## Parallel Algorithms

# Maya Neytcheva ${ }^{1} \quad$ Ali Dorostkar ${ }^{2}$ 

${ }^{1}$ Department of Information Technology<br>Uppsala University<br>${ }^{2}$ Department of Information Technology<br>Uppsala University

May 28, 2013

## Outline

(1) Model problem
(2) Introduction to deal.ii

## Outline

## (2) Introduction to deal.ii

## What do we want to do?

## Solve a PDE numerically.

Test example: Find $u$ such that

$$
\begin{aligned}
-\Delta u & =f, \quad \text { in } \Omega \subset \mathbb{R}^{2} \\
u & =0, \quad \text { on } \partial \Omega
\end{aligned}
$$

where $\Omega=[-1,1]^{2}$, and $f=1$.

## What do we want to do

For setting up the spatial FE approximation, the first step is to rewrite the above equation in variational form.
Let $V=\left\{v:\|\nabla v\|+\|v\|<\infty,\left.v\right|_{\partial \Omega}=0\right\}$. Multiplying the equation with a test-function $v \in V$ and integrating over $\Omega$ using Green's formula with the homogeneous Dirichlet boundary conditions, we obtain

$$
\begin{aligned}
\int_{\Omega} f v d x & =-\int_{\Omega} \Delta u v d x \\
& =\int_{\Omega} \nabla u \cdot \nabla v d x-\int_{\partial \Omega} \mathbf{n} \cdot \nabla u v d x \\
& =\int_{\Omega} \nabla u \cdot \nabla v d x
\end{aligned}
$$

## What do we want to do

The variational form is thus defined to be the following problem: Find $u \in V$ such that

$$
\int_{\Omega} \nabla u \cdot \nabla v d x=\int_{\Omega} f v d x, \quad \forall v \in V
$$

## What do we want to do

In order to formulate the discretization in space, we decompose the infinite-dimensional computational domain $\Omega$ into finite-dimensional subsets (elements) with a characteristic size $h$. Let $\mathcal{K}$ be a triangulation of $\Omega$, and let $V_{h} \subset V$ be the subspace of continuous piecewise linears on $\mathcal{K}$

$$
V_{h}=\left\{v \in V,\left.v\right|_{\partial \Omega}=0\right\}
$$

With this choice of approximation space, the discrete space counterpart of the equation reads:
Find $U \in V_{h}$ such that

$$
\int_{\Omega} \nabla U \cdot \nabla v d x=\int_{\Omega} f v d x, \quad \forall v \in V_{h}
$$

## What do we want to do

Next, to compute the finite element approximation $U$ we let $\left\{\varphi_{i}\right\}_{i=1}^{N}$ be the basis for the subspace $V_{h}$. Since $U$ belong to $V_{h}$ it can be written as:

$$
U=\sum_{j=1}^{N} \mathbf{u}_{j} \varphi_{j}
$$

with $N$ unknowns $\mathbf{u}_{j}, j=1,2, \cdots, N$, to be found.
This equation can be rewritten as a linear system by inserting the representation $U=\sum_{j=1}^{N} \mathbf{u}_{j} \varphi_{j}$. Using the notation

$$
A_{i j}=\int_{\Omega} \nabla \varphi_{i} \nabla \varphi_{j} d x, \quad b_{i}=\int_{\Omega} f \varphi_{i} d x, \quad i=1,2, \cdots, N
$$

we have

$$
b_{i}=\sum_{j=1}^{N} A_{i j} \mathbf{u}_{j}, \quad i=1,2, \cdots, N
$$

## What do we want to do

The linear system for the unknowns $\mathbf{u}_{j}$ in matrix form:

$$
A \mathbf{u}=\mathbf{b}
$$

Now we know what we are going to solve, and we can look at how to compute $A_{i j}$ and $\mathbf{b}_{i}$ (form the integrals). In the finite element method, this is most commonly done using some quadrature.

## What do we want to do

We first split the integral over the whole domain into integrals over all cells,

$$
\begin{aligned}
A_{i j}^{K} & =\sum_{K \in \mathcal{K}} \int_{K} \nabla \varphi_{i} \nabla \varphi_{j} \\
b_{i}^{K} & =\sum_{K \in \mathcal{K}} \int_{K} f \varphi_{i}
\end{aligned}
$$

and then approximate the integrals in each cell $K$ by quadrature

$$
\begin{aligned}
A_{i j}^{K} & \approx \sum_{q} \int_{K} \nabla \varphi_{i}\left(x_{q}^{K}\right) \nabla \varphi_{j}\left(x_{q}^{K}\right) \omega_{j}^{K} \\
b_{i}^{K} & \approx \sum_{q} \int_{K} f\left(x_{q}^{K}\right) \varphi_{i}\left(x_{q}^{K}\right) \omega_{j}^{K}
\end{aligned}
$$

## What do we want to do

After $A$ and $\mathbf{b}$ are made available, we have to choose a suitable numerical solution to solve the system.

- fast
- accurate
- robust


## Outline

## (1) Model problem

(2) Introduction to deal.ii

## What is deal.ii

DEAL.II ${ }^{1}$ : A Finite Element Differential Equations Analysis Library

- a C++ program library targeted at the computational solution of partial differential equations using adaptive finite elements.
- aims: to enable rapid development of modern finite element codes, using among other aspects adaptive meshes and a wide array of tools classes often used in finite element program.
- seemles using 1D, 2D or 3D programs.
- locally refined grids, adaptive refinement strategies and error indicators and error estimators.

[^0]
## What is deal.ii

DEAL.II¹: A Finite Element Differential Equations Analysis Library

- $h, p, h p$ refinement.
- continuous and discontinuous elements.
- support for a variety of finite elements.
- complete stand-alone linear algebra library.
- interface to other packages such as Trilinos, PETSc, METIS and P4est.
- smooth transition from serial to parallel.
- online documentation.


## What is deal.ii

DEAL.II¹: A Finite Element Differential Equations Analysis Library

- Modern software techniques that make access to the complex data structures and algorithms as transparent as possible.
- Support for several output formats.
- Portable support for a variety of computer platforms and compilers.
- Free source code under an Open Source license.
- open to contributors.

For its creation, its principal authors have received the 2007 J. H. Wilkinson Prize for Numerical Software.
${ }^{1}$ http://www.dealii. org/

## What is Trilinos

The Trilinos ${ }^{2}$ Project is an effort to develop and implement robust algorithms and enabling technologies using modern object-oriented software design, while still leveraging the value of established libraries such as PETSc, Metis/ParMetis, SuperLU, Aztec, the BLAS and LAPACK. It emphasises abstract interfaces for maximum flexibility of component interchanging, and provides a full-featured set of concrete classes that implement all abstract interfaces.

[^1]
## What is Trilinos

Deal.II has interface with two packages from Trilinos:

- Stratimikos: Thyra-based strategies for linear solvers
- Sacado: Automatic Differentiation Tools for C++ Codes


## Programming in deal.ii

- mesh (choice of finite elements)
- assembly of matrices (choice of basis functions)
- solution methods (nonlinear and linear)
- parallelization tools
- visualisation


## Mesh- and finite-element related:

```
#include <deal.II/grid/tria.h>
#include <deal.II/dofs/dof_handler.h>
#include <deal.II/grid/grid_generator.h>
#include <deal.II/grid/tria_accessor.h>
#include <deal.II/grid/tria_iterator.h>
#include <deal.II/dofs/dof_accessor.h>
#include <deal.II/fe/fe_values.h>
#include <deal.II/base/quadrature_lib.h>
#include <deal.II/base/function.h>
```


## Matrix/vector data structure and

```
#include <deal.II/lac/vector.h>
#include <deal.II/lac/full_matrix.h>
#include <deal.II/lac/sparse_matrix.h>
#include <deal.II/lac/compressed_sparsity_pattern.h>
#include <deal.II/lac/solver_cg.h>
#include <deal.II/lac/precondition.h>
#include <deal.II/lac/sparse_direct.h>
#include <deal.II/lac/trilinos_precondition.h>
```


## Making the grid:

```
void laplace_problem::make_grid ()
{
    GridGenerator:: hyper_cube (triangulation, -1, 1);
    triangulation.refine_global (n_refinement_steps);
    std::cout << "Total number of cells: "
        << triangulation.n_cells()
        << std::endl;
}
```

```
void laplace_problem::setup_system ()
{
    dof_handler.distribute_dofs (fe);
    std::cout << "Number of degrees of freedom: "
        << dof_handler.n_dofs()
        << std::endl;
    CompressedSparsityPattern c_sparsity(dof_handler.n_dofs())
            ;
    DoFTools::make_sparsity_pattern (dof_handler, c_sparsity);
    sparsity_pattern.copy_from(c_sparsity);
    system_matrix.reinit (sparsity_pattern);
    solution.reinit (dof_handler.n_dofs());
    system_rhs.reinit (dof_handler.n_dofs());
}
```

```
void laplace_problem::assemble_system ()
{
    QGauss<2> quadrature_formula(2);
    FEValues<2> fe_values (fe, quadrature_formula,
update_values | update_gradients | update_JxW_values);
    const unsigned int dofs_per_cell = fe.dofs_per_cell;
    const unsigned int n_q_points = quadrature_formula.
        size();
    FullMatrix<double> cell_matrix (dofs_per_cell,
        dofs_per_cell);
    Vector<double> cell_rhs (dofs_per_cell);
    std::vector<unsigned int> local_dof_indices (dofs_per_cell
        );
```

```
DoFHandler<2>: : active_cell_iterator
        cell = dof_handler.begin_active(),
        endc = dof_handler.end();
    for (; cell!=endc; ++cell)
        {
            fe_values.reinit (cell);
            cell_matrix = 0;
            cell_rhs = 0;
            for (unsigned int i=0; i<dofs_per_cell; ++i)
for (unsigned int j=0; j<dofs_per_cell; ++j)
    for (unsigned int q_point=0; q_point<n_q_points; ++q_point
        )
        cell_matrix(i,j) += (fe_values.shape_grad (i, q_point) *
fe_values.shape_grad (j, q_point) *
fe_values.JxW (q_point));
```

```
for (unsigned int i=0; i<dofs_per_cell; ++i)
for (unsigned int q_point=0; q_point<n_q_points; ++q_point)
    cell_rhs(i) += (fe_values.shape_value (i, q_point) *
    1*
    fe_values.JxW (q_point));
cell->get_dof_indices (local_dof_indices);
for (unsigned int i=0; i<dofs_per_cell; ++i)
for (unsigned int j=0; j<dofs_per_cell; ++j)
    system_matrix.add (local_dof_indices[i],
        local_dof_indices[j],
        cell_matrix(i,j));
            for (unsigned int i=0; i<dofs_per_cell; ++i)
system_rhs(local_dof_indices[i]) += cell_rhs(i);
    }
```

```
    std::map<unsigned int,double> boundary_values;
    VectorTools:: interpolate_boundary_values (dof_handler,
    MatrixTools:: apply_boundary_values (boundary_values ,
        system_matrix,
        solution,
        system_rhs);
}
```


## Solving the linear system: direct method

```
void laplace_problem::solve_direct ()
{
    SparseDirectUMFPACK direct_solver;
    direct_solver.initialize(system_matrix);
    direct_solver.vmult (solution, system_rhs);
}
```


## Solving the linear system: unpreconditioned CG

```
void laplace_problem::solve_cg ()
{
    SolverControl solver_control (system_matrix.m(), 1e-12);
    SolverCG<> solver (solver_control);
    solver.solve (system_matrix, solution, system_rhs,
PreconditionIdentity());
    std::cout<< "CG iterations without preconditioner:"...
                        <<solver_control.last_step()<<std::endl;
}
```


## Solving the linear system: AMG-preconditioned CG

```
void laplace_problem::solve_amg ()
{
    Amg_preconditioner.reset ();
    Amg_preconditioner = std_cxx1x::shared_ptr<TrilinosWrappers:: PreconditionAMG>
                        (new TrilinosWrappers::PreconditionAMG());
    std::vector<std::vector<bool> > constant_modes;
    std::vector<bool> components (3,true);
    components[2] = false;
    DoFTools::extract_constant_modes (dof_handler, components,
                            constant_modes);
    TrilinosWrappers::PreconditionAMG::AdditionalData Amg_data;
    Amg_data.constant_modes = constant_modes;
    Amg_data.elliptic = true;
    Amg_data.higher_order_elements = true;
    Amg_data.smoother_sweeps = 2;
    Amg_data.aggregation_threshold = 0.02;
    Amg_preconditioner->initialize(system_matrix, Amg_data);
    SolverControl solver_control (system_matrix.m(), 1e-12);
    SolverCG<> solver (solver_control);
    solver.solve (system_matrix, solution, system_rhs,
*Amg_preconditioner);
    std::cout<< "CG iterations with AMG preconditioner:"<<solver_control.last_step()<<std::
        endl;
}
```


## The actual execution part:

```
void laplace_problem::run (int n_refs)
{
    Vector<double> init_sol;
    Vector<double> init_rhs;
    double mesh_size;
    n_refinement_steps = n_refs;
    std::cout<< "Number of refinements: " <<n_refinement_steps
        << std:: endl;
    mesh_size = 2*std:: pow(0.5, double(n_refinement_steps));
    pcout << "Mesh size: " << mesh_size<< std::endl;
    make_grid ();
    setup_system();
    assemble_system ();
    init_rhs = system_rhs;
    init_sol = solution;
}
```

```
    computing_timer.enter_section("Solve system directly");
    solve_direct ();
    computing_timer.exit_section("Solve system directly");
    solution = init_sol;
    system_rhs = init_rhs;
    computing_timer.enter_section("Solve system (CG)");
    solve_cg ();
    computing_timer.exit_section("Solve system (CG)");
    solution = init_sol;
    system_rhs = init_rhs;
    computing_timer.enter_section("Solve system (AMG)");
    solve_amg ();
    computing_timer.exit_section("Solve system (AMG)");
    output_results ();
}
```


[^0]:    ${ }^{1}$ http://www.dealii.org/

[^1]:    ${ }^{2}$ http://trilinos.sandia.gov/about.html

