 := M−1r0; w0 := Au0
2: α0 := (r0, u0) / (w0, u0); β0 := 0; γ0 := (r0, u0)
3: for i = 0, . . . do
4: pi := ui + βipi−1

5: si := wi + βisi−1

6: xi+1 := xi + αipi
7: ri+1 := ri − αisi
8: ui+1 := M−1ri+1

9: wi+1 := Aui+1

10: γi+1 := (ri+1, ui+1)
11: δ := (wi+1, ui+1)
12: βi+1 := γi+1/γi
13: αi+1 := γi+1/ (δ − βi+1γi+1/αi)
14: end for

Compared to standard CG, Algorithm 2 performs an additional vector update for the vector
si = Api, found by multiplying the recurrence for pi by A

Api = Aui + βiApi−1 , si = Aui + βisi−1 , (3)

or since in the Chronopoulos/Gear method wi = Aui, this becomes si = wi +βisi−1. Algorithm 2
was derived from its unpreconditioned version by replacing the Euclidean inner-product by the M
inner-product and is mathematically equivalent to standard preconditioned CG, Algorithm 1.

The communication phase for both dot-products from Algorithm 2, lines 10 and 11, can be
combined in a single global reduction. The update for xi can be postponed and used to overlap
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the global reduction. However, even for small parallel machines the runtime of a single vector
update will not be enough to fully cover the latency of the global communication.

An optimized implementation of Algorithm 2 could exploit the fact that only a single memory
sweep is required, allowing for more efficient use of available memory bandwidth compared to
standard CG, which needs at least two. This was already suggested by Chronopoulos and Gear
in their original paper [9], where they also generalize Algorithm 2 to an s-step CG method that
only needs one memory sweep per s steps. Algorithm 2 corresponds to the s = 1 case.

3 Hiding global communication

In this section, modified and reordered versions of Algorithm 2 are presented where the global
synchronization can be overlapped by the sparse matrix-vector product. Section 3.1 starts with
the unpreconditioned version of this pipelined CG algorithm for simplicity. Section 3.2 adds
preconditioning to it and Section 3.3 uses a different inner-product to preserve symmetry for the
preconditioned case, which leads to a pipelined Conjugate Residual (pipe-CR) method. Section 3.4
discusses an asynchronous CG method recently proposed by Gropp.

3.1 Pipelined Conjugate Gradients

Recall from Section 2 that ri = b − Axi and si = Api with pi the search direction. Lets first
consider the unpreconditioned iteration, i.e., ui = M−1ri = ri, then wi = Aui = Ari.

Instead of computing wi+1 = Ari+1 directly using the spmv, it also satisfies the recurrence
relation

Ari+1 = Ari − αiAsi , wi+1 = wi − αiAsi . (4)

This however requires zi = Asi ≡ A2pi, which can be computed via the spmv as Asi, or for which
also a recurrence relation can be found

Asi = Awi + βiAsi−1 , zi = Awi + βizi−1 . (5)

This depends on qi = Awi ≡ A2ri, which can be computed from the spmv. Starting from
Algorithm 2, adding the recurrences for wi+1 (4) and zi (5), replacing the spmv by qi = Awi and
reordering the steps leads to Algorithm 3.

Algorithm 3 Pipelined Chronopoulos/Gear CG

1: r0 := b−Ax0; w0 := Ar0
2: for i = 0, . . . do
3: γi := (ri, ri)
4: δ := (wi, ri)
5: qi := Awi
6: if i > 0 then
7: βi := γi/γi−1; αi := γi/ (δ − βiγi/αi−1)
8: else
9: βi := 0; αi := γi/δ

10: end if
11: zi := qi + βizi−1

12: si := wi + βisi−1

13: pi := ri + βipi−1

14: xi+1 := xi + αipi
15: ri+1 := ri − αisi
16: wi+1 := wi − αizi
17: end for

Mathematically, Algorithm 3 is still equivalent with standard CG. However, as in the method
by Chronopoulos/Gear, the two dot-products in lines 3 and 4 can be combined in a single reduction.
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Furthermore, since the result of this reduction is only needed in line 7, this global reduction can
be overlapped with the spmv. We shall refer to Algorithm 3 as unpreconditioned pipelined CG.

In finite precision arithmetic, pipelined CG will behave differently than standard CG since
rounding errors are propagated differently. Numerical stability of this algorithm, and its precon-
ditioned variants presented in the next paragraphs, will be studied using a wide range of matrices
in Section 4.

3.2 Preconditioned pipelined CG

We shall consider the left preconditioned system M−1Ax = M−1b with both M and A symmetric
and positive definite. As for standard CG, pipelined CG, Algorithm 3 cannot be applied to the
preconditioned system without modification since M−1A is in general not symmetric positive
definite. For preconditioned pipelined CG the same strategy as for standard preconditioned CG
will be followed: apply Algorithm 3 to the preconditioned system and replace the classic Euclidean
inner-product by the M inner-product (·, ·)M , since M−1A is self-adjoint with respect to the M
inner-product. The dot-products from pipelined CG (lines 3 and 4) now use the residual of the
preconditioned system, ui = M−1ri, and the M inner-product instead of the Euclidean inner-
product

γi = (ui, ui)M = (Mui, ui) = (ri, ui) (6)

δi =
(
M−1Aui, ui

)
M

= (Aui, ui) . (7)

Now, let wi = Aui, si = Api and also introduce qi = M−1si. A recurrence relation for the
preconditioned residual ui is found by multiplying the recurrence for the original residual on the
left by M−1

M−1ri+1 = M−1ri − αiM−1si , ui+1 = ui − αiqi , (8)

with a similar recurrence for qi = M−1si

M−1si = M−1wi + βiM
−1si , qi = M−1wi + βiqi−1 . (9)

If defined that mi = M−1wi ≡M−1Aui ≡M−1AM−1ri, then since wi+1 = Aui+1,

Aui+1 = Aui − αiAqi , wi+1 = wi − αiAqi . (10)

Contrary to the unpreconditioned case, now define zi = Aqi and the final recurrence relation for
zi becomes

Aqi = AM−1wi + βiAqi , zi = Ami + βizi−1 , (11)

and let ni = Ami ≡ AM−1wi.
Combining the updates for ri+1, xi+1, si and pi, and the equations (6)-(11) with the matrix-

vector product ni = Ami and application of the preconditioner mi = M−1wi, directly leads to
preconditioned pipelined CG, Algorithm 4. In this algorithm, the reduction for the dot-products
(lines 3 and 4) can be overlapped with application of both the preconditioner (line 5) and the
matrix-vector product (line 6). However, the number of axpys has increased from just three in
standard CG or four in Chronopoulos/Gear CG to eight in Algorithm 4. Again, these operations
can be fused together (also including the dot-products from the start of the next iteration) such
that only a single memory sweep is necessary.

The preconditioned pipelined CG method, Algorithm 4, is based on the M inner-product just
like standard preconditioned CG, Algorithm 1, and hence we know that the two methods are
mathematically equivalent. They both minimize the A norm of the error, ‖ek‖A over the Krylov
space Kk(M−1A,M−1r0).
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Algorithm 4 Preconditioned pipelined CG

1: r0 := b−Ax0; u0 := M−1r0; w0 := Au0
2: for i = 0, . . . do
3: γi := (ri, ui)
4: δ := (wi, ui)
5: mi := M−1wi
6: ni := Ami

7: if i > 0 then
8: βi := γi/γi−1; αi := γi/ (δ − βiγi/αi−1)
9: else

10: βi := 0; αi := γi/δ
11: end if
12: zi := ni + βizi−1

13: qi := mi + βiqi−1

14: si := wi + βisi−1

15: pi := ui + βipi−1

16: xi+1 := xi + αipi
17: ri+1 := ri − αisi
18: ui+1 := ui − αiqi
19: wi+1 := wi − αizi
20: end for

3.3 Preconditioned pipelined Conjugate Residuals

For Algorithm 4, the Euclidean inner-product in Algorithm 3 was replaced by the M inner-product.
However, observe that M−1A is also self-adjoint with respect to the A inner-product

(
M−1Ax, y

)
A

= (AM−1Ax, y) = (M−1Ax,Ay) = (M−1Ax, y)A . (12)

Using this inner-product instead leads to

γi = (ui, ui)A = (Aui, ui) = (wi, ui) (13)

δi =
(
M−1Aui, ui

)
A

=
(
M−1Aui, Aui

)
= (mi, wi) . (14)

Using equations (13) and (14) instead of (6) and (7) leads to Algorithm 5. However, since Algo-
rithm 5 is based on a different inner-product, it is no longer equivalent with standard CG but as
will become clear it can be seen as a pipelined version of the Conjugate Residual (CR) method [31].

Since (14) depends on mi = M−1wi, the preconditioner now has to be applied before (line 3)
the dot-products can be started. This means that the global reduction can only be overlapped
with the matrix-vector product (line 6). However, the iteration does not depend on the origi-
nal unpreconditioned residual ri and on si = Api anymore. These two recurrences can safely
be dropped, saving some floating point operations and memory. When the recurrence for ri is
dropped, a stopping criterion can still be based on the preconditioned residual ui.

Another optimization is possible: note that, apart from lines 14 and 15, the iterates in Algo-
rithm 5 do not depend on x or p. Hence the recurrences for x and p can be postponed one iteration
and used in the overlap with the reduction. However, for the p recurrence, this requires storage
for one extra vector. For long reductions, this would shorten the critical path of the method by
two vector updates.

Theorem 3.1. Algorithm 5, when applied to a linear system M−1Ax = M−1b, with exact solution
x̂ and with both M and A symmetric positive definite, minimizes ‖ek‖AM−1A, where ek = x̂− xk
is the error and xk ∈ x0 + Kk(M−1A, u0). Without preconditioner, i.e., M−1 = I, the iteration
minimizes the 2-norm of the residual ‖rk‖2 = ‖ek‖A2 .
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Algorithm 5 Preconditioned pipelined Conjugate Residuals

1: r0 := b−Ax0; u0 := M−1r0; w0 := Au0
2: for i = 0, . . . do
3: mi := M−1wi
4: γi := (wi, ui)
5: δ := (mi, wi)
6: ni := Ami

7: if i > 0 then
8: βi := γi/γi−1; αi := γi/ (δ − βiγi/αi−1)
9: else

10: βi := 0; αi := γi/δ
11: end if
12: zi := ni + βizi−1

13: qi := mi + βiqi−1

14: pi := ui + βipi−1

15: xi+1 := xi + αipi
16: ui+1 := ui − αiqi
17: wi+1 := wi − αizi
18: end for

Proof. We first show the following orthogonality properties

(uk, uj)A = uTkAuj = uTkwj = 0 , j < k , (15)

(pk,M
−1Apj)A = pTkAM

−1Apj = pTkAqj = 0 , j < k , (16)

by induction on k. First check that indeed for k = 1

uT1 Au0 = (u0 − α0q0)
T
w0 = uT0 w0 − α0 (m0 + β0)

T
w0 (17)

is zero if β0 = 0 and

α0 =
(u0, w0)

(m0, w0)
=
γ0
δ0
, (18)

which corresponds to the definitions of β0 and α0 in Algorithm 5. Likewise, for (16),

pT1 Aq0 = pT1 Am0 = pT1 n0 = pT1 z0 = (u1 + β1p0)
T

(
w0 − w1

α0

)
(19)

=
1

α0

(
uT1 w0 − uT1 w1 + β1p

T
0 w0 − β1pT0 w1

)
(20)

=
1

α0

(
−γ1 + β1u

T
0 w0 − β1uT0 w1

)
=

1

α0
(−γ1 + β1γ0) (21)

is zero when β1 = γ1/γ0. For k > 1, multiply the recurrence relation for uTk on the right with Auj
to get

uTkAuj = uTk−1Auj − αk−1q
T
k−1Auj . (22)

For j < k − 1, both terms in the right-hand side are zero by induction and because the u and p
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vectors span the same Krylov space. For j = k − 1 the right-hand side of (22) is zero if

αk−1 =
uTk−1Auk−1

qTk−1Auk−1
=

(uk−1, wk−1)

(qk−1, wk−1)
=

γk−1

(mk−1 + βk−1qk−2, wk−1)

=
γk−1

(mk−1, wk−1) + βk−1 (qk−2, wk−1)
=

γk−1

δk−1 + βk−1

(
uk−2−uk−1

αk−2
, wk−1

)

=
γk−1

δk−1 + βk−1

αk−2
[(uk−2, wk−1)− (uk−1, wk−1)]

=
γk−1

δk−1 − βk−1

αk−2
(uk−1, wk−1)

=
γk−1

δk−1 − βk−1γk−1

αk−2

, (23)

this corresponds with the choice for α in Algorithm 5, line 8. Likewise for (16), the right-hand
side of

pTkAqj = uTkAqj + βkp
T
k−1Aqj , (24)

is zero for j < k − 1 by induction and is zero for j = k − 1 if

βk = − uTkAqk−1

pTk−1Aqk−1
= − (uk, qk−1)A

(pk−1, qk−1)A
= −

(
uk,

uk−uk−1

−αk−1

)
A(

uk−1 + βk−1pk−2,
uk−uk−1

−αk−1

)
A

= − (uk, uk)A − (uk, uk−1)A
(uk−1, uk)A − (uk−1, uk−1) + βk−1 [(pk−2, uk)A − (pk−2, uk−1)A]

=
(uk, uk)A

(uk−1, uk−1)
=

γk
γk−1

, (25)

which corresponds to the definition of β in Algorithm 5, line 8. This concludes the proof of the
orthogonality conditions (15) and (16).

To show the minimization property, first note that AM−1A is symmetric and positive definite
and hence ‖ · ‖AM−1A defines a valid norm. To show that xk ∈ x0 + Kk(M−1A, u0) minimizes
‖e‖AM−1A, we consider an arbitrary point x = xk − ∆x ∈ x0 + Kk(M−1A,M−1b) with error
e = x̂− x = ek + ∆x. Then

‖e‖2AM−1A = ‖ek + ∆x‖2AM−1A = (ek + ∆x)
T
AM−1A (ek + ∆x)

= eTkAM
−1Aek + ∆xTAM−1A∆x+ 2eTkAM

−1A∆x

= ‖ek‖2AM−1A + ‖∆x‖2AM−1A + 2uTkA∆x . (26)

The last term is zero by orthogonality property (15), and the second term is always positive and
only zero for ∆x = 0. Hence, xk = x is the unique point that minimizes ‖e‖AM−1A.

For M = I, ‖ek‖AM−1A = ‖ek‖A2 = ‖Aek‖2 = ‖rk‖2 is minimized.

From Theorem 3.1 and the A-orthogonality of the residual vectors, relation (15), it is clear
that Algorithm 5 is indeed a minimal residual method and is equivalent to Conjugate Residuals.

3.4 Method due to Gropp

Recently, an asynchronous CG method has been presented by Gropp [18]. This method, shown
as Algorithm 6, still has two global synchronization points per iteration. One reduction (line 9)
can be overlapped with the matrix-vector product (line 10) and the other (line 3) with application
of the preconditioner (line 4). Compared to standard CG, only two additional axpys are required.
Algorithm 6 uses the same notation as above: ri = b − Axi, ui = M−1ri, si = Api, qi = M−1si
and wi = Aui. However, the scalar δ is defined differently.
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Algorithm 6 Gropp’s asynchronous CG

1: r0 := b−Ax0; u0 := M−1r0; p0 := u0; s0 := Ap0; γ0 := (r0, u0)
2: for i = 0, . . . do
3: δ := (pi, si)
4: qi := M−1si
5: αi := γi/δ
6: xi+1 := xi + αipi
7: ri+1 := ri − αisi
8: ui+1 := ui − αiqi
9: γi+1 := (ri+1, ui+1)

10: wi+1 := Aui+1

11: βi+1 := γi+1/γi
12: pi+1 := ui+1 + βi+1pi
13: si+1 := wi+1 + βi+1si
14: end for

flops time (excl, axpys, dots) #glob syncs memory
CG 10 2G + SpMV + PC 2 4

Chron/Gear-CG 12 G + SpMV + PC 1 5
pipe-CG 20 max(G,SpMV + PC) 1 9
pipe-CR 16 max(G,SpMV) + PC 1 7

Gropp-CG 14 max(G,SpMV) + max(G,PC) 2 7

Table 1: Overview of the different CG variations. Column flops lists the number of flops (×N) for
axpys and dot-products. The time column has the time spent in global all-reduce communication
(G), in the matrix-vector product (spmv) and the preconditioner (PC). Column #global synchro-
nizations has the number of global communication phases per iteration. The memory column
counts the number of vectors that need to be kept in memory (excluding x and b).

Table 1 gives a brief overview of the methods presented in this section with their parallel
properties. The five methods listed are standard CG, the Chronopoulos/Gear variant of CG,
preconditioned pipelined CG (pipe-CG), pipelined CR (pipe-CR) and the method by Gropp. In
Table 1, the column flops lists the number of floating point operations for axpys and dot-products
per iteration (× the vector length for the total). Memory lists how many vectors need to be stored,
not counting x and b. The last column counts the number of global reductions. The time spent
in global communication and application of the sparse matrix-vector product (spmv) and the
preconditioner (PC) is given in the time column. Here, G is the time for a global all-reduce (a
reduction followed by a broadcast), which is mostly latency bound and can be overlapped with
the spmv or with the preconditioner or with both. The pipelined CG method offers the most
potential overlap with the reduction.

4 Numerical Results

Numerical results are presented with the different CG methods, using different preconditioners,
for a wide range of matrices from applications. A possible strategy to improve the maximum
attainable accuracy of the methods is given in Section 4.2.
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4.1 Problems from Matrix Market

The CG methods presented above have been implemented using PETSc (the Portable, Exten-
sible Toolkit for Scientific Computation1). However, PETSc provides a CG method with a
single global reduction due to Eijkhout [11, 12] that is based on the method by Chronopou-
los and Gear, Algorithm 2, but differs slightly in the way the scalar α is computed. This sin-
gle reduction method in PETSc can be used with the command line options -ksp type cg and
-ksp cg single reduction. We shall compare with this implementation instead of Algorithm 2.

The methods presented above have been tested on a wide range of linear systems. Table 2
lists all square, real and symmetric positive definite matrices from Matrix Market2, which covers
a wide range of condition numbers, listed in column two of Table 2. Columns 3 and 4 give the
total number of rows and number of nonzeros for each of the matrices. A linear system for each
of these matrices with exact solution x̂i = 1/

√
N , with N the number of rows, such that ‖x̂‖2 = 1

and right-hand side b = Ax̂ is solved with all of the presented methods. The initial guess was
always x0 = 0 and the default PETSc stopping criterion

‖ui‖2 < max(10−5‖b‖2, 10−50) (27)

was used with ui = M−1(Axi − b) the preconditioned residual. The rest of the table lists the
required number of iterations for the 5 different CG methods, either without preconditioner, with
Jacobi preconditioner or with incomplete Cholesky factorization, ICC(0), preconditioner.

A ’-’ entry in the table denotes failure to meet the stopping criterion within 10.000 iterations. In
many cases, the pipe-CR method clearly reaches the specified tolerance in less iterations than the
other methods, except for the nos7 matrix. In all cases, the single reduction CG method behaves
similar to standard CG. In most cases, pipe-CG and Gropp-CG need about as many iterations as
standard CG, with a few glitches for pipe-CG (mostly when used without preconditioner). The
bcsstk and bcsstm matrices are the K and M matrices respectively from a generalized eigenvalue
problem Kx = λMx. The bcsstm matrices are all diagonal matrices, hence the convergence in one
step with even the trivial Jacobi preconditioner. These matrices are still included for illustration.

1http://www.mcs.anl.gov/petsc/
2http://math.nist.gov/MatrixMarket/
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Figure 1 illustrates the convergence history for a few randomly selected matrices from Table 2.
Figure 1 (top-left) shows the relative residual ‖b−Axi‖2/‖b‖2 for the bcsstk15 matrix with Jacobi
preconditioning. Figure 1 (top-right) shows the s1rmt3m1 matrix with ICC preconditioner while
in (bottom-left) and (bottom-right) the gr-30-30 and the nos2 matrices are shown respectively
without preconditioner. For these experiments, the relative tolerance was set to rtol = 10−20.
Observe from Figure 1 that the convergence for CG, single reduction CG and Gropp-CG is nearly
indistinguishable. The pipe-CG method converges as standard CG but levels off sooner, leading
to a less accurate solution. The pipe-CR method behaves differently, typically with faster ini-
tial convergence, but the same asymptotic behavior. Also, the pipe-CR method has worse final
attainable accuracy.

These results are as expected, since all methods, except pipe-CR are mathematically equivalent
to standard CG, i.e., they minimize the A norm of the error, ‖x̂−xi‖A, at iteration i. The pipe-CR
method minimizes the AM−1A norm of the error or, without preconditioner, pipe-CR minimizes
‖ei‖A2 = ‖ri‖ in every iteration, which is confirmed by the monotonic convergence of the residual
in Figure 1 (bottom).

4.2 Improving accuracy

In order to improve the maximum attainable accuracy for the pipelined CG methods, we suggest
to use a so-called residual replacement strategy, see for example [36, 5, 32]. In many Krylov
iterations, the solution xi and residual vector ri are updated as

xi+1 = xi + αpi , ri+1 = ri − αApi . (28)

Both solution and residual will be affected differently by rounding errors. Any error made in the
update for x is not reflected in r, since x is typically not used in the rest of the iteration. This
leads to the well known problem that the updated residual ri and the true residual b− Axi start
to deviate. A simple remedy is to periodically replace the updated ri by ri = b− Axi. However,
if this is done too frequently, the superlinear convergence often observed in CG can be lost. On
the other hand, when the difference between updated and true residual gets too big, convergence
stagnates too soon, resulting in a less accurate final solution.

We illustrate the potential of such a residual replacement strategy. In the pipe-CG and pipe-
CR methods, the updated residual ri, and the updated preconditioned residual ui, will be replaced
every 50-th iteration by the true residual ri = b − Axi and by the true preconditioned residual
ui = M−1ri respectively. Furthermore, the vector wi = Aui is also recomputed. For pipe-CR, the
original residual ri does not need to be stored, but needs to be computed to evaluate ui anyway.
Figure 2 shows the convergence for two matrices also shown in Figure 1, now repeated with the
residual replacement strategy. For pipe-CG applied to bcsstk15 with Jacobi preconditioner the
error after 1.000 iterations drops from ‖e1.000‖2 = 8.01e-8 without residual replacement to 4.78e-11
with residual replacement. Likewise, for s1rmt3m1 with ICC preconditioner, the error drops from
1.01e-8 to 3.82e-12. For pipe-CR, bcsstk15, Jacobi preconditioner, the error goes from 2.58e-8 to
1.03e-9 and for s1rmt3m1 with ICC preconditioner, from 2.59e-9 to 1.65e-11. This is always an
improvement of at least one order of magnitude.

Of course, the value 50, also used in [32], is arbitrary and does not yield best possible results
for all linear systems. Complicated strategies have been presented in the literature to determine
good restart point. A strategy proposed by Neumaier [33] was to replace the updated residual by
the true residual whenever the residual norm becomes smaller than any previously attained value.
At that point, also the solution vector x is updated with the combined contributions since the last
restart point, a so-called group update. However, this strategy was proposed with the irregular
convergence behavior of methods like BiCG and CGS in mind, where, as is well known, iterations
with large residual can lead to early stagnation of the final residual. Van der Vorst and Ye [36]
derive an estimate for the deviation between updated and true residual and only do the residual
replacement and group update when this bound exceeds some tolerance ε, typically the square
root of the machine precision. Recently, Carson and Demmel [5] extended the bound from [36]
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(c) gr-30-30 without preconditioner
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Figure 1: Convergence history for the different CG methods applied to four different symmetric
positive definite test matrices from applications (see also Table 2). Convergence of CG, single
reduction CG and Gropp CG is nearly indistinguishable. The pipelined methods level off somewhat
sooner.
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(a) bcsstk15 with Jacobi preconditioner
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Figure 2: Convergence history for the different CG methods applied to two of the matrices also
shown in Figure 1. However, for these tests the updated vectors ri, ui and wi are replaced by
ri = b − Axi, ui = M−1ri and wi = Aui every 50-th iteration. This yields an improvement in
maximum attainable accuracy of several orders of magnitude.

to communication-avoiding (CA) or s-step Krylov methods and present an implementation for
CA-CG and CA-BiCG. The residual replacement strategy has proven to be an effective strategy
to improve the final accuracy of short term Krylov methods. Each replacement incurs additional
work, but since replacements occur infrequently the performance impact is limited. However, a
general replacement strategy applicable to the pipelined methods presented here remains future
work.

Stability is also negatively impacted in the pipelined methods by the extra multiplication with
the matrix A. A possible improvement might be to add a shift in the matrix-vector product,
similar to what is also done in s-step Krylov methods [2, 24] and in [16] for pipelined GMRES.
The CG iteration can provide information on the spectrum of A, which can be used to determine
good shifts.

5 Parallel performance

Different variations to standard CG have been presented in order to overcome the bottleneck of
global communication on large parallel machines. In Section 5.1, the parallel performance of the
different methods is studied using a test problem on a medium sized parallel machine. Section 5.2
lists several candidate scenarios which could benefit from the pipelined CG or CR solvers.

5.1 Benchmark application

The parallel experiments are performed on an IBM iDataPlex machine from NERSC3 called
Carver. The full system has 1, 202 compute nodes (9, 984 processor cores) with a theoretical
peak performance of 106Tflops/sec. All nodes are interconnected by 4×QDR InfiniBand tech-
nology, providing 32Gb/s of point-to-point bandwidth for high-performance message passing and
I/O. Most nodes (1, 120) have two quad-core Intel Xeon X5550 Nehalem 2.67GHz processors
(eight cores/node) and since parallel jobs on Carver are limited to 64 nodes, only these Nehalem
nodes were used. The pipe-CG, pipe-CR and Gropp-CG algorithms have been implemented using
PETSc. PETSc provides a construct for asynchronous dot-products:

3http://www.nersc.gov/users/computational-systems/carver/
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- VecDotBegin(...,&dot);
- PetscCommSplitReductionBegin(comm);
- // ... other work, like an spmv or application of the preconditioner
- VecDotEnd(...,&dot);

where PetscCommSplitReductionBegin starts a non-blocking reduction by a call to MPI Iallreduce.
This returns an MPI Request which is passed as an argument to MPI Wait in VecDotEnd. Note
that non-blocking collectives, including MPI Iallreduce, only became available in MPI with the
MPI-3 standard. The MPI library used for the experiments is MPICH-3.0rc14.

To asses the parallel performance of pipelined CG, the two-dimensional Bratu partial differen-
tial equation

−∆u− λ exp(u) = −∂
2u

∂x2
− ∂2u

∂y2
− λ exp(u) = 0 , 0 < x, y < 1 , (29)

with boundary conditions

u = 0, for x = 0, x = 1, y = 0, y = 1 , (30)

will be used. The Bratu equation has applications in solid fuel ignition, chemical reaction theory,
radiative heat transfer, nanotechnology and it even appears in Chandrasekhar’s model for the
expansion of the universe. This nonlinear equation is discretized using the standard 5-point
stencil and solved with Newton iteration, which repeatedly calls a linear solver. The problem
is solved on a 2049 × 2049 PETSc distributed array (DMDA) with λ, the parameter controlling
the nonlinearity, set to λ = 6. This leads to a linear equation with about 4.2 million unknowns.
The sparse matrix is constructed explicitly and stored distributed over the nodes in compressed
sparse row format. The problem is not solved to a specified tolerance, but only a single Newton
iteration is performed. For the linear solve, the five presented CG variations where used, with a
maximum of 10 iterations. This is repeated 30 times, and from this the minimum time is taken
to exclude effects of any system interference on the timings. For these tests, we make sure all
methods do 10 iterations, i.e., they minimize the error over the same Krylov space. For the
pipelined methods and for Gropp-CG, this requires one additional matrix-vector multiplication
and one extra application of the preconditioner compared to standard CG. These extra operations
are to start up the pipeline.

Figure 3 (left) shows the times recorded for 10 iterations on the 20492 problem without pre-
conditioner, performed on 64 nodes with 8 MPI processes per node. This is a strong scaling
experiment, with 8200 grid points per core when using all 512 cores. Figure 3 (right) shows the
speedup of the different methods over standard CG on 1 node (using 8 MPI processes). Figure 4
shows timings for a similar experiment, but with block-Jacobi preconditioning. For the problem
considered here, the ICC(0) preconditioner did not lead to convergence and hence, an incomplete
LU factorization, ILU(0), was used inside each Jacobi block, with one block per core.

Figure 5 shows the same experiments as in Figures 3 and 4 but shows speedups over the time on
one node for each method individually. This shows clearly that the pipelined CG and CR methods
scale significantly better than the alternatives with blocking global communication. The best
speedup is attained by pipe-CG that also offers the most potential for overlap. The superlinear
convergence is likely due to cache effects. Note that in the implementation of the pipelined
methods, the different operations where not fused, as was suggested at the end of Section 2.2.
However, we believe this fusion of operations is important to improve the communication with
slow memory and could yield an extra on-node performance gain compared to standard CG.

5.2 Possible use cases and further optimizations

The aim of this work is to develop a generally applicable highly scalable linear solver. However,
the resulting pipelined CG algorithm is a trade-off between more floating point operations, more

4http://www.mpich.org/
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Figure 3: Left: Timings for 10 linear iterations with the different CG methods on up to 64 nodes,
using 8 MPI processes per node, for a linear problem with 4.2 million unknowns. No preconditioner
is used. Right: Speedup over standard CG on 1 node with 8 MPI processes per node.
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Figure 4: As in Figure 3, but with block Jacobi preconditioner with one block per core and ILU(0)
inside each Jacobi block. Left: Timings for 10 linear iterations with the different CG methods on
up to 64 nodes, using 8 MPI processes per node, for a linear problem with 4.2 million unknowns.
Right: Speedup over standard CG on 1 node with 8 MPI processes per node.
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Figure 5: This shows the same experiments as in Figures 3 and 4. Left: No preconditioner. Right:
Block Jacobi with ILU(0) preconditioner. However, now the speedup is plotted for the individual
methods.

memory usage, and improved scalability. Therefore, not every application will benefit from this
trade-off. We identify a set of scenarios where the improved scalability will likely pay off.

As was already mentioned, to get fast convergence, preconditioning is essential. In a solver
with a near optimal preconditioner, most of the time is probably spent in application of the
preconditioner and a pipelined outer CG solver will not pay off. However, problems where no
good preconditioner is available would still require many CG iterations and could benefit. For
instance augmented Lagrangian systems from contact and interior points are examples of nearly-
singular symmetric systems for which a multigrid preconditioner is hard to construct.

Also when repeatedly solving linear system, e.g., in a nonlinear solver, in optimization or in
implicit time integration, many linear solver iterations are required which could benefit from the
pipelined CG solver. In some special cases, a relatively small linear system is solved on a parallel
machine, which makes the linear solver mostly latency bound. Hiding the latency as in pipelined
CG directly pays off in such cases. Examples are: the solver for the coarsest grid in a geometric
multigrid U -cycle [38], the field solver in coupled physics methods such as the Particle-In-Cell [21]
method where the size of the field is typically small compared to the number of particles used in
the simulation, and domain decomposition and Schur complement solvers.

When the reductions are completely overlapped, the pipelined CG methods will scale as the
spmv, and the spmv communication might become the bottleneck. In pipe-CG, Algorithm 4,
application of the preconditioner (line 5) is followed immediately by the spmv (line 6). A possible
optimization would be to fuse the two operations. Consider for instance a polynomial precon-
ditioned linear system ps(A)Ax = ps(A)b with ps(A) a degree s polynomial in A. Applying
both the preconditioner and the matrix-vector product could be done in a single latency by the
matrix-powers kernel [14, 17]. For structured grid problems, this is relatively easy to implement
by communicating a wider ghostregion, which is also called communication aggregation, since the
same amount of data is transferred, only in less messages [37]. The polynomial preconditioner can
then also be implemented efficiently using techniques as cache-oblivious, wavefront or time-skewed
stencil loops [7]. Information about the spectrum of A can be computed as a side product of the
CG iteration and can help to determine an optimal polynomial [30]. However, in a similar way,
steps in a multigrid fine-grid smoother can be fused with the matrix-vector product from CG.
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6 Conclusions

We presented pipelined variations of CG where the global communication can be overlapped
with local work, such as the matrix-vector product and the preconditioner. Two different ways do
include preconditioning are discussed, leading to two algorithms with different trade-offs regarding
scalability and total number of operations. For a strong scaling experiment on a medium sized
cluster, we show improved scalability and also faster runtime compared to standard CG. Numerical
tests on matrices from Matrix Market with a wide range of condition numbers show that the
convergence of the new methods is in line with standard CG. We also compare with a method
recently presented by B. Gropp [18] that has somewhat better numerical properties but offers less
overlap with the global communication and thus leads to a less scalable algorithm.

For large machines where a global reduction is expensive compared to a matrix-vector product,
it can happen that the latency of the global reduction is not completely overlapped in the pipelined
methods. If this turns out to become a bottleneck (perhaps on extremely large or on future
systems), the pipelined strategy can be generalized to longer pipelining depths. In this case, the
global reduction can be overlapped with multiple CG iterations (matrix-vector products), as was
already presented for GMRES in [16]. However, longer pipelines also increase the recurrence length
and the required number of operations and memory.

The presented pipelined methods can be seen as an alternative to s-step CG [5, 34]. Historically,
s-step CG has had a “bad reputation” [35, 30] due to the numerical problems for increasing s. By
recent advances such as different Krylov bases [2, 24] (like Newton or Chebyshev) and a residual
replacement strategy [5], these methods have been applied successfully with quite large values
of s. However, a problem with s-step methods remains the combination with preconditioning.
Although some progress has been made in this regard recently, finding communication avoiding
preconditioners that combine well with s-step methods remains a challenge. The pipelined methods
presented in this work can be used with any preconditioner.
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