
– Typeset by FoilTEX –

NGSSC, Computational Methods for Statistics

with Applications

Basic parallel computing issues

Uppsala, September, 2011

Maya Neytcheva, IT, Uppsala University maya@it.uu.se 1

� Parallel architectures� Parallel programming paradigms� Parallel performance measures and models - time, speedup, scalability� Computational complexity of algorithms.
Examples of optimal and nonoptimal algorithms� Parallel computations in R

Maya Neytcheva, IT, Uppsala University maya@it.uu.se 2

� Parallel architectures� Parallel programming paradigms� Parallel performance measures and models - time, speedup, scalability� Computational complexity of algorithms.
Examples of optimal and nonoptimal algorithms� Parallel computations in R

Maya Neytcheva, IT, Uppsala University maya@it.uu.se 3

Computer architecture

The von Neumann architecture (since 1945)

Central

memory

Central processing unit

I/O devices

ALU

registers

� programs and data are treated in the same way;

they both reside in the computer memory;� the instructions are executed in a consecutive

manner, following the order of how they have

been programmed;� conditional branches are allowed;� during the execution, an information exchange

between the CPU and memory takes place,

involving data or program instruction;� input of programs and data, as well as output

of results is done by communicating to the

outer world.

fetch ! decode ! execute ! store

Maya Neytcheva, IT, Uppsala University maya@it.uu.se 4

Computer architecture

The von Neumann architectural principles are subject to a unique
interpretation. It has been implemented in a great variety of computers
which, although very different in performance, internal organization,
technological base, etc, have much in common.� Their behaviour is well determined.� Their performance is relatively easy to analyze and to predict.� The software is easily ported from one computer to another.

Maya Neytcheva, IT, Uppsala University maya@it.uu.se 5

The notion of parallel computing

Some terminology: Parallelism and levels of parallelism

Parallelism is the process of performing tasks concurrently.

➀ arithmetic and bit level (parallel arithmetic), for example, when different elements of

a vector operation are executed in parallel or within arithmetic logic circuits;

➁ instruction level, when different phases of an instruction (like “addition”) are executed

in parallel;

➂ task or program level (multitasking), when several processors are involved in the

execution of parts of a program, including parallelism between subroutines (program

parts) as well as within a group of operands;

➃ job level (sometimes referred to as multiprogramming) when independent processors

execute different jobs in parallel or parallelism between phases of a job.

Maya Neytcheva, IT, Uppsala University maya@it.uu.se 6

The notion of parallel computing

Granularity

The term granularity is usually used to describe the complexity and type of
parallelism, inherent to a parallel system.

granularity of a parallel computer and granularity of computations� fine grain parallelism; fine-grained machine;� medium grain parallelism; medium-grained machine;� coarse grain parallelism; coarse-grained computer system.

Maya Neytcheva, IT, Uppsala University maya@it.uu.se 7

Taxonomy of the ”non-von” computer architectures

Flynn’s taxonomy

A classification from a programming point of view:

Instruction Data Stream
stream SD MD

SI SISD SIMD
MI MISD MIMD

SPMD !!

Maya Neytcheva, IT, Uppsala University maya@it.uu.se 8

Taxonomy of the ”non-von” computer architectures

Shared/distributed memory machines

Shared memory machines

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

cache

P

cache

P

bus

M

.

M
.

(a) bus-connected
���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

P

ssP

MM

s s

(b) crossbar-connected

Maya Neytcheva, IT, Uppsala University maya@it.uu.se 9

Taxonomy of the ”non-von” computer architectures

Distributed memory machines

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

interprocessor

network
communication

M

P

M

P

M

P

Maya Neytcheva, IT, Uppsala University maya@it.uu.se 10

Interconnection network topologies

(a) linear array (b) ring (c) star (d) 2D mesh (e) 2D toroidal

mesh

(f) systolic array (g) completely

connected

(h) chordal ring

.

(i) binary tree (j) 3D cube

Maya Neytcheva, IT, Uppsala University maya@it.uu.se 11

3D clustered cube� Now each node is a multiprocessing (multicore) unit, enabling additional
parallelism� The memory is hierarchical and inhomogeneous� CPU and GPU

Maya Neytcheva, IT, Uppsala University maya@it.uu.se 12

MPP

CC−NUMA
COW

NC−NUMA No Cache NUMA
Cache Coherent NUMA
Cluster of Workstations
Massively Parallel Processor

NUMA
COMA Cache−only Memory Access

Nonuniform Memory Access
Uniform Memory AccessUMA

Multicomputers

Grid Cube

MPP COW

Multiprocessors

NUMACOMAUMA

Vector

SISD SIMD MISD MIMD

cc−numa

nc−numa

SwitchBus

Array

PARALLEL ARCHITECTURES

Maya Neytcheva, IT, Uppsala University maya@it.uu.se 13

ac
ce

ss
 ti

m
e

secondary storage

caches

main memory

registers

pr
ic

e

ca
pa

ci
ty

pe
rf

or
m

an
ce

The memory, closest to the processor registers, is known as cache. It was
introduced in 1968 by IBM for the IBM System 360, Model 85. Caches
are intended to contain the most recently used blocks of the main memory
following the principle ”The more frequently data are addressed, the faster
the access should be”.

Maya Neytcheva, IT, Uppsala University maya@it.uu.se 14

� Parallel architectures� Parallel performance measures and models - time, speedup, scalability� Computational complexity of algorithms.� Parallel programming paradigms� Parallel computations in R
Maya Neytcheva, IT, Uppsala University maya@it.uu.se 15

Parallel performance

We need to solve something in parallel, and as fast as possible!
Several questions arise:� There is more than one algorithm (method) which does the job. Which
one to choose?� Can we in advance (a priori) predict the performance?� How much does the a priori estimate depend on the computer platform?
On the implementation? On the compiler? On the MPI/OpenMP
implementation/Cache discipline/...?� Can we do a posteriori analysis of the observed performance? How?� Compare what others have done - always a good idea, but how to do
this?� We have to write a paper. How to present the parallel results? Why take
up this issue? Did we do a good job?

Maya Neytcheva, IT, Uppsala University maya@it.uu.se 16

Parallel performance
Basic terminology� parallel machine (homogeneous), number of PE p, size of the problemN , some algorithm A� computational complexity W (A; p), W (A; 1)� clock cycle� execution time

serial: T (A; 1) = tW (A)

parallel: T (A; p) = Ts(A) +
Tp(A)p + T(A; p)� FLOPS rate (peak performance: theoretical vs sustained)

Maya Neytcheva, IT, Uppsala University maya@it.uu.se 17

Parallel performance

Clock cycle:
general characteristic of the speed of the processing unit.
The execution of instructions is done in quantums (unit time length) called
a clock cycle: �(s) =

1fr =
1

frequency (Hz)

Theoretical peak performance:

f =
#instrutions per yle�

mega-, giga-, tera-, peta-, exa- scale performance (flops)

106 109 1012 1015 1018

Maya Neytcheva, IT, Uppsala University maya@it.uu.se 18

Parallel performance

Are the classical approaches relevant on the new computer architectures?

Maya Neytcheva, IT, Uppsala University maya@it.uu.se 19

Parallel performance

Computational and communication complexity

the classical approach

Maya Neytcheva, IT, Uppsala University maya@it.uu.se 20

Parallel performance

0 2 4 6 8 10 12 14 16
10

0

10
1

10
2

10
3

number of processors

tim
e

(s
ec

)

Albireo−nd
Albireo−d
Tee
Tee

1
Grendel
Grendel

1

One algorithm on three parallel computers: execution times

Maya Neytcheva, IT, Uppsala University maya@it.uu.se 21

Parallel performance

10
0

10
1

10
2

10
0

10
1

10
2

10
3

number of processors

sp
ee

du
p

Ideal spd.
Albireo−nd
Albireo−d
Tee
Tee

1
Grendel
Grendel

1

One algorithm on three parallel computers: speedup curves

Maya Neytcheva, IT, Uppsala University maya@it.uu.se 22

Parallel performance

0 0.5 1 1.5 2 2.5 3

x 10
5

0

50

100

150

200

250

300

problem size

tim
e

(s
ec

)

cg
amli−solv
amli−coef
amli−total

Two algorithms on one parallel computer: execution times

Maya Neytcheva, IT, Uppsala University maya@it.uu.se 23

Parallel performance

How to measure the parallel performance?

Maya Neytcheva, IT, Uppsala University maya@it.uu.se 24

Parallel performance metrics� T (A; p) is the primary metric !!!� speedup S(A; p) = T (A;1)T (A;p) � p; relative, absolute� efficiency E(A; p) = S(A;p)p � 1� redundancy W (A; p)=W (A; 1)� � � �� scalability� power consumption

Maya Neytcheva, IT, Uppsala University maya@it.uu.se 25

Parallel performance metrics

Question: Now one PE has several cores. Does the ’serial version’ utilize
those?

Maya Neytcheva, IT, Uppsala University maya@it.uu.se 26

Parallel performance metrics

� T (A; p)
Not much to say - we measure and observe the time.� speedup

– relative: S(A; p) = T (A;1)T (A;p)

(the same algorithm is run on one and on p PEs)

– absolute: eS(A; p) = T (A�;1)T (A;p)

(the performance of the parallel algorithm on p PEs is compared with
the best known serial algorithm on one PE - A�) � � � if we dare!

Maya Neytcheva, IT, Uppsala University maya@it.uu.se 27

Parallel performance metrics

qp

qp

qp

qp

qp

qp

ut

ut

ut

ut
ut ut

bc

bc

bc

bc

bc

bc

r

r

r

r

r

r

Number of processors

Speedup

Examples of speedup curves: ideal, almost linear, sublinear, superlinear

Maya Neytcheva, IT, Uppsala University maya@it.uu.se 28

Parallel performance metrics

Measuring speedups - pros and cons: contra- relative speedup is that it
”hides” the possibility for T (A; 1) to be very large. The relative speedup
”favors slow processors and poorly-coded programs” because of the following
observation.

Let the execution times on a uni- and p-processor machine, and the corresponding speedup beT0(A; 1) and T0(A; p) and S0 =

T0(A; 1)T0(A; p)

> 1.

Next, consider the same algorithm and optimize its program implementation. Then usuallyT (A; p) < T0(A; p) but also S < S0.

Thus, the straightforward conclusion is that WORSE PROGRAMS HAVE BETTER SPEEDUP.

Maya Neytcheva, IT, Uppsala University maya@it.uu.se 29

Parallel performance metrics

A closer look:T (A; p) = �T0(A; p) for some � < 1: However, T (A; 1) is also improved,
say T (A; 1) = �T0(A; 1) for some � < 1:
What might very well happen is that � < �. Then, of course,

S0S =

�� > 1:

When the comparison is done via the absolute speedup formula, namelyeS0eS =

T (A�; 1)T0(A; p)

T (A; p)T (A�; 1)
= � < 1:

In this case T (A�; 1) need not even be known explicitly. Thus, the absolute
speedup does provide a reliable measure of the parallel performance.

Maya Neytcheva, IT, Uppsala University maya@it.uu.se 30

Parallel performance metrics

”As a realistic goal, when developing parallel algorithms for massively parallel
computer architectures one aims at efficiency which tends to one with both
increasing problem size and number of processors.”

Massively parallel?

Maya Neytcheva, IT, Uppsala University maya@it.uu.se 31

Parallel performance metrics

Scalability

* scalability of a parallel machine: The machine is scalable if it can
be incrementally expanded and the interconnecting network can incorporate
more and more processors without degrading the communication speed.

* scalability of an algorithm: If, generally speaking, it can use all the
processors of a scalable multicomputer effectively, minimizing idleness due
to load imbalance and communication overhead.

* scalability of a machine-algorithm pair

Maya Neytcheva, IT, Uppsala University maya@it.uu.se 32

Parallel performance metricsHow to define scalability?

Definition 1: A parallel system is scalable if the performance is linearly proportional to

the number of processors used.

BUTS: impossible to achieve in practice

Definition 2: A parallel system is scalable if the parallel execution time remains constant

when the number of processors p increases linearly with the size of the problem N (time-

bounded model). BUTS: too much to ask for since there is communication overhead.

Definition 3: A parallel system is scalable if the achieved average speed of the algorithm

on the given machine remains constant when increasing the number of processors, provided

that the problem size is increased properly with the system size.

Scaled speedup:

Compare scalability figures when problem size and number of PEs are increased

simultaneously in a way that the load per individual PE is kept large enough and

approximately constant.

Maya Neytcheva, IT, Uppsala University maya@it.uu.se 33

Parallel performance metrics
Presuming an algorithm is parallelizable, i.e., a significant part of it can be done

concurrently, we can achieve large speed-up of the computational task using

(a) well-suited architecture;

(b) well-suited algorithms;

(c) well-suited data structures.

A degraded efficiency of a parallel algorithm can be due to either the computer architecture

or the algorithm itself:

(i) lack of a perfect degree of parallelism in the algorithm;

(ii) idleness of computers due to synchronization and load imbalance;

(iii) of the parallel algorithm;

(iv) communication delays.

Maya Neytcheva, IT, Uppsala University maya@it.uu.se 34

Parallel performance metrics

� Parallel performance� Parallel performance measures
– time
– speedup
– efficiency
– scalability� Parallel performance models� Computational complexity of algorithms� Optimal order algorithms� Summary. Tendencies

Maya Neytcheva, IT, Uppsala University maya@it.uu.se 35

Parallel performance metrics

Gene Amdahl, 1965

Maya Neytcheva, IT, Uppsala University maya@it.uu.se 36

Parallel performance metrics

Gene Amdahl, March 13, 2008

Maya Neytcheva, IT, Uppsala University maya@it.uu.se 37

Parallel performance metrics

Gene Amdahl:

For over a decade prophets have voiced the contention that the

organization of a single computer has reached its limits and that

truly significant advances can be made only by interconnection

of a multiplicity of computers in such a manner as to permit

cooperative solution...The nature of this overhead (in parallelism)

appears to be sequential so that it is unlikely to be amendable to

parallel processing techniques. Overhead alone would then place

an upper limit on throughput on five to seven times the sequential

processing rate, even if the housekeeping were done in a separate

processor...At any point in time it is difficult to foresee how the

previous bottlenecks in a sequential computer will be effectively

overcome.

Maya Neytcheva, IT, Uppsala University maya@it.uu.se 38

Parallel performance models� The fundamental principle of computer performance; Amdahl’s law (1967)

Given: N operations, grouped into k subtasks N1; N2; � � � ; Nk, which must be done

sequentially, each with rate Ri.T =

k

Xi=1

ti =

k

Xi=1

NiRi =

k

Xi=1

fiNRi ; R =

TNN=X

(fiN=Ri) =
1

Pki=1 fi=Ri

Hence, the average rate R(= N=R) for the whole task is the weighted harmonic mean

of R1; R2; : : : ; Rk.

For the special case of only two subtasks - fp (parallel) and 1 � fp - serial, thenR(fp) =
1fpRp +

1�fpRs and S =

pfp + (1 � fp)p � 1

1 � fp:

Maya Neytcheva, IT, Uppsala University maya@it.uu.se 39

Parallel performance models

Thus, the speedup is bounded from above by the inverse of the serial fraction.

Maya Neytcheva, IT, Uppsala University maya@it.uu.se 40

Parallel performance models

Example:

(200 km/h)

300 km

50 km
BA

(50 km/h)

250 km

V =
1

5
6200 + 1

650
= 133:3 km=h

If we drive 125 km=h on the highway, then the total time would increase
with only 15%.
So, why bother to drive fast on the highway?!

Maya Neytcheva, IT, Uppsala University maya@it.uu.se 41

Parallel performance models� Gustafson-Barsis law (1988):

Perhaps, the first breakthrough of the Amdahl’s model is the result achieved by the

1988 Gordon Bell’s prize winners - a group from Sandia Laboratories.

On a 1024 processor nCUBE/10 and with fp computed to be in the range of

(0:992; 0:996) they encountered a speedup of 1000 while the Amdahl’s law prediction

was only of the order of 200 (S = 1024=(0:996 + 0:004 � 1024) � 201).

T (A; 1) = (1� fp) + fppT (A; p) = (1� fp) + fp = 1 properly scaled problemS = T (A; 1) = p� (p� 1)(1� fp)
Maya Neytcheva, IT, Uppsala University maya@it.uu.se 42

What has happened to the computer hardware since 1993?

Maya Neytcheva, IT, Uppsala University maya@it.uu.se 43

Top 500, June 1993

1 Los Alamos Nat.Lab., CM-5/1024 Fat tree SuperSPARC I 32 MHz
(0.128 GFlops) Hypercube, tree

2 Minnesota Supercomputer Center CM-5/544 Fat tree
3 NCSA United States CM-5/512 Fat tree
4 National Security Agency CM-5/512 Fat tree
5 NEC Japan SX-3/44R NEC NEC 400 MHz (6.4 GFlops) Multi-stage

crossbar

Maya Neytcheva, IT, Uppsala University maya@it.uu.se 44

Top 500, November 1998

1 Sandia National Laboratories ASCI Red, Intel IA-32 Pentium Pro
200 MHz (0.2 GFlops)

2 US Government, T3E1200 Cray Inc.Alpha EV56 598 MHz (1.2
GFlops) 3D torus, separate networks

3 US Government, T3E900 Cray Inc.
4 Los Alamos National Laboratory, ASCI Blue Mountain SGI MIPS

R10000 250 MHz (0.5 GFlops)
Interconnect HIPPI (HIgh Performance Parallel Interface)

5 United Kingdom Meteorological Office United Kingdom T3E900
Cray Inc.

Maya Neytcheva, IT, Uppsala University maya@it.uu.se 45

Top 500, November 1998

Computer no 1:
The original ASCI Red was the first computer to rate above 1 teraFLOPS
on the MP-Linpack benchmark (1996), with a peak of 1.34 TFLOPS as
noted in Top500 Supercomputer sites. After being upgraded with Pentium
II Overdrive processors, the computer demonstrated sustained MP-Linpack
benchmarks above 2 teraFLOPS.

Different partitions of the machine used different operating systems. To
the programmer, it appeared as a normal Unix machine, running ”Teraflops
OS”, Intel’s distributed OSF/1 AD-based system.

A portion of ASCI Red is in the permanent collection of The Computer
History Museum in Mountain View, California.

Maya Neytcheva, IT, Uppsala University maya@it.uu.se 46

Top 500, November 2003

1 The Earth Simulator Center Japan Earth-Simulator NEC NEC 1000
MHz (8 GFlops), Multi-stage crossbar

2 Los Alamos Nat.Lab., ASCI Q - AlphaServer SC45, 1.25 GHz HP
3 Virginia Tech X - 1100 Dual 2.0 GHz Apple G5/Mellanox Infiniband

4X/Cisco GigE Self-made
4 NCSA Tungsten - PowerEdge 1750, P4 Xeon 3.06 GHz, Myrinet

Dell
5 Pacific Northwest National Laboratory Mpp2 - Cluster Platform

6000 rx2600 Itanium2 1.5 GHz, Quadrics HP� � �

8 Lawrence Livermore National Laboratory ASCI White, SP Power3
375 MHz IBM, SP Switch
(clusters - faster)

Maya Neytcheva, IT, Uppsala University maya@it.uu.se 47

Top 500, November 2003

Computer no 1:
The ES: a highly parallel vector supercomputer system of the distributed-
memory type.
Consisted of 640 processor nodes (PNs) connected by 640x640 single-stage
crossbar switches.
Each PN is a system with a shared memory, consisting of 8 vector-type
arithmetic processors (APs), a 16-GB main memory system (MS), a remote
access control unit (RCU), and an I/O processor.
The peak performance of each AP is 8Gflops.
The ES as a whole consists of 5120 APs with 10 TB of main memory and
the theoretical performance of 40Tflop.

Maya Neytcheva, IT, Uppsala University maya@it.uu.se 48

Top 500, November 2006

1 DOE/NNSA/LLNL BlueGene/L - eServer Blue Gene Solution IBM
PowerPC 440 700 MHz (2.8 GFlops), 32768 GB

2 NNSA/Sandia Nat.Lab., Red Storm - Sandia/ Cray Red Storm,
Opteron 2.4 GHz dual core Cray Inc.

3 IBM Thomas J. Watson Research Center BGW - eServer Blue Gene
Solution IBM

4 DOE/NNSA/LLNL ASCI Purple - eServer pSeries p5 575 1.9 GHz
IBM

5 Barcelona Supercomputing Center MareNostrum - BladeCenter
JS21 Cluster, PPC 970, 2.3 GHz, Myrinet IBM

Maya Neytcheva, IT, Uppsala University maya@it.uu.se 49

Top 500, November 2006

Computer no 1:
The machine was scaled up from 65,536 to 106,496 nodes in five rows of
racks.

Each Blue Gene/L node is attached to three parallel communications
networks:
- a 3D toroidal network for peer-to-peer communication between compute
nodes,
- a collective network for collective communication,
- a global interrupt network for fast barriers.
The I/O nodes, which run the Linux operating system, provide communication with the

world via an Ethernet network. The I/O nodes also handle the filesystem operations on

behalf of the compute nodes. Finally, a separate and private Ethernet network provides

access to any node for configuration, booting and diagnostics.

Maya Neytcheva, IT, Uppsala University maya@it.uu.se 50

Top 500, November 2010

1 National Supercomputing Center in Tianjin, China, Tianhe-1A -
NUDT TH MPP, X5670 2.93Ghz 6C, NVIDIA GPU, FT-1000 8C
NUDT

2 DOE/SC/Oak Ridge Nat.Lab., Jaguar - Cray XT5-HE Opteron
6-core 2.6 GHz

3 National Supercomputing Centre in Shenzhen (NSCS) China
Nebulae - Dawning TC3600 Blade, Intel X5650, NVidia Tesla
C2050 GPU Dawning

4 GSIC Center, Tokyo Institute of Technology, Japan TSUBAME
2.0 - HP ProLiant SL390s G7 Xeon 6C X5670, Nvidia GPU,
Linux/Windows NEC/HP

5 DOE/SC/LBNL/NERSC Hopper - Cray XE6 12-core 2.1 GHz

Maya Neytcheva, IT, Uppsala University maya@it.uu.se 51

Top 500, November 2010

Computer no 1: Peta-flop machine, 186368 cores
* 2560 computing nodes in total

* Each computing node is equipped with 2 Intel Xeon EP CPUs (4 cores) , 1 AMD

ATI Radeon 4870x2 (2GPUs, including 1600 Stream Processing Units - SPUs), and 32GB

memory

Operation node:

* 512 operation nodes in total

* Each operation node is equipped with 2 Intel Xeon CPUs (4 cores) and 32GB memory

Interconnection subsystem:

* Infiniband QDR

* The point-to-point communication bandwidth is 40Gbps and the MPI latency is 1.2 ms

Provides a programming framework for hybrid architecture, which supports adaptive task

partition and streaming data access.

Maya Neytcheva, IT, Uppsala University maya@it.uu.se 52

Top 500, June 2011

1 Advanced Inst. for Computational Science, Japan, K computer,
SPARC64 VIIIfx 2.0 GHz, Tofu interconnect

2 National Supercomputing Center in Tianjin, China, Tianhe-1A -
NUDT TH MPP, X5670 2.93Ghz 6C, NVIDIA GPU, FT-1000 8C
NUDT

3 DOE/SC/Oak Ridge Nat.Lab., Jaguar - Cray XT5-HE Opteron
6-core 2.6 GHz

Maya Neytcheva, IT, Uppsala University maya@it.uu.se 53

Top 500, June 2011

Computer no 1: Peta-flop machine
548352 cores
8 quadrillion calculations per second
SPARC64 VIIIfx 2.0GHz, Tofu interconnect

Maya Neytcheva, IT, Uppsala University maya@it.uu.se 54

� Parallel performance� Parallel performance measures
– time
– speedup
– efficiency
– scalability� Computational and communication complexity of algorithms� Examples (optimal – nonoptimal order algorithms)� Summary. Tendencies

Maya Neytcheva, IT, Uppsala University maya@it.uu.se 55

Does this algorithm scale or not scale?

A version of wave:
Solve 2D advection equation with forcing term numerically with the Leap-
frog scheme
(Kalkyl, Dec 13, 2010)

Problem size 1 2 4 8 16
One year old results

2562 2.71 1.37 0.72 0.73 -
5122 21.79 11.23 5.83 5.93 -
10242 172.35 88.75 47.25 52.62 -

Kalkyl
2562 3.26 1.49 0.77 0.42 0.33
5122 25.99 11.45 6.78 3.17 2.49
10242 208.04 105.32 48.17 29.25 19.69

Maya Neytcheva, IT, Uppsala University maya@it.uu.se 56

An algorithm which does not scale ...

Given A, b and an initial guess x(0) .

g(0) = Ax(0) � b,Æ0 = (g(0); g(0))

d(0) = �g

For k = 0; 1; � � � until convergence

(1) h = Ad(k)

(2) � = Æ0=(h; d(k))

(3) x(k+1) = x(k) + �d(k)

(4) g(k+1) = g(k) + �h,

(5) Æ1 = (g(k+1); g(k+1))

(6) � = Æ1=Æ0, Æ0 = Æ1

(7) d(k+1) = �g(k+1) + �d(k)

Convergence rate, computational cost per iteration

Maya Neytcheva, IT, Uppsala University maya@it.uu.se 57

An algorithm which does not scale ...
Dusty-shelf Fortran-77 code grid-oriented Conjugate Gradient
method:

Problem size 1 2
It Time Time/It It Time Time/It

500 756 3.86 0.0051 1273 7.77 0.0061
1000 1474 33.66 0.0228 2447 72.72 0.0297

Problem size 4 8
It Time Time/It It Time Time/It

500 1474 19.69 0.0134 2447 56.96 0.0233
1000 2873 137.03 0.0477 4737 386.58 0.0816

Numerical efficiency – parallel efficiency – time

Maya Neytcheva, IT, Uppsala University maya@it.uu.se 58

An algorithm which scales ...
Coarsest Number of PEs

Grid level No Time

size (total no. 4 8 16 32 64 (sec)
of levels)

406.62 190.54 94.61 49.55 28.90 total

2562 10(16) 403.49 189.06 93.86 49.18 28.71 outer

159.75 80.09 41.63 21.97 13.20 coars.
5.31 5.93 5.58 4.62 3.89 comm.

632.60 304.24 154.65 total

5122 12(18) 629.44 302.71 153.81 outer
363.38 183.18 96.15 coars.
14.28 12.14 10.14 comm.

1662.73 829.71 total

10242 12(20) 1655.73 826.22 outer
810.11 422.25 coars.

29.89 22.26 comm.

Stokes problem: Performance results on the Cray T3E-600 computer

Numerical efficiency – parallel efficiency – time

Maya Neytcheva, IT, Uppsala University maya@it.uu.se 59

Ultrascalable implicit finite element analyses in solid mechanics with over a
half a billion degrees of freedom
M.. Adams, H.. Bayraktar, T.. Keaveny, P. Papadopoulos
ACM/IEEE Proceedings of SC2004: High Performance Networking and Computing, 2004

Bone mechanics, AMG, 4088 processors, the ACSI White machine (LLNL):

”We have demonstrated that a mathematically optimal algebraic multigrid method

(smoothed aggregation) is computationally effective for large deformation finite element

analysis of solid mechanics problems with up to 537 million degrees of freedom.

We have achieved a sustained flop rate of almost one half a Teraflop/sec on 4088 IBM

Power3 processors (ASCI White).

These are the largest published analyses of unstructured elasticity problems with complex

geometry that we are aware of, with an average time per linear solve of about 1 and a half

minutes.

Maya Neytcheva, IT, Uppsala University maya@it.uu.se 60

� Parallel architectures� Parallel performance measures and models� Computational complexity of algorithms
Examples of optimal and nonoptimal algorithms� Parallel programming paradigms� Parallel computations in R

Maya Neytcheva, IT, Uppsala University maya@it.uu.se 61

OpenMP

OpenMP is an industry-wide standard for directive-based parallel
programming on SMP (Symmetric MultiProcessor) systems.

OpenMP Is an Application Program Interface (API) enabling explicit direct
multi-threaded, shared memory parallelism.

OpenMP is of three primary API components:� compiler directives;� runtime library routines;� environment variables.

Maya Neytcheva, IT, Uppsala University maya@it.uu.se 62

OpenMP is portable: the API is specified for C/C++ and Fortran.

OpenMP is standardized: jointly defined and endorsed by a group of major
computer hardware and software vendors. Expected to become an ANSI
standard later.

OpenMP is Not:� meant for distributed memory parallel systems (by itself);� necessarily implemented identically by all vendors;� guaranteed to make the most efficient use of shared memory
(currently there are no data locality constructs).

http://www.openmp.org

Maya Neytcheva, IT, Uppsala University maya@it.uu.se 63

OpenMP Programming Model

Thread Based

Parallelism:

A shared memory process can consist of multiple threads.

OpenMP is based upon the existence of multiple threads

in the shared memory programming paradigm.

Explicit Parallelism: OpenMP is an explicit (not automatic) programming

model, offering the programmer full control over

parallelization.

Fork - Join Model: OpenMP uses the fork-join model of parallel execution:

O

K

R

F

OO

F J

O

N

I

J

R I

NK

{parallel region} {parallel region}

master master

thread thread

master

thread

Maya Neytcheva, IT, Uppsala University maya@it.uu.se 64

C / C++ - General Code Structure

#include <omp.h>
main () {
int var1, var2, var3;
Serial code

...

...
Beginning of parallel section. Fork a team of threads.
Specify variable scoping

#pragma omp parallel private(var1, var2) shared(var3)
{
Parallel section executed by all threads

...

...
All threads join master thread and disband
}

Resume serial code
...

}

Maya Neytcheva, IT, Uppsala University maya@it.uu.se 65

� Sources of parallelism - loops� Data dependencies

do i=1,n
A(i) = B(i) + C(i)
D(i) = A(i-1) * A(i+1)

enddo

forall i = 1:n
temp(i) = A(i+1)

end
forall i = 1:n

A(i) = B(i)+C(i)
end
forall i = 1:n

D(i) = A(i-1)* temp(i)
end

Maya Neytcheva, IT, Uppsala University maya@it.uu.se 66

Message passing computer architecture paradigm

M

M

M

M

PE

PEPE

PE

Comm.

network

PE - processing elements

M - memories

Maya Neytcheva, IT, Uppsala University maya@it.uu.se 67

Message passing programming paradigm

Comm.

network

M P I

P0 P1

P2P2

P - processes

Maya Neytcheva, IT, Uppsala University maya@it.uu.se 68

Message passing programming paradigm (cont.)� A single program is run on each processor.� All variables are private.� Processes communicate via special subroutine calls - MPI is just a library.� There is no ”magic” parallelism.� The program is written in a conventional sequential language, i.e. C,
C++, Fortran

Maya Neytcheva, IT, Uppsala University maya@it.uu.se 69

Messages� Messages are packets of data moving between processes.� The message passing system has to be told the following information:

– Sending process
– Source location
– Data type
– Data length
– Receiving process(es)
– Destination location
– Size of receive buffer(s)

Maya Neytcheva, IT, Uppsala University maya@it.uu.se 70

Message passing system

A message passing system is similar to a mail box, phone line or a fax
machine.

A process needs to be connected to a message passing interface.
Thus,� The sender must have addresses to sent the message to� Receiving process must:

– participate (cf. have a mailbox it checks, a phone it answers, ...)
– have capacity to receive (have a big enough mailbox etc)

Maya Neytcheva, IT, Uppsala University maya@it.uu.se 71

MPI standard
MPI: a standard Message Passing Interface

� Defined by MPI Forum – 40 vendor and academic/user organizations� Provides source code portability across all systems� Allows efficient implementation.� Provides high level functionality.� Supports heterogeneous parallel architectures.� An addition to MPI-1 – MPI-2.

Maya Neytcheva, IT, Uppsala University maya@it.uu.se 72

The essence of MPI

The MPI standard contains many functions (� 125).

The number of basic building blocks in MPI is small.

MPI INIT initialize MPI

MPI COMM SIZE determine how many processes there are

MPI COMM RANK find out which is my process number

MPI SEND send a message

MPI RECV receive a message

MPI FINALIZE terminate MPI

Maya Neytcheva, IT, Uppsala University maya@it.uu.se 73

R
Now, back to R to see what is available for parallel computations.

Maya Neytcheva, IT, Uppsala University maya@it.uu.se 74

