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Preliminaries… 

 Consider solving the NN linear system 

 

 

 Most iterative methods have the following form, where 

rk=f - Auk is the residual at iteration k 

 

 

 Let ek=u - uk be the error, and note that rk=Aek 

 The error propagation for the iterative method is 
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Multigrid linear solvers are optimal (O(N) operations), 

and hence have good scaling potential 

 

 

 

 

 

 

 

 

 

 Weak scaling – want constant solution time as problem 
size grows in proportion to the number of processors 
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Multigrid  uses a sequence of coarse grids to 

accelerate the fine grid solution 

Error on the fine grid 

Error approximated on 

a smaller coarse grid 

restriction 

prolongation 

(interpolation) 

The Multigrid 

V-cycle 

smoothing 

(relaxation) 
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Simple 1D model problem 

 1D Laplace on a uniform grid with spacing h 

 

 

 

 

 Discrete problem is a linear system Au = f with 

 

 

 

 

 We will mostly use the stencil form 
Matrix 

Stencil 

Continuous x0 x1 xN xN+1 
… 

Discrete 

or 
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Multigrid components for 1D model 

 Many smoother options, e.g., 
• Weighted Jacobi, I – (/2) A, opt = 2/3 

• Gauss-Seidel (GS) 

 

 Prolongation is linear interpolation (note brackets) 

 

 

 

 Coarse-grid operator is coarse discretization of the problem 
(scaled appropriately) 

 

 

 

 In practice, a slightly different method (equivalent to cyclic 
reduction) solves this problem in one V-cycle 

 

fine grid 

coarse grid 



8 

Lawrence Livermore National Laboratory 

2D model problem: Laplace on a square (1) 

 Five-point stencil discretization on a uniform grid 

 

 

 

 

 Smoothers: weighted Jacobi or GS (lexicographical or red/black) 

 Full coarsening, bilinear interpolation 

 

 

 

 

 

 Coarse discretization (scaled appropriately) for Ac 
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2D anisotropic model problem on a square 

 Five-point stencil discretization on a uniform grid 

 

 

 

 Pointwise relaxation smooths only in the x direction! 

 

 Two solutions: 
1) Change coarse-grid correction – coarsen only in  

the direction of smoothness (semicoarsening in x,  

linear interpolation in x) 

2) Change relaxation –  line relaxation with points  

grouped along y lines 
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Parallel Multigrid 

 
(see Yang tutorial on Monday) 
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Approach for parallelizing multigrid is straightforward 

data decomposition 

 

 

 

 

 

 

 

 

 Basic communication pattern is “nearest neighbor” 
• Relaxation, interpolation, & Galerkin not hard to implement 

 Different neighbor processors on coarse grids 

 Many idle processors on coarse grids (100K+ on BG/L) 
• Algorithms to take advantage have had limited success 

 

 

Level  1 

    

    

Level  2 

    

    

Level  L 
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Straightforward parallelization approach is optimal for 

V-cycles on structured grids (5-pt Laplacian example) 

 Standard communication / computation models 

 

 

 

 Time to do relaxation 

 

 

 Time to do relaxation in a V(1,0) multigrid cycle 

 

 

 

 For achieving optimality in general, the log term is unavoidable! 

 

 More precise:  

(communicate m doubles) 

(compute m flops) 

nn grids 
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Additional comments on parallel multigrid 

 W-cycles scale poorly: 

 

 
 Lexicographical Gauss-Seidel is too sequential 

• Use red/black or multi-color GS 
• Use weighted Jacobi, hybrid Jacobi/GS, L1 
• Use C-F relaxation (Jacobi on C-pts then F-pts) 
• Use Polynomial smoothers 

 Parallel smoothers are often less effective 

 

 Recent survey on parallel multigrid: 
• “A Survey of Parallelization Techniques for Multigrid Solvers,” Chow, Falgout, Hu, Tuminaro, and 

Yang, Parallel Processing For Scientific Computing, Heroux, Raghavan, and Simon, editors, 
SIAM, series on Software, Environments, and Tools (2006) 

 Recent paper on parallel smoothers: 
• “Multigrid Smoothers for Ultra-Parallel Computing,” Baker, Falgout, Kolev, and Yang, SIAM J. Sci. 

Comput., submitted. LLNL-JRNL-435315 

 

C-pts F-pts 
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Example weak scaling results on Dawn (an IBM BG/P 

system at LLNL) in 2010 

 

 

 

 

 

 

 

 

 

 

 

 Laplacian on a cube; 403 = 64K grid points per processor;  

largest problem had 3 billion unknowns! 

 PFMG is a semicoarsening multigrid solver in hypre 

 Still room to improve setup implementation (these results already employ the 

assumed partition algorithm described later) 
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Basic multigrid research challenge 

 Optimal O(N) multigrid methods don‟t exist for some 
applications, even in serial 

 Need to invent methods for these applications 

 

 However … 

 

 Some of the classical and most proven techniques used 
in multigrid methods don‟t parallelize 
• Gauss-Seidel smoothers are inherently sequential 

• W-cycles have poor parallel scaling 

 Parallel computing imposes additional restrictions on 
multigrid algorithmic development 
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Algebraic Multigrid (AMG) 
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Algebraic Multigrid (AMG) is based on MG principles, 

but uses matrix coefficients 

 For best results, geometry alone is not enough 

 

 

 

 

 

 AMG ignores geometric information altogether, but 

captures both linear & operator-dep interpolation 

 

xi xi+1xi–1

hi–½ hi+½

Linear Interpolation 

xi xi+1xi–1

h h

ki–½ ki+½

Operator-Dependent Interpolation 
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AMG is an ideal method for unstructured grid 

problems 

 Many algorithms (AMG alphabet soup) 

 Automatically coarsens “grids” 

 

 

 

 

 

 

 

 Algebraically smooth error may not be smooth in a 
geometric sense 

 

AMG Framework R
n

algebraically 

smooth error 

error damped 

by relaxation 
Choose coarse grids, 

transfer operators, etc. 

to eliminate 
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Error left by relaxation can be geometrically 

oscillatory 

 7 GS sweeps on 

 

 

 

 

 

 This example… 

• targets geometric smoothness 

• uses pointwise smoothers 

 Not sufficient for some problems! 

 

a = b a » b 

AMG coarsens grids in the 

direction of geometric smoothness 
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Preliminaries… the Galerkin coarse-grid operator 

 As before, consider solving the NN linear system 

 

 

 Let P be prolongation (interpolation) and PT restriction 
 

 The coarse-grid operator is defined by the Galerkin 

procedure, Ac = PTAP 

 This gives the “best” coarse-grid correction in the sense 

that the solution ec of the coarse system 

 

satisfies 
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Preliminaries… AMG “grids” 

 Matrix adjacency graphs play an 

important role in AMG: 

• grid = set of graph vertices 

• grid point i = vertex i 

 

 As a visual aid, it is highly instructive 

to relate the matrix equations to an 

underlying PDE and discretization 

 We will often draw the grid points in 

their geometric locations 

 

 Remember that AMG doesn‟t actually 

use this geometric information! 
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Classical AMG (C-AMG) 

 

 (Brandt, McCormick, Ruge, Stüben) 
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C-AMG targets geometric smoothness 

 From theory (later): smooth error is characterized by small 
eigenmodes, hence satisfies (A scaled to have norm 1) 

 

 

 Constant is geometrically smooth, so assume zero row sum 
 
 
 
 
 
 
 
 
 
 
 

swap i,j 
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C-AMG targets geometric smoothness through  

strength-of-connection 

 Assuming geometric smoothness, can show 

 

 

 C-AMG Smoothness Heuristic: Smooth error varies 
slowly in the direction of “large” matrix coefficients 

 

 Strength of connection: Given a threshold 0 <   1, we 
say that variable ui strongly depends on variable uj if 

 

 

 In practice, positive off-diagonals are weak 

 Note that this definition of strength is not symmetric 
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Choosing the coarse grid 

 In C-AMG, the coarse grid is a subset of the fine grid 

 

 The basic coarsening procedure is as follows: 

• Define a strength matrix As by deleting weak connections in A 

• First pass: Choose an independent set of fine-grid points based 

on the graph of As 

• Second pass: Choose additional points if needed to satisfy 

interpolation requirements 

 

 Coarsening partitions the grid into C- and F-points 
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C-AMG coarsening 

select C-pt with 
maximal measure 

  

select neighbors 
as F-pts 

  

update measures 
of F-pt neighbors 

3 5 5 5 5 5 3 

5 8 8 8 8 8 5 

5 8 8 8 8 8 5 

5 8 8 8 8 8 5 

5 8 8 8 8 8 5 

5 8 8 8 8 8 5 

3 5 5 5 5 5 3 
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C-AMG coarsening 

select C-pt with 
maximal measure 

  

select neighbors 
as F-pts 

  

update measures 
of F-pt neighbors 

3 5 5 5 5 5 3 

5 8 8 8 8 8 5 

5 8 8 8 8 8 5 

5 8 8 8 8 8 5 

5 8 8 8 8 8 5 

5 8 8 8 8 8 5 

3 5 5 5 5 5 3 
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C-AMG coarsening 

select C-pt with 
maximal measure 

  

select neighbors 
as F-pts 

  

update measures 
of F-pt neighbors 

3 5 5 5 5 5 3 

5 8 8 8 8 8 5 

5 8 8 8 8 8 5 

5 8 8 8 8 8 5 

8 8 8 5 

8 8 8 5 

5 5 5 3 
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C-AMG coarsening 

select C-pt with 
maximal measure 

  

select neighbors 
as F-pts 

  

update measures 
of F-pt neighbors 

3 5 5 5 5 5 3 

5 8 8 8 8 8 5 

5 8 8 8 8 8 5 

7 11 10 9 8 8 5 

10 8 8 5 

11 8 8 5 

7 5 5 3 
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C-AMG coarsening 

select C-pt with 
maximal measure 

  

select neighbors 
as F-pts 

  

update measures 
of F-pt neighbors 

3 5 5 5 5 5 3 

5 8 8 8 8 8 5 

5 8 8 8 8 8 5 

7 11 10 9 8 8 5 

10 8 8 5 

8 8 5 

7 5 5 3 

11 
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C-AMG coarsening 

select C-pt with 
maximal measure 

  

select neighbors 
as F-pts 

  

update measures 
of F-pt neighbors 

3 5 5 5 5 5 3 

5 8 8 8 8 8 5 

5 8 8 8 8 8 5 

7 11 10 9 8 8 5 

8 5 

8 5 

5 3 
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C-AMG coarsening 

select C-pt with 
maximal measure 

  

select neighbors 
as F-pts 

  

update measures 
of F-pt neighbors 

3 5 5 5 5 5 3 

5 8 8 8 8 8 5 

5 8 8 8 8 8 5 

7 11 11 11 10 9 5 

10 5 

11 5 

6 3 
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C-AMG coarsening 

select C-pt with 
maximal measure 

  

select neighbors 
as F-pts 

  

update measures 
of F-pt neighbors 

3 5 5 5 5 5 3 

5 8 8 8 8 8 5 

5 8 8 8 8 8 5 

7 11 11 11 11 11 7 
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C-AMG coarsening 

select C-pt with 
maximal measure 

  

select neighbors 
as F-pts 

  

update measures 
of F-pt neighbors 

3 5 5 5 5 5 3 

7 11 10 9 8 8 5 

10 8 8 5 

13 11 11 7 
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C-AMG coarsening is inherently sequential 

select C-pt with 
maximal measure 

  

select neighbors 
as F-pts 

  

update measures 
of F-pt neighbors 
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C-AMG coarsening – second pass 

 Recall: Second pass chooses additional points if 

needed to satisfy interpolation requirements 

 

 C-AMG interpolation (discussed next) requires that 

each pair of strongly connected F-points be strongly 

connected to a common C-point 

 C-AMG second pass: search for F-point pairs that don‟t 

satisfy this requirement and changes one to a C-point 

 

 Second pass can lead to high complexity 

 Idea: eliminate second pass, modify interpolation 



37 

Lawrence Livermore National Laboratory 

AMG grid hierarchies for several 2D problems 

domain1 - 30º domain2 - 30º pile square-hole 
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C-AMG Interpolation – collapsing the stencil 

 Smooth error means “small” residuals 

 

 To derive interpolation, assume that 

 

 Hence, 

 

 

 

 

 The trick is to rewrite the ej in Fi
s and Ni

w in terms of 
either the interpolatory points in Ci or the F-point i 
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C-AMG Interpolation – collapsing the stencil… 

Isotropic 9-pt Laplacian 
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C-AMG Interpolation – collapsing the stencil… 

Anisotropic 9-pt Laplacian,  > 0.25 
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C-AMG Interpolation – algebraic derivation 

 

 

 

 

 Write 

 

 

 

 Then 
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Example C-AMG results 

 

 

 

 

 

 

 

 

 

 

 

 Grid complexity – total # of grid points divided by the # of fine grid points 

 Operator complexity – total # of nonzeroes in the system operators divided 

by the # of nonzeroes in the fine grid operator 

a = b a » b 

C-AMG coarse grids 

N Iters 

Conv 

factor 

Coarse 

grids 

Grid 

comp 

Oper 

comp 

Setup 

time 

Solve 

time 

61×61 10 0.23 6 1.6 1.6 0.01 0.02 

121×121 9 0.23 8 1.6 1.7 0.05 0.07 

241×241 9 0.23 9 1.6 1.7 0.25 0.32 

481×481 9 0.23 12 1.7 1.7 1.02 1.27 

961×961 11 0.29 13 1.7 1.7 4.42 6.28 
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Parallel AMG 
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Parallel Coarsening Algorithms 

 C-AMG coarsening algorithm is inherently sequential 

 

 Several parallel algorithms (in hypre): 
• CLJP (Cleary-Luby-Jones-Plassmann) – one-pass approach with 

random numbers to get concurrency (illustrated next) 

• Falgout – C-AMG on processor interior, then CLJP to finish 

• PMIS – CLJP without the „C‟; parallel version of C-AMG first pass 

• HMIS – C-AMG on processor interior, then PMIS to finish 

• CGC (Griebel, Metsch, Schweitzer) – compute several coarse grids on 

each processor, then solve a global graph problem to select the grids 

with the best “fit” 

• … 

 Other parallel AMG codes use similar approaches 
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CLJP coarsening is fully parallel 

select C-pts with 
maximal measure 
locally 

  

 remove neighbor 
edges 

  

update neighbor 
measures 

3.7 5.3 5.0 5.9 5.4 5.3 3.4 

5.2 8.0 8.5 8.2 8.6 8.9 5.1 

5.9 8.1 8.9 8.9 8.4 8.2 5.9 

5.7 8.6 8.3 8.8 8.3 8.1 5.0 

5.3 8.7 8.3 8.4 8.3 8.9 5.9 

5.0 8.8 8.5 8.6 8.7 8.9 5.3 

3.2 5.6 5.8 5.6 5.9 5.9 3.0 
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CLJP coarsening is fully parallel 

select C-pts with 
maximal measure 
locally 

  

 remove neighbor 
edges 

  

update neighbor 
measures 

3.7 5.3 5.0 5.9 5.4 5.3 3.4 

5.2 8.0 8.5 8.2 8.6 8.9 5.1 

5.9 8.1 8.9 8.9 8.4 8.2 5.9 

5.7 8.6 8.3 8.8 8.3 8.1 5.0 

5.3 8.7 8.3 8.4 8.3 8.9 5.9 

5.0 8.8 8.5 8.6 8.7 8.9 5.3 

3.2 5.6 5.8 5.6 5.9 5.9 3.0 
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CLJP coarsening is fully parallel 

select C-pts with 
maximal measure 
locally 

  

 remove neighbor 
edges 

  

update neighbor 
measures 

3.7 5.3 5.0 5.9 2.4 

5.2 8.0 5.5 3.2 1.6 

5.9 8.1 3.9 1.4 3.2 2.9 

5.7 8.6 5.3 3.8 5.3 8.1 5.0 

2.3 3.7 5.3 8.4 5.3 3.9 2.9 

3.5 8.6 3.7 

2.8 5.6 2.9 
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CLJP coarsening is fully parallel 

select C-pts with 
maximal measure 
locally 

  

 remove neighbor 
edges 

  

update neighbor 
measures 

3.7 5.3 5.0 5.9 2.4 

5.2 8.0 5.5 3.2 1.6 

5.9 8.1 3.9 1.4 3.2 2.9 

5.7 8.6 5.3 3.8 5.3 8.1 5.0 

2.3 3.7 5.3 8.4 5.3 3.9 2.9 

3.5 8.6 3.7 

2.8 5.6 2.9 
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CLJP coarsening is fully parallel 

select C-pts with 
maximal measure 
locally 

  

 remove neighbor 
edges 

  

update neighbor 
measures 

3.7 5.3 2.0 

5.2 8.0 3.5 

2.9 3.1 1.9 

1.3 3.8 1.3 

1.3 3.4 1.3 
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CLJP coarsening is fully parallel 

select C-pts with 
maximal measure 
locally 

  

 remove neighbor 
edges 

  

update neighbor 
measures 

3.7 5.3 2.0 

5.2 8.0 3.5 

2.9 3.1 1.9 

1.3 3.8 1.3 

1.3 3.4 1.3 
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CLJP coarsening is fully parallel 

10 C-points 
selected 
 
 

Standard AMG 
selects 9 C-points 
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Parallel coarse-grid selection in AMG can produce 

unwanted side effects 

 Non-uniform grids can lead to increased operator 
complexity and poor convergence 

 Operator “stencil growth” reduces parallel efficiency 

 

 

 

 

 

 

 Currently no guaranteed ways to control complexity 

 Can ameliorate with more aggressive coarsening 

 Requires long-range interpolation approaches 
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C-AMG interpolation is not suitable for more 

aggressive coarsening 

 PMIS is parallel and eliminates the second pass, which 

can lead to the following scenarios: 

 

 

 

 

 

 

 Want above i-points to interpolate from both C-points 

 Long-range (distance two) interpolation! 

j i One-sided interpolation 

No interpolation j i 

? 
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One possibility for long-range interpolation is 

extended interpolation 

 C-AMG: Ci = {j,k} 

 Long-range: Ci = {j,k,m,n} 

 

 Extended interpolation – 

apply C-AMG interpolation 

to an extended stencil 

 

 Extended+i interpolation is 

the same as extended, but 

also collapses to point i 

 Improves overall quality 

k i 

j 

n 

m 0 

0 
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New parallel coarsening and long-range interpolation 

methods are improving scalability 

 Unstructured 3D problem with material discontinuities 

 About 90K unknowns per processor on MCR (Linux cluster) 

 AMG - GMRES(10) 

 
Total Times

0
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cljp-c

pmis-c

pmis-ei4

New coarsening  

 2.7x faster! 

New interpolation  

 4.5x faster! 
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Parallel AMG in hypre now scales to 130K processors 

on BG/L … and beyond 

 

 

 

 

 

 

 

 

 

 

 Largest problem above: 2B unknowns 

 Largest problem to date: 26B unknowns on 98K processors of BG/L 

 Most processors to date: 16B unknowns on 196K cores of Jaguar  

(Cray XT5 at ORNL) 
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Processors (problem size) 
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PMIS
Ag2Fal
Ag1HMIS
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Smoothed Aggregation (SA) 

 
(Vaněk, Mandel, Brezina) 
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SA views the prolongation operator columnwise, as a 

set of local basis functions 

 1D Laplacian example: 

 

 

 

 

 

 

 Range(P) contains the (smooth) constant vector 1 

 

 SA approach for building prolongation – decompose 
near null space into a basis with local support 

C-AMG – by rows, 

linear interpolation 

SA – by columns, 

hat functions 
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SA builds interpolation by first chopping up a global 

basis, then smoothing it 

 Tentative interpolation is constructed from “aggregates” 

(local QR factorization is used to orthonormalize) 

 

 

 

 

 

 

 

 Smoothing adds basis overlap and  

improves approximation property 

 

= 
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SA coarsening (5-pt Laplacian) 

Phase 1: 

a) Pick root pt not 
adjacent to agg 

b) Aggregate root and 
neighbors 

 

Phase 2: 

Move pts into nearby 

aggs or new aggs 
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SA coarsening (5-pt Laplacian) 

Phase 1: 

a) Pick root pt not 
adjacent to agg 

b) Aggregate root and 
neighbors 

 

Phase 2: 

Move pts into nearby 

aggs or new aggs 
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SA coarsening (5-pt Laplacian) 

Phase 1: 

a) Pick root pt not 
adjacent to agg 

b) Aggregate root and 
neighbors 

 

Phase 2: 

Move pts into nearby 

aggs or new aggs 
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SA coarsening (5-pt Laplacian) 

Phase 1: 

a) Pick root pt not 
adjacent to agg 

b) Aggregate root and 
neighbors 

 

Phase 2: 

Move pts into nearby 

aggs or new aggs 
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SA coarsening (5-pt Laplacian) 

Phase 1: 

a) Pick root pt not 
adjacent to agg 

b) Aggregate root and 
neighbors 

 

Phase 2: 

Move pts into nearby 

aggs or new aggs 
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SA coarsening (5-pt Laplacian) 

Phase 1: 

a) Pick root pt not 
adjacent to agg 

b) Aggregate root and 
neighbors 

 

Phase 2: 

Move pts into nearby 

aggs or new aggs 
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SA coarsening (5-pt Laplacian) 

Phase 1: 

a) Pick root pt not 
adjacent to agg 

b) Aggregate root and 
neighbors 

 

Phase 2: 

Move pts into nearby 

aggs or new aggs 
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SA coarsening (5-pt Laplacian) 

Phase 1: 

a) Pick root pt not 
adjacent to agg 

b) Aggregate root and 
neighbors 

 

Phase 2: 

Move pts into nearby 

aggs or new aggs 
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SA coarsening (5-pt Laplacian) 

Phase 1: 

a) Pick root pt not 
adjacent to agg 

b) Aggregate root and 
neighbors 

 

Phase 2: 

Move pts into nearby 

aggs or new aggs 
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SA coarsening (5-pt Laplacian) 

Phase 1: 

a) Pick root pt not 
adjacent to agg 

b) Aggregate root and 
neighbors 

 

Phase 2: 

Move pts into nearby 

aggs or new aggs 
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SA coarsening is traditionally more aggressive than  

C-AMG coarsening (5-pt Laplacian example) 

SA Seed Points (10) C-AMG Grid (25) 

Operator complexities are usually smaller, too 
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Additional comments on SA… 

 Usual prolongator smoother is damped Jacobi 

 

 Strength of connection is usually defined differently 

 

 

 Special care must be taken for anisotropic problems to 

keep complexity low 

• Thresholded prolongator smoothing 

• Basis shifting approach 

 

 Parallel SA coarsening has issues similar to C-AMG 
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AMG Theory 

& 

Compatible Relaxation 
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GAMG preliminaries… 

 Consider solving  Au = f , A SPD 

 Consider smoothers with error propagation 

 

 

where we assume that (M+MT A) is SPD (necessary 

and sufficient condition for convergence) 

 Note: M may be symmetric or nonsymmetric 

 Denote the symmetrized smoother operator by 

 

 

that is, 
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GAMG preliminaries continued… 

 Let  P : nc  n  be interpolation (prolongation) 

 Let  R : n  nc  be some “restriction” operator 

• Note that R is not the MG restriction operator 

 Define s.t. RP=I and PR is a projection onto range(P) 

 

 For any SPD matrix X and any full-rank matrix B, 

denote the X-orthogonal projection onto range(B) by 

 

 

 Define the two-grid multigrid error propagator by 
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GAMG two-grid theory splits construction of coarse-

grid correction into two parts 

 Theorem: 

 

 

 Now, fix R so that it does not depend on P 

• Defines the coarse-grid variables, uc = Ru 

• Example: R=[ 0, I ]  (PT=[ WT, I ]T), i.e., subset of the fine grid 

 Theorem: 

 

 
• Small K


 insures coarse grid quality – use CR 

• Small   insures interpolation quality – necessary condition that 
does not depend on relaxation! 
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CR is an efficient method for measuring the quality of 

the set of coarse variables 

 CR (Brandt, 2000) is a modified relaxation scheme that 

keeps the coarse-level variables, Ru, invariant 

 Theorem: (fast convergence ) good coarse grid) 
 
 
 
  1 measures the deviation of M from its symmetric 
part M and 0 <  < 2 is a kind of smoothing parameter 

 

 

 Must insure “good” constants 

• in particular,  « 2 
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Several general CR methods 

 Define S such that n = range(S)  range(RT) and RS = 0 

• Example: R=[ 0, I ]; S=[ I, 0 ]T; PT=[ WT, I ]T  

 

 Primary CR method – feasible for relaxation based on 

matrix splittings, where M is explicitly available 

 

 

 Habituated CR – not as sharp, but always computable 
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Sharp Theory insightful for improving CR prediction 

 GAMG theory 

 

 

 Sharp theory 

 

 

 

 Differ only in form of the projection 

 Careful comparison  optimal R is given by 

 

 But, we don‟t have P yet (we‟re trying to build it) 
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AMG and ILU 
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Ideal interpolation 

 Recall 2-level theory: 

 

 

 

 Consider R=[ 0, Ic ], P
T=[ WT, Ic ]

T case 

 “Ideal” P is given by 

 

 

 

 Not a practical choice in general 
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AMG and ILU 

 Can factor A as follows 

 

 

 

 

 

 

 Thinking of ILU, write the error propagator 

 

 
F-relaxation Coarse-grid correction 
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AMG for Electromagnetic Problems 

 
(see Kolev Poster on Monday) 
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Electromagnetic (EM) problems have huge oscillatory 

near null spaces 

 Definite Maxwell, Indefinite Maxwell, Helmholtz 

 Require specialized smoothers and coarse grids 

 

 

 

 

 Definite Maxwell, Nédélec edge FEM discretization 

 

 Near null-space characterized by gradients 

 

Local: specialized relaxation 

(Definite / Indefinite Maxwell) 

Global: specialized coarse grids 

(Helmholtz, Indefinite Maxwell) 
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Geometric multigrid for definite Maxwell 

 Helmholtz decomposition 

 

 

 Smooth both components (Hiptmair, SINUM 1998) 

 

 

 

 Block smoother (Arnold, Falk, Winther, Num. Math. 2000) 

 Natural FE interpolation 

 Difficulties extending to 
• unstructured meshes 

• variable coefficients 

 

curl-free divergence-free 

Point smoother for Point smoother for 

Discrete Gradient 

de Rham 

Sequences 

(edge, Nédélec) (nodal) 
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Auxiliary-space Maxwell solver (AMS) utilizes a new 

decomposition 

 Based on Hiptmair, Xu (2006) 

 

 

 Define preconditioner based on nodal solvers 

 

 

 

 

 

 User provides A, Gh and vertex coordinates 

 Fast computation of  h (~ 3 mat-vec multiplies) 

 AMS is a variational form of Hiptmair-Xu 

Point smoother for AMG solver for AMG solver for 
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Auxiliary-space Maxwell Solver (AMS) is improving 

solve times by up to 25x for some EM problems 

 Hiptmair-Xu / AMS are the 
first provably scalable solvers 
for EM on unstructured grids 

 

 Employs BoomerAMG 

 

 Highly robust 

• Materials with widely varying 
electromagnetic properties 

• Unstructured grids 

 

 Example: 1.2B unknowns on 
1.9K processors took 355s 
(23 iterations) 



87 

Lawrence Livermore National Laboratory 

Adaptive AMG 
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Adaptive AMG is well-suited for QCD 

 Quantum Chromodynamics (QCD) is the theory of strong 
forces in the Standard Model of particle physics  

 

 Scalable solvers for the Dirac equations  
have been elusive until recently 

 

 Challenges: 
• The system is complex and indefinite 

• The system can be extremely ill-conditioned 

• Near null space is unknown and oscillatory! 
 
 
 
 
 

Real part Imaginary part 
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Adaptive AMG idea: use the method to improve the 

method 

 Requires no a-priori knowledge of the near null space 

 Idea: uncover representatives of slowly-converging 

error by applying the “current method” to Ax = 0, then 

use these to adapt (improve) the method 

 

 Achi Brandt‟s Bootstrap AMG is an adaptive method 

 PCG can be viewed as an adaptive method 

• Not optimal because it uses a global view 

• The key is to view representatives locally 

 

 We developed 2 methods: αAMG and αSA (SISC pubs) 
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To build effective interpolation, it is important to 

interpret the near null space in a local way 

 (2-level) Coarse-grid correction is a projection 

 

 Better to break up near null space into a local basis 

 

 

 

 

 

 

 

 Get full approximation property (low-frequency Fourier 
modes in this example) 

Deflation – not optimal Multigrid – optimal 
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SA builds interpolation by first chopping up a global 

basis, then smoothing it 

 Tentative interpolation is constructed from “aggregates” 

(local QR factorization is used to orthonormalize) 

 

 

 

 

 

 

 

 Smoothing adds basis overlap and  

improves approximation property 

 

= 
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Adaptive smoothed aggregation (SA) automatically 

builds the global basis for SA 

 Generate the basis one vector at a time 
• Start with relaxation on Au=0  u1  SA(u1)  

• Use SA(u1) on Au=0  u2  SA(u1,u2)  

• Etc., until we have a good method 

 

 Setup is expensive, but is amortized over many RHS‟s 

 

 Published in 2004, highlighted in SIAM Review in 2005 
• Brezina, Falgout, MacLachlan, Manteuffel, McCormick, and Ruge, 

“Adaptive smoothed aggregation (SA),” SIAM J. Sci. Comput. (2004) 

 Successfully applied to 2D QED 
• Brannick, Brezina, Keyes, Livne, Livshits, MacLachlan, Manteuffel, 

McCormick, Ruge, and Zikatanov, “Adaptive smoothed aggregation in 
lattice QCD,” Springer (2006) 
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4D Wilson-Dirac Results: D-MG shows no critical 

slowing down (Time) 

 Parameters: N=163x32, =6.0, mcrit = -0.8049 

 D-MG Parameters: 44x3x2 blocking, 3 levels, W(2,2,4) cycle, Nv = 20, setup run at mcrit 
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Summary 

 Multigrid methods are optimal and have good scaling potential 

 

 AMG is based primarily on matrix entries 

 In practice, some additional properties of the underlying system are 
assumed (near null space) 

 Adaptive AMG uncovers near null space information 

 

 AMG can solve a large class of problems and can scale to BG/L-
class machines 

 Parallel computing imposes additional restrictions on AMG 
algorithmic development 

 

 Still many outstanding research questions 
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The Scalable Linear Solvers Team 

Charles Tong Ulrike Yang Panayot Vassilevski 

Allison Baker Tzanio Kolev Rob Falgout 

Former 

• Chuck Baldwin 

• Guillermo Castilla 

• Edmond Chow 

• Andy Cleary 

• Noah Elliott 

• Van Henson 

• Ellen Hill 

• David Hysom 

• Jim Jones 

• Mike Lambert 

• Barry Lee 

• Jeff Painter 

• Tom Treadway 

• Deborah Walker 
See http://www.llnl.gov/casc/linear_solvers for 

publications, presentations, and software (hypre) 
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Thank You! 
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