
Computational Methods for Statistics with
Applications

Maya Neytcheva

Department of Information Technology

Uppsala University

Maya Neytcheva, IT, Uppsala University maya@it.uu.se – p. 1/28



Uppsala, September 2011

Random Numbers

Many algorithms are based on the availability of random
numbers.
Thus, we need random number generators.

How to generate those?
Physical (hardware) methods: dice,coin flipping,
roulette (too slow for applications in statistics or in
cryptography)
atmospheric noise, cosmic noise, radioactive decay
(http://www.random.org/
However: these are not reproducible. Also, Strong
bias could occur due to external reasons
(electromagnetic field)
Computer-generated random numbers (are these
random?)

Maya Neytcheva, IT, Uppsala University maya@it.uu.se – p. 2/28

http://www.random.org/


Uppsala, September 2011

Pseudo-Random Numbers

Definition: A uniform pseudo-random number generator is an
algorithm, which starts from some initial value x0 and uses
particular transformation R in order to produce a sequence of
numbers {xk} = {Rk(x0)}, k = 1, · · · , n with values in [0, 1].
For each n, the generated sequence has to reproduce the
behaviour of an iid sample of uniformly distributed random
variables, when tested through conventional tests.

Definition: Period of a random number generator: the smallest
integer P such that

xk+P = xk

Maya Neytcheva, IT, Uppsala University maya@it.uu.se – p. 3/28



Uppsala, September 2011

Desired properties of a good generator:

long periods

low auto correlations

produce samples which appear to be drawn from a
uniform distribution

Maya Neytcheva, IT, Uppsala University maya@it.uu.se – p. 4/28



Uppsala, September 2011

Some pseudo-random number generation

techniques

The congruential method (linear, multiplicative)
If the last pseudo-random number generated was Xk−1, then
the next number is generated by evaluating

Xk = (Xk−1 ∗ L+ I)modM,

where L is a constant multiplier, I is a constant increment,
and M is a constant modulus.
After being generated, the numbers are converted to uniform
deviates by xk = Xk/M .
It can be shown that for large M , U = X/M has asymptotically
the moments of U(0, 1).

Maya Neytcheva, IT, Uppsala University maya@it.uu.se – p. 5/28



Uppsala, September 2011

Some famous multipliers

L = 23;M = 108 + 1 The original formula used by Lehmer
(1948).
L = 65539;M = 229 The algorithm RANDU, used by IBM.
Catastrophic higher-order correlations. Now it is know that
any multiplyer, whos binary representation ends with ’101’,
whould have been better.
L = 69069;M = 232 Recommended by Marsaglia (1972).
L = 1664525;M = 232 The best multiplier for M = 232

according to criteria of Knuth (1981).
L = 515,M = 247 Used by CDC, 48-bit integer arithmetic. The
period is ≈ 213.

Maya Neytcheva, IT, Uppsala University maya@it.uu.se – p. 6/28



Uppsala, September 2011

An example (borrowed from Jesper Ryden,

Math. inst, UU)

Xk = (Xk−1 ∗ L)modM
M=7, L=3, x=2
for (k in 1:10){

x=L*x%%M
u[k]=x/M

}
Bad case: M = 29241, L = 171: 29241mod171 = 0!
(Period length: at least 230 = 1073741824)
Portability issues

Maya Neytcheva, IT, Uppsala University maya@it.uu.se – p. 7/28



Uppsala, September 2011

Shift-register generators

Lagged Fibonacci sequence: each number is the result of
some arithmetic or logical operation between two numbers
which have occured somewhere in the sequence

si = (si−p · si−q)modm

Very little theory about the distribution of such numbers in
general.

Maya Neytcheva, IT, Uppsala University maya@it.uu.se – p. 8/28



Uppsala, September 2011

KISS (Keep It Simple, Stupid)

Xk = (a1Xk−1 + a2Xk−2 + · · ·+ adXk−d)mod 2
a combination of shift-register and congruential generator.

Maya Neytcheva, IT, Uppsala University maya@it.uu.se – p. 9/28



Uppsala, September 2011

Linear Feedback Shift Register (LFSR)

The linear feedback shift register (LFSR) is a shift register
whose input bit is a linear function of its previous state.
The only linear functions of single bits are xor and
inverse− xor; thus it is a shift register whose input bit is driven
by the exclusive-or (xor) of some bits of the overall shift
register value.
x19 + x18 + x17 + x14 + 1 - period: 524287

Maya Neytcheva, IT, Uppsala University maya@it.uu.se – p. 10/28



Uppsala, September 2011

The inverse method

Definition: For an increasing real (cumulative distribution)
function F , the generalized inverse F † is defined as

F † = inf{x, F (x) ≥ u, 0 ≤ u ≤ 1}

Theorem: If X ∼ U(0, 1) then the random variable F †(X) has
distribution F .

Maya Neytcheva, IT, Uppsala University maya@it.uu.se – p. 11/28



Uppsala, September 2011

The inverse method

The inverse transform sampling method works as follows:
1. Generate a random number from the standard uniform
distribution; call this u.
2. Compute the value x such that F (x) = u.
3. Take x to be the random number drawn from the
distribution described by F .
Expressed differently, given a continuous uniform variable
U ∈ [0, 1] and an invertible distribution function F , the random
variable X = F †(U) has distribution F .

Maya Neytcheva, IT, Uppsala University maya@it.uu.se – p. 12/28



Uppsala, September 2011

Uniform rejection

Algorithm:
1: Let X ∼ U(a, b) and Y ∼ U(0, 1). Simulate x and y.

2: Accept x as a simulated value from f(x) if y < f(x),
otherwise reject.

Maya Neytcheva, IT, Uppsala University maya@it.uu.se – p. 13/28



Uppsala, September 2011

Accept - reject

Target density f(x),instrumental density g(x).
Assume f(x) ≤ M g(x) for any x.
Current state xk
Generate x from g(x), compute r(x) = f(x)/(Mg(x))
Generate U ∼ U(0, 1)

xk+1 =

{

x ifU ≤ r(x)

reject and new trial otherwise

The generated sample is an iid sample from the target
distribution.

Maya Neytcheva, IT, Uppsala University maya@it.uu.se – p. 14/28



Uppsala, September 2011

RANMAR

In the first step it employs a lagged Fibonacci generator,

Xi =







Xi−97 −Xi−33, ifXi−97 ≥ Xi−33,

Xi−97 −Xi−33 + 1, otherwise.

Only 24 most significant bits are used for single precision reals. The second part of the
generator is a simple arithmetic sequence for the prime modulus 224 − 3 = 16777213,

Yi =







Yi − c, ifYi ≥ c,

Yi − c+ d, otherwise,

where c = 7654321/16777216 and d = 16777213/16777216. The final random number
Zi is then produced by combining the obtained Xi and Yi as

Zi =







Xi − Yi, ifXi ≥ Yi,

Xi − Yi + 1, otherwise.

Total period ≈ 2144 ≈ 2.23× 1043. Very popular in high-statistics Monte Carlo

simulations.
Maya Neytcheva, IT, Uppsala University maya@it.uu.se – p. 15/28



Uppsala, September 2011

An information source

Pseudo Random Numbers: Generation and Quality Checks
Wolfhard Janke
Quantum Simulations of Complex Many-Body Systems:
From Theory to Algorithms, Lecture Notes, J. Grotendorst, D.
Marx, A. Muramatsu (Eds.),
John von Neumann Institute for Computing, Julich,
NIC Series, Vol. 10, ISBN 3-00-009057-6, pp. 447-458, 2002.

Maya Neytcheva, IT, Uppsala University maya@it.uu.se – p. 16/28



Uppsala, September 2011

Matlab

rand(1000) uniform values from the interval [0, 1]

r = a + (b-a).*rand(100,1) uniform values from the interval [a, b]

r = ceil(n.*rand(100,1)) integers uniform on the set 1:n

randn(50) normally distributed random numbers

r = 1 + 2.*randn(100,1) normal values with mean 1 and sd 2

Maya Neytcheva, IT, Uppsala University maya@it.uu.se – p. 17/28



Uppsala, September 2011

Matlab: Creating and controlling one or

multiple Random Number Streams

The RandStream class allows you to create a random number stream.

myStream=RandStream(’mlfg6331_64’);

rand(myStream,1,5)

ans = 0.6530 0.8147 0.7167 0.8615 0.0764

Multiple streams:

[s1,s2,s3]=RandStream.create(’mlfg6331_64’,’NumStreams’,3)

r1=rand(s1,100000,1);

r2=rand(s2,100000,1);

r3=rand(s3,100000,1);

corrcoef([r1,r2,r3])

Maya Neytcheva, IT, Uppsala University maya@it.uu.se – p. 18/28



Uppsala, September 2011

Matlab: available generators

mt19937ar Mersenne-Twister (default) 219937 −

mcg16807 Multiplicative congruential generator 231 − 2

mlfg6331_64 Multiplicative lagged Fibonacci generator 2124

mrg32k3a Combined multiple recursive generator 2127

shr3cong Shift-register generator summed with 264

linear congruential generator
swb2712 Modified subtract with borrow generator 21492

Maya Neytcheva, IT, Uppsala University maya@it.uu.se – p. 19/28



Uppsala, September 2011

Matlab: available generators

?RNGkind()
Mersenne-Twister 219937 − 1

Wichmann-Hill 6.9536× 1012

Marsaglia-Multicarry > 260

Super-Duper ≈ 4.6 ∗ 1018

Knuth-TAOCP-2002 2129

user-supplied

Maya Neytcheva, IT, Uppsala University maya@it.uu.se – p. 20/28



Uppsala, September 2011

R

rnorm(20) normal distrib.
sample sample from a

set
rbinom(10, mean=7,sd=5) binomial

distrib.
runif(n, min=0, max=1) uniform dis-

tribution on
[min,max]

Maya Neytcheva, IT, Uppsala University maya@it.uu.se – p. 21/28



Uppsala, September 2011

The Law of large numbers (LLN)

The LLN was first described by Jacob Bernoulli (1713).
Poisson, Chebyshev, Markov, Cantell, Kolmogorov.
If X1, X2, · · · , Xn are iid with finite expectation µ, then the

sample average Xn = 1/n
n
∑

k=1

Xk converges to µ.

lim
n→∞

P (|Xn − µ| < ε) = 1 P ( lim
n→∞

X = µ) = 1

The LLN is important because it "guarantees" stable
long-term results for random events.

Maya Neytcheva, IT, Uppsala University maya@it.uu.se – p. 22/28



Uppsala, September 2011

Buffon-Laplace-needle problem

Problem Statement:
More than 200 years before Metropolis coined the name
’Monte Carlo’ method, George Louis Leclerc, Comte de
Buffon, proposed the following problem.
’If a needle of length ℓ is dropped at random on the middle of
a horizontal surface ruled with parallel lines a distance d > ℓ
apart, what is the probability that the needle will cross one of
the lines?’
This problem was first solved by Buffon (1777, pp. 100-104),
but his derivation contained an error.
A correct solution was given by Laplace (1812, pp. 359-362;
Laplace 1820, pp. 365-369).

http://mathworld.wolfram.com/Buffon-LaplaceNeedleProblem.html

Maya Neytcheva, IT, Uppsala University maya@it.uu.se – p. 23/28



Uppsala, September 2011

Buffon-Laplace-needle problem

We reformulate somewhat the original problem in the following way. Imagine that a
needle of length ℓ is dropped onto a floor with a grid of equally spaced parallel lines
distances a and b apart, where ℓ is less than a and b.

The probability that the needle will land on at least one line is given by

P (ℓ, a, b) =
2ℓ(a+ b)− ℓ2

π ab

(Uspensky 1937, p. 256; Solomon 1978, p. 4).

Maya Neytcheva, IT, Uppsala University maya@it.uu.se – p. 24/28



Uppsala, September 2011

Buffon-Laplace-needle problem

The idea: keep dropping this needle over and over on the
table, and record the statistics. Namely, we want to keep track
of both the total number of times that the needle is randomly
dropped on the table (call this N), and the number of times
that it crosses a line (call this C).

If you keep dropping the needle, eventually you will find that

the number
N(2ℓ(a+ b)− ℓ2)

Cab
approaches the value of π.

(Note: for large N the quantity C/N approaches the
probability P (ℓ, a, b).)

Maya Neytcheva, IT, Uppsala University maya@it.uu.se – p. 25/28



Uppsala, September 2011

In order to get a reasonably accurate approximation of π we
need to perform a number of trials of order 106 − 108. Since
the separate trials are completely independent, we can
perform those in parallel and sum up the result. This problem
is an example of a trivial parallelism.

Maya Neytcheva, IT, Uppsala University maya@it.uu.se – p. 26/28



Uppsala, September 2011

BUFFON LAPLACE - Master process:

FORTRAN version

MPI program to estimate PI in the Buffon-Laplace needle experiment.

On a grid of cells of width A and height B, a needle of

length L is dropped. We count the number of times it crosses at

least one grid line, and use this to estimate the value of PI.

pi = 3.141592653589793238462643D+00

The number of processes is 4

Cell width A = 1.000000

Cell height B = 1.000000

Needle length L = 1.000000

Trials Hits Estimated PDF Estimated Pi Error

400000 382200 .955500000000 3.13971742543 .187522815808E-02

Maya Neytcheva, IT, Uppsala University maya@it.uu.se – p. 27/28



Uppsala, September 2011

Buffon needle: Matlab, on Maya’s laptop

Number of trials: Error Time
1000 0.053300 0.000365

1000000 0.000231 0.277653
100000000 0.000034 27.75966

1000000000 0.000017 277.2686

Maya Neytcheva, IT, Uppsala University maya@it.uu.se – p. 28/28


	Mh {Random Numbers}
	uured {Pseudo-Random Numbers}
	Desired properties of a good generator:
	Some pseudo-random number generation techniques
	Some famous multipliers
	An example (borrowed from Jesper Ryden, Math. inst, UU)
	Shift-register generators
	KISS (Keep It Simple, Stupid)
	Linear Feedback Shift Register (LFSR)
	The inverse method
	The inverse method
	Uniform rejection
	Accept - reject
	RANMAR
	An information source
	Matlab
	Matlab: Creating and controlling one or multiple Random Number Streams
	Matlab: available generators
	Matlab: available generators
	RRR 
	The Law of large numbers (LLN)
	Buffon-Laplace-needle problem
	Buffon-Laplace-needle problem
	Buffon-Laplace-needle problem
	{	t BUFFON_LAPLACE - Master process:}
	Buffon needle: Matlab, on Maya's laptop

