Iterative Solution methods
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Iterative solution methods

Steepest descent

conjugate gradient method (CG)

Generalized conjugate gradient method (GCG)
ORTHOMIN

Minimal residual method (MINRES)
Generalized minimal residual method (GMRES)
Lanczos method

Arnoldi method

Orthogonal residual method (ORTHORES)
Full orthogonalization method (FOM)
Incomplete orthogonalization method (IOM)
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Iterative solution methods

SYMMLQ

Biconjugate gradient method (BiCG)
BiCGStab

Conjugate gradients squared (CGS)
Minimal residual method (MR)

Quasiminimal residual method



Projection methods



General framework — projection methods

Wanttosolve b — Ax =0,b,x € R*,A € R™"

Instead, choose two subspaces L C R™ and K C R™ and

* find X € x(O) + K, suchthatb — AX 1 L

K - search space
L - subspace of constraints

x - basic projection step
The framework is known as Petrov-Galerkin conditions.

There are two major classes of projection methods:
@ orthogonal - if K = L,
@ oblique - if K # L.



Notations:

x = x% + 6 - (¢ - correction)

r

0

b — AxO (r©

« find § € K,suchthatr® — A6 1L L

residual)



Matrix formulation

Choose a basisin K and L: V = {vy,va,--- ,vy, } and
W ={wi, w2, - ,wn}.
Then, X =x° +§ = x° + Vy forsome y € R™.

The orthogonality condition can be written as
(%) | WT(x0 — AVy)

which is exactly the Petrov-Galerkin condition.
From (xx) we get

Wil = wWT AVy
y = (WTAV)= W0
X =x0 4+ VWTAV)" w0
In practice, m < n, even m < n, for instance, m = 1.

The matrix W71 AV will be small and, hopefully, with a nice structure.



A prototype projection-based iterative method:

Given x(0):x = x(0)
Until  convergence do:
Choose K and L
Choose basis Vin K and W in L
Computer = b — Ax
y = (WTAV)"'WTr
Xx=x+Vy
Degrees of freedom: m, K, L, V, W.
Clearly, if K = L,then V = W.
- o«
Plan:

(1) Consider two importantcases: L = K and L = AK
(2) Make a special choice of K.



Property 1:

Theorem 1 Let A be square, L = AK. Then a vector X is an oblique projection on K
orthogonally to AK with a starting vector xX° if and only if X minimizes the 2-norm of
the residual over x° + K, i.e.,

lr — AX||2 = min ||r — Ax]|2. (1)
xexV+ K

Thus, the residual decreases monotonically.

Referred to as minimal residual methods

CR, GCG, GMRES, ORTHOMIN



Property 1:

AK

AX

b—AX

Y



Property 2:

Theorem 2 Let A be symmetric positive definite, i.e., it defines a scalar product (A-,-)
and anorm || - ||a. Let L = K, ie., r® — AX 1 K. Then a vector X is an orthogonal
projection onto K with a starting vector x° if and only if it minimizes the A-norm of
the error e = x* — x over x° + K, i.e.,

[x* —x|[a = min [x* —x][a. (2)
xExO

The error decreases monotonically in the A-norm.

Error-projection methods.



Examplem =1

Consider two vectors: d and e. Let K = span{d} and L = span{e}.
Then X = x° + ad (§ = ad) and the orthogonality condition reads as:

(r%e)

r’ — A Le= (r - Ad,e) =0= a(Ad,e) = (r',e) = a = :
(Ad, e)

If d = e - Steepest Descent method (minimization on a line.

If we minimize over a plane - ORTHOMIN.




Choice ofK:

K=Km(A,v)={v,Av,A%v, ... A1y}

Krylov subspace methods

@ L=K=Km(A,r" and Aspd = CG
@ L=AK=AK™(A,r%) = GMRES



How to construct a basis for ?
CG



Arnoldi’'s method for general matrices

Consider K™ (A,v) = {v, Av, A%?v,--- , Am~1v}, generated by some matrix A
and vector v.
1. Choose a vector vi such that ||vi]| =1

2. FoOrj;=1,2,---,m
3. For:=1,2,---,3
4. hij = (Avj,v;)
5. End
J
6. w; =Av; — > hijv;
i=1
7. hjvi,; = |lwjl]
8. If hj—l—l,j = 0, stop
9. Vit1 = Wj/hjt1,
10. End

The algorithm breaks down in step j, i.e., h; 1 ; = 0, if and only if the minimal
polynomial of A is of degree j.



The result of Arnoldi’s process

@ V™ ={vy,va, - ,Vvny}isanorthonormal basisin ™ (A, v)

@ AV™ =VT™H™ 4w, el

m

Vvm+1 (em)T
]
S HT |+ (Am)
A * Vm — Vm (m’m)
(n,n) (n,m) (n,m)

(n,1)



Arnoldi’s process - example

(Avi,vi) (Avz,vi) (Avs,vi)

H? = | |wil  (Ava,v2) (Ava,va)
0 [wall  (Avs,vs)
Since V™t | {vy,va, -+, v} thenitfollows that (V™)TAV™ = H™,

H™ is an upper-Hessenberg matrix.



Arnoldi’'s method for symmetric matrices

Let now A be real symmetric matrix. Then the Arnoldi method reduces to the
Lanczos method.

Recall: H™ = (Vm™)T Aym™
If A is symmetric, then H™ must be symmetric too, i.e., H™ is three-diagonal

(v1 B2

B2 v2 B3
H™ = _

| 5m Ym
Thus, the vectors v7 satisfy a three-term recursion:

Biraiv' T = Avl — vt — vt



Lanczos algorithm to solve symmetric linear systems

Given: x(0)

Compute r(® =b— A% g =|r@|, vl =r® /3
Set Bi=0andv?=0

For 17=1:m

wl = AvI — ijj_l
Yi = (Wjavj)
wi = wi — ;v
Bj+1 = ||[w7||2, if Bj4+1 = 0, go out of the loop
Vit =wl /B4
End
Set Trm = tridiag{Bi,Yi, Bi+1}
Compute y™ =T, (Ber)
x™ = xV 4 vmym
>
Leads to three-term CG.

To solve, factor first T;,, = LLT and then x™ = x(0) + Vvm[—T[~13¢,



The CG method:

The CG algorithm using the above relations:

Initialize: r(®) = Ax(®) — b, g(0) = ¢(0)
For k=0,1,---, until convergence
(e p(R)y

Tk T (agh,g®)
x(k+1) = x(k) 4 7 gk
r(k+1) — p(k) L 1 Agh
F(E+1) L(k+1)
B =" e F) e (F)) !

ghtl — p(k+1) 4 g ok

end
B A ——

r(k) —jteratively computed residuals
gk — search directions

Note: the coefficients 3, are different from those in the Lanczos method.



CG: computer implementation

X = x0

r = Axx-b

deltaO0 = (r,r)

g =-r

Repeat: h = Axg
tau = deltal/ (g, h)
X = X + tau*g
r =r + tauxh

deltal = (r,r)

I f deltal <= eps, stop
beta = deltal/deltal

g = -r + betaxg



Optimality properties of the CG method

Optl: Mutually orthogonal search directions: (gF*!, Agi) =0,5 =0, --- ,k

Opt2: There holds r(*+1 1 K,,(A,r() e,
(r(k+1),Ar(k)) — O,] — 0’ ce ,k’

Opt3: Optimization property: ||r(*)|| smallest possible at any step, since CG
minimizes the functional f(x) = 1/2(x, Ax) — (x, b)

Opt4 (e(kz—i—l),Agj) — (gk+17AgJ> — (r(k+1)7 r(k)) — 07] — 07 e 7k

Opt5: Finite termination property: there are n breakdowns of the CG algorithm.
Reasoning: if g/ = 0 then 7, is not defined. the vectors g7 are computed
from the formula gk = r(k) 4 Brg*k~1. Then
0= (r), gi) = —(® r*) 48, (r*) gt1) = r(*o, e, the

\ . 7
"

0

solution is already found.

As soon as x(%) £ xcpqct, then r(%) =£ 0 and then gk+1) £ 0.
However, we can generate at most n» mutually orthogonal vectors in R™,
thus, CG has a finite termination property.

- o«



Convergence analysis

Convergence of the CG method

Theorem: In exact arithmetic, CG has the property that xezqact = x(™) for some
m < n, where n is the order of A.

Rate of convergence of the CG method

Theorem: Let A is symmetric and positive definite.
Suppose that for some set .S, containing all eigenvalues of A, for some

polynomial JB(A) < H,{: and some constant M there holds max |]5(A)| < M.
C
Then,

||xewact - X(k)HA < Merwact - X(O)HA-

»x(A)+1

k
k 0
<2l —"
ekl < [%(1)_1] le®ll



Rate of convergence (cont)

Repeat:

k
M] 1914

leklla < 2| 28

Seek now the smallest &k, such that

lella <ellella

—1

= k> 2/3In(2)

= k> in(2)/In (;—“)






The GMRES method




Basic GMRES

Choose v; to be the normalized ro = b — Axg.
Any vector x € xg + K is of the form x = xg + Vi, y. Then

b—Ax = b—-A(xo+ Vny)
ro— Ame

Bv1 = Vi1 Hmy
= Vmii1(Ber — Huy).

Since the columns of V,,,4+1 are orthonormal, then

b — Ax||2 = ||Be1 — Hmy]|2-
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Basic GMRES

Compute rg = b — Axq, 8 = ||ro||l2 and vi = ro /S
Fory =1,2,---,m
Compute w; = Av;
For:=1,2,--- .7
hij = (Wj, Vi)
W,; = Wj; — hz-jv,-
End
hj—l—l,j = ||Wj||2; if hj—l—l,j =0,setm = j, gOtO 11
Vit = Wj/hjt1,
End
Define the (m + 1) x m Hessenberg matrix Hyp = {hi; }, 1<t <m+1,1<5<r
Compute y,, as the minimizer of ||fe; — ﬁmyHg and x,, = 0+ Vinym
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GMRES:

No breakdown of GMRES

As m increases, storage and work per iteration increase fast. Remedies:
@ Restart (keep m constant)
@ Truncate the orthogonalization process

The norm of the residual in the GMRES method is monotonically
decreasing. However, the convergence may stagnate. The rate of
convergence of GMRES canot be determined so easy as that of CG.
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