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Iterative solution methods

➾ Steepest descent

➾ conjugate gradient method (CG)

➾ Generalized conjugate gradient method (GCG)

➾ ORTHOMIN

➾ Minimal residual method (MINRES)

➾ Generalized minimal residual method (GMRES)

➾ Lanczos method

➾ Arnoldi method

➾ Orthogonal residual method (ORTHORES)

➾ Full orthogonalization method (FOM)

➾ Incomplete orthogonalization method (IOM)
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Iterative solution methods

➾ SYMMLQ

➾ Biconjugate gradient method (BiCG)

➾ BiCGStab

➾ Conjugate gradients squared (CGS)

➾ Minimal residual method (MR)

➾ Quasiminimal residual method

➾ � � �
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Projection methods
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General framework – projection methods

Want to solve b�Ax = 0;b;x 2 Rn; A 2 Rn;n
Instead, choose two subspaces L � Rn and K � Rn and� find ex 2 x(0) + K, such that b�Aex ? LK - search spaceL - subspace of constraints� - basic projection step

The framework is known as Petrov-Galerkin conditions.

There are two major classes of projection methods:

orthogonal - if K � L,

oblique - if K 6= L.
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Notations:
ex = x0 + Æ - (Æ - correction)

r0 = b � Ax0 (r0 - residual)� find Æ 2 K, such that r0 �AÆ ? L
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Matrix formulation

Choose a basis in K and L: V = fv1;v2; � � � ;vmg andW = fw1;w2; � � � ;wmg.
Then, ex = x0 + Æ = x0 + V y for some y 2 Rm.

The orthogonality condition can be written as

(��) WT (r0 �AV y)

which is exactly the Petrov-Galerkin condition.
From (��) we get WT r0 = WTAV y

y = (WTAV )�1WT r0

ex = x0 + V (WTAV )�1WT r0

In practice, m < n, even m� n, for instance, m = 1.

The matrix WTAV will be small and, hopefully, with a nice structure.
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A prototype projection-based iterative method:

Given x(0); x = x(0)

Until convergence do:
Choose K and L
Choose basis V in K and W in L
Compute r = b�Ax

y = (WTAV )�1WT r

x = x + V y

Degrees of freedom: m;K;L; V;W .
Clearly, if K � L, then V = W .

Plan:
(1) Consider two important cases: L = K and L = AK
(2) Make a special choice of K.
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Property 1:

Theorem 1 Let A be square, L = AK. Then a vector ex is an oblique projection on K
orthogonally to AK with a starting vector x0 if and only if ex minimizes the 2-norm of

the residual over x0 + K, i.e.,kr�Aexk2 = min
x2x0+K kr�Axk2: (1)

Thus, the residual decreases monotonically.

Referred to as minimal residual methods

CR, GCG, GMRES, ORTHOMIN
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Property 1:
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Property 2:

Theorem 2 Let A be symmetric positive definite, i.e., it defines a scalar product (A�; �)
and a norm k � kA. Let L = K, i.e., r0 �Aex ? K. Then a vector ex is an orthogonal

projection onto K with a starting vector x0 if and only if it minimizes the A-norm of

the error e = x� � x over x0 + K, i.e.,kx� � exkA = min
x2x0+K kx� � xkA: (2)

The error decreases monotonically in the A-norm.

Error-projection methods.

. – p.11/30



Example:m = 1

Consider two vectors: d and e. Let K = spanfdg and L = spanfeg.
Then ex = x0 + �d (Æ = �d) and the orthogonality condition reads as:

r0 �AÆ ? e ) (r0 �AÆ; e) = 0 ) �(Ad;e) = (r0; e) ) � =
(r0; e)

(Ad;e)

:

If d = e - Steepest Descent method (minimization on a line.

If we minimize over a plane - ORTHOMIN.
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Choice ofK:

K = Km(A;v) = fv; Av; A2v; � � � ; Am�1vg
Krylov subspace methodsL = K = Km(A; r0) and A spd ) CGL = AK = AKm(A; r0) ) GMRES
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How to construct a basis for K?

CG
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Arnoldi’s method for general matrices

Consider Km(A;v) = fv; Av; A2v; � � � ; Am�1vg, generated by some matrix A
and vector v.

1. Choose a vector v1 such that kv1k = 1

2. For j = 1; 2; � � � ;m

3. For i = 1; 2; � � � ; j

4. hij = (Avj ;vi)
5. End

6. wj = Avj � jPi=1

hijvi
7. hj+1;j = kwjk
8. If hj+1;j = 0, stop
9. vj+1 = wj=hj+1;j

10. End

The algorithm breaks down in step j, i.e., hj+1;j = 0, if and only if the minimal
polynomial of A is of degree j.
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The result of Arnoldi’s process

Vm = fv1;v2; � � � ;vmg is an orthonormal basis in Km(A;v)AVm = VmHm + wm+1eTm
V

m V
m

H
m

em( )T
wm+1

(n,m)(n,m)(n,n)

A

(n,1) 

(1,m)*

*

(m,m)

+

=*
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Arnoldi’s process - example

H3 =

2
64

(Av1;v1) (Av2;v1) (Av3;v1)kw1k (Av2;v2) (Av3;v2)

0 kw2k (Av3;v3)

3
75

Since Vm+1 ? fv1;v2; � � � ;vmg then it follows that (Vm)TAVm = Hm.Hm is an upper-Hessenberg matrix.
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Arnoldi’s method for symmetric matrices

Let now A be real symmetric matrix. Then the Arnoldi method reduces to the

Lanczos method.

Recall: Hm = (Vm)TAVm

If A is symmetric, then Hm must be symmetric too, i.e., Hm is three-diagonal

Hm =

2
66664


1 �2�2 
2 �3

. . .�m 
m
3
77775

Thus, the vectors vj satisfy a three-term recursion:�i+1vi+1 = Avi � 
ivi � �ivi�1

. – p.18/30



Lanczos algorithm to solve symmetric linear systems

Given: x(0)

Compute r(0) = b�Ax(0), � = kr(0)k, v1 = r(0)=�
Set �1 = 0 and v0 = 0

For j = 1 : m

wj = Avj � �jvj�1
j = (wj ;vj)

wj = wj � 
jvj�j+1 = kwjk2, if �j+1 = 0, go out of the loop
vj+1 = wj=�j+1

End
Set Tm = tridiagf�i; 
i; �i+1g
Compute ym = T�1m (�e1)

xm = x0 + Vmym
Leads to three-term CG.

To solve, factor first Tm = LLT and then xm = x(0) + VmL�TL�1�e1
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The CG method:

The CG algorithm using the above relations:

Initialize: r(0) = Ax(0) � b, g(0) = r(0)

For k = 0; 1; � � � ; until convergence�k =
(r(k);r(k))

(Agk;g(k))

x(k+1) = x(k) + �kgk
r(k+1) = r(k) + �kAgk�k =

(r(k+1);r(k+1))

(r(k);r(k))

gk+1 = r(k+1) + �kgk
end

r(k) – iteratively computed residuals
gk – search directions

Note: the coefficients �k are different from those in the Lanczos method.
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CG: computer implementation

x = x0
r = A*x-b
delta0 = (r,r)
g = -r
Repeat: h = A*g

tau = delta0/(g,h)
x = x + tau*g
r = r + tau*h
delta1 = (r,r)
if delta1 <= eps, stop
beta = delta1/delta0
g = -r + beta*g
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Optimality properties of the CG method

Opt1: Mutually orthogonal search directions: (gk+1; Agj) = 0; j = 0; � � � ; k
Opt2: There holds r(k+1) ? Km(A; r(0), i.e.,

(r(k+1); Ar(k)) = 0; j = 0; � � � ; k

Opt3: Optimization property: kr(k)k smallest possible at any step, since CG
minimizes the functional f(x) = 1=2(x; Ax)� (x;b)

Opt4: (e(k+1);Agj) = (gk+1; Agj) = (r(k+1); r(k)) = 0; j = 0; � � � ; k
Opt5: Finite termination property: there are n breakdowns of the CG algorithm.

Reasoning: if gj = 0 then �k is not defined. the vectors gj are computed
from the formula gk = r(k) + �kgk�1. Then

0 = (r(k);gj) = �(r(k); r(k)) + �k (r(k);gk�1)
| {z }

0

, ) r(k)0, i.e., the

solution is already found.
As soon as x(k) 6= xexa
t, then r(k) 6= 0 and then gk+1) 6= 0.
However, we can generate at most n mutually orthogonal vectors in Rn,
thus, CG has a finite termination property.

. – p.22/30



Convergence analysis

Convergence of the CG method

Theorem: In exact arithmetic, CG has the property that xexa
t = x(m) for somem � n, where n is the order of A.

Rate of convergence of the CG method

Theorem: Let A is symmetric and positive definite.
Suppose that for some set S, containing all eigenvalues of A, for some

polynomial eP (�) 2 Π1k and some constant M there holds max�2S ˛̨
˛ eP (�)

˛̨
˛ �M:

Then, kxexa
t � x(k)kA �Mkxexa
t � x(0)kA:

kekkA � 2

»{(A) + 1{(A)� 1

–k ke0kA
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Rate of convergence (cont)

Repeat: kekkA � 2

»{(A) + 1{(A)� 1

–k ke0kA
Seek now the smallest k, such thatkekkA � "ke0kA

we want
“{+1{�1

”k > 2") k ln“{+1{�1

” > ln( 2" )) k > ln( 2" )=ln“{+1{�1

”) k > 1
2

p{ ln( 2" )
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The GMRES method

. – p.26/30



Basic GMRES

Choose v1 to be the normalized r0 = b�Ax0.
Any vector x 2 x0 + K is of the form x = x0 + Vmy. Then

b�Ax = b�A(x0 + Vmy)

= r0 �AVmy

= �v1 � Vm+1
eHmy

= Vm+1(�e1 � eHmy):
Since the columns of Vm+1 are orthonormal, thenkb�Axk2 = k�e1 � eHmyk2:
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Basic GMRES

1. Compute r0 = b�Ax0, � = kr0k2 and v1 = r0=�
2. For j = 1; 2; � � � ;m

3. Compute wj = Avj

4. For i = 1; 2; � � � ; j

5. hij = (wj ;vi)
6. wj = wj � hijvi
7. End
8. hj+1;j = kwjk2; if hj+1;j = 0, set m = j, goto 11
9. vj+1 = wj=hj+1;j

10. End
11. Define the (m + 1)�m Hessenberg matrix eHm = fhijg; 1 � i � m + 1; 1 � j � m

12. Compute ym as the minimizer of k�e1 � eHmyk2 and xm = 0 + Vmym
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GMRES:

No breakdown of GMRES

As m increases, storage and work per iteration increase fast. Remedies:

Restart (keep m constant)
Truncate the orthogonalization process

The norm of the residual in the GMRES method is monotonically
decreasing. However, the convergence may stagnate. The rate of
convergence of GMRES canot be determined so easy as that of CG.
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