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1 Introduction

1.1 What is statistics

Statistical sciences is about planning experiments, setting up models to analyze experi-
ments and to study properties of these models or study properties of some specific building
blocks within these models, e.g. parameters and independence assumptions. Statistical ap-
plication is about connecting statistical models to data. The general statistical paradigm
constitutes of the following steps

1. Set up a model,

2. Evaluate the model via simulations or comparisons with data,

3. If necessary refine the model and restart from step 2,

4. Accept and interpret the model.

It is obvious that a number of decisions have to be made within this paradigm which
unfortunately all are rather subjective. This should be taken into account when relying
on statistics. Moreover, in order that statistics should become useful the model should
be relevant for the problem under consideration which is often relative to the information
available from data, and the final model should be interpretable. Statistics is instrumental
since one usually can not draw firm conclusions without expertise about the data which
is used to evaluate the model. On the other hand ”data experts” when applying statistics
need a solid knowledge in statistics to perform efficient analysis.

Basic ingredients in statistics is the concept of probability and the assumption about
underlying distributions. The distribution is a probability measure on the space of ob-
servations but what is a probability and what does a probability represent? Statistics
uses the concept of probability as a measure of uncertainty. The probability measure
is well defined through its characterization via Kolmogorov’s axioms, although there are
discussions concerning the definition of conditional probabilities. However, Kolmogorov’s
axioms tell us what a probability measure should fulfill but not what it is. It is even not
obvious that in real life (Nature) something like a probabilistic mechanism exists but for
statisticians this does not matter. The probability measure is part of a model and any
model only describes reality approximatively.

1.2 What is a statistical model

A statistical model is usually a class of distributions which is specified via relationships
on parameters (unknown quantities). The idea is to choose an appropriate model class
according to the problem which will be studied. Sometimes we know exactly what distri-
bution should be used but more often we have parameters which generate a model class.
For example, the class of multivariate normal distributions of fixed size but with unknown
mean and dispersion. Instead of distributions it may be convenient, in particular for
interpretations, to work with random variables which are representatives of the random
phenomenon under study. The problem with statistics is how to connect data to continu-
ous random variables. In general it has become fruitful to look upon data as realizations
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of random variables. However, since our data points have probability mass 0 we can not
couple, in a mathematical way, continuous random variables to data.

There exist several well known schools in statistics of how to connect data in a more
or less rigorous way to statistical models. For example, ”Distribution free” methods,
Likelihood based methods, and Bayesian methods. The approaches have been ordered with
respect to how much they relay on distributional properties to various depths. Observe
that Distribution free method does not mean that there is no assumption about any
model. In a statistical model there are always some assumptions about randomness, for
example concerning independence between random variables. Maybe the most well known
Distribution free method is the least squares approach.

Likelihood methods utilizes distributions where the classes of distributions are gener-
ated by unknown parameters and the idea is to estimate these parameters. A consequence
of this procedure is that we obtain which distribution we should consider as the true
distribution as well as we get information about the parameters which if the model is
appropriately specified are interpretable. Concerning the normal distribution usually the
mean and variance act as parameters, although from an exponential family point of view
a more natural equivalent parametrization can be set up.

In Bayesian methods the basic idea is that everything unknown is modelled with the
help of distributions, among others parameters. One is avoiding some of the problems
with the likelihood approach such, as connecting continuous data to a model, but instead
one generates others, for example it is difficult to specify distributions for all unknown
elements. Moreover, in the Bayesian approach the concept of conditional independence
is crucial in contrary to the Likelihood approach where independence is used. Which to
prefer is a matter of taste.

Example 1.1. (Several statistical approaches for evaluating a univariate liner model.)
Let

x′ = β′C + e′,

where x : n × 1, a random vector corresponding to the observations, C : k × n, the
design matrix, β : k × 1 is an unknown parameter vector which is to be estimated, and
e ∼ Nn(0, σ2I) which is considered to be the error term in the model. The least squares
approach works as follows: Let x0 be the observations and we will minimize with respect
to β

(x′

0 − β′C)(x′

0 − β′C)′

which gives

β̂
′

0C = x′

0P C′

since

(x′

0 − β′C)(x′

0 − β′C)′ = x′

0(I − P C′)x0 + (P C′ − β′C)()′,
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where β0 stands for the estimate of β, i.e. an explicit numerical value of β and the projector
P C′ = C′(CC′)−C. In order to study properties x0 is replaced by x and doing so we get
the estimator

β̂
′

C = x′P C′ .

Due to the linearity of the estimator

β̂
′

C ∼ Nn(βC, σ2P C′),

i.e. β̂C is unbiased and normally distributed with variance σ2P C′ . Moreover, the variance
parameter may be estimated as nσ̂2 = x′(I − P C′)x. The model may among others be
evaluated via residuals, i.e. x′

0(I−P C′) and x′(I−P C′). For example one should evaluate
the model with respect to influential observations and outliers as well as the fit of the model
to data. Moreover, specific properties such as smallest variance properties of the estimator
may be shown or best quadratic properties of the variance estimator.

An alternative estimation procedure is based on finding estimators which minimize the
overall variance

E[(x′ − β̂
′

C)(x′ − β̂
′

C)′]

which can be manipulated in the following way

E[(x′ − β̂
′

C)(x′ − β̂
′

C)′]

= E[x′(I − P C′)x] + E[(x′P C′ − β̂
′

C)(x′P C′ − β̂
′

C)′].

Thus, it follows that the estimator equals

β̂
′

C = x′P C′ .

In order to verify the model via comparisons to data the estimate

β̂
′

0C = x′

0P C′

is calculated. These expressions are all the same as for the least squares approach, although
the methods conceptually differ a lot, i.e. for the least squares method we start with data,
find an estimate, and then construct an estimator by replacing the data, x0, with x.
For the minimization of the variance we started with x, found an estimator, and then
constructed an estimate by replacing x by x0.

Now we turn to the likelihood approach. Here one starts with the likelihood which is
the density of x evaluated at x0, i.e.

L(β, σ2) = (2π)−n/2(σ2)n/2exp{−σ2

2 (x′

0 − β′C)(x′

0 − β′C)′}.

This function is maximized with respect to σ2 and β which gives

β̂
′

0C = x′

0C
′(CC ′)−C,

nσ̂2
0 = x′

0(I − C ′(CC′)−C)x0.
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In the next step of the likelihood approach β is constructed by replacing x0 by x. Hence
we have that the likelihood approach will lead to the same conclusion as the least squares
approach and the minimum variance methods.

In the Bayesian approach the idea is to evaluate the posterior density (probability)
function for, say β, i.e. the density function for β given the data. If supposing that σ2 is
known we only have to consider β and thus one studies

f(β|x) =
f(β, x)

f(x)
=

f(x|β)f(β)

f(x)
.

Note that f(x|β) is the likelihood function and it remains to specify f(β), the a priori
density for β. Let β ∼ Nk(β0, I) and then (suppose C is of full rank).

f(β|x = x0) ∝ exp{− 1
2σ2 (x′

0C
′(CC′)−1 − β′)CC ′(x′

0C
′(CC ′)−1 − β′)′}

×exp{− 1
2 (β − β0)

′(β − β0)
′}.

With the help of f(β|x = x0) the vector β should be evaluated. There are many ap-
proaches available but one simple is to consider the posterior mean E[β|x = x0]. Per-
forming some calculation gives

E[β|x = x0] = x′

0C
′(CC′)−1 + β0.

2

We would also like to emphasize that models should be understandable, i.e. parameters
and their estimators should be understandable, and computations should be quick. For
the last 20 years entering the world of PCs and strong computer facilities has led to
absurd use of algorithms and one can see programs running days and nights. The beauty
of Statistics as well as its relation to Mathematics has been partly lost. This is serious
because mathematics helps us to look through the models and helps us to understand
the analysis. Without mathematics it is easy to become trapped in too many ad-hoc
procedures. Intuition and ad-hoc procedures should be basic ingredients in statistical
model building but they should also be possible to verify. This is the best way to produce
something which later may be improved. To use too many simulation studies will end up
into something which only with difficulties can be transmitted to the next generation of
statisticians.

1.3 The General Univariate Linear Model with Known Dispersion

In this section the classical Gauss-Markov set up will be considered but we assume the
dispersion matrix to be known. If the dispersion matrix is p.d. the model is just a minor
extension of the model in Example 1.1. However, if the dispersion matrix is p.s.d. other as-
pects related to the model will be introduced. In general, in the Gauss-Markov model the
dispersion is proportional to an unknown constant but this is immaterial for our presenta-
tion. The reason for investigating the model in some detail is that there has to be a close
connection between the estimators based on models with known and unknown dispersion.
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Later on all our models if assuming a known dispersion matrix can be reformulated as
a Gauss-Markov model. With the additional information that the random variables are
normally distributed, one can see this from the likelihood equations. Moreover, it follows
from these equations that the maximum likelihood estimators of the mean parameters
under the assumption of unknown dispersion should approach the estimators with known
dispersion. For example the likelihood equation for the model X ∼ Np,n(ABC,Σ, I)
which appears when differentiating with respect to B equals

A′Σ−1(X − ABC)C ′ = 0

and for a large sample any MLE of B has to asymptotically satisfy this equation because
we know that the MLE of Σ is consistent.

Now let

x′ = β′C + e′, e ∼ Nn(0, V ), (1.1)

where V : n × n is p.d. and known, x : n × 1, C : k × n and β : k × 1 is to be estimated.
Let x0 as previously denote the observations of x. Then, the likelihood is maximized as
follows (use that V −1 = V −1P C′,V −1 + P Co

′ ,V V −1)

L(β) ∝ |V |−1/2exp{−1/2(x′

0 − β′C)V −1(x′

0 − β′C)′}

= |V |−1/2exp{−1/2(x′

0P
′

C′,V−1 − β′C)V −1()′}

×exp{−1/2(x′

0P Co′ ,VV −1x0)}

≤ |V |−1/2exp{−1/2(x′

0P Co′ ,VV −1x0)},

which is independent of any parameter, i.e. β, and the upper bound is obtained iff

β̂
′

0C = x′

0P
′

C′,V −1 ,

where β̂0 is the estimate of β. Thus, in order to estimate β a linear equation system has
to be solved. The solution can be written

β̂
′

0 = x′

0V
−1C′(CV −1C ′)− + z′(C)o′

,

where z′ stands for an arbitrary vector.
Suppose now that in model (1.1) we have restrictions on the mean vector given by

β′G = 0.

Then

β′ = θ′Go′

where θ is a new unrestricted parameter. After inserting this relation in (1.1) the following
model appears:

x′ = θ′Go′

C + e′, e ∼ Nn(0, V ).
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Thus, the above presented calculations yield

β̂
′

0C = x′

0P
′

C′Go,V −1

and from hear a general expression for β̂0 (β̂) is obtained.
If V is p.s.d the likelihood does not exist and the model consists of a continuous and a

discrete part. Because V is p.s.d. there exists a semi orthogonal matrix H : n× r, where
r = rankV and V = HH ′, such that

Ho′

V = 0.

Observe that we do not loose any ”information” if a one-one transformation of x takes
place. Then the estimation of β in (1.1) can equivalently be carried out via x′(H , Ho).
Hence, with probability 1

x′

0H
o = β′CHo (1.2)

and therefore we assume (consistency assumption) Ho′

x0 ∈ C(Ho′

C′) which is equivalent
to x0 ∈ C(C ′ : V ). Thus, the data put restrictions on β which is a new feature in
comparison with the case when V is of full rank. If this is meaningful depends on the
problem under consideration. Moreover,

x′H = β′CH + ẽ, ẽ ∼ Nr(0, H ′V H). (1.3)

Equation (1.2) is linear in β and because of consistency

β′ = x′

0H
o(CHo)− + θ′(CHo)o′

where one may view θ as a new set of unrestricted parameters. Inserting the solution into
(1.3) yields

x′H = x′

0H
o(CHo)−CH + θ′(CHo)o′

CH + ẽ.

From earlier calculations we know that

θ′

0 = x′

0(I − Ho(CHo)−C)H

×(H ′V H)−1H ′C ′(CHo)o((CHo)o′

CH(H ′V H)−1H ′C′(CHo)o)−

+z′((CHo)o′

CH)o′

, (1.4)

where z is an arbitrary vector and then

β̂
′

0 = x′

0H
o(CHo)− + x′

0(I − Ho(CHo)−C)H

×(H ′V H)−1H ′C′(CHo)o((CHo)o′

CH(H ′V H)−1H ′C ′(CHo)o)−(CHo)o′

+z′((CHo)o′

CH)o′

(CHo)o′

.
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If studying statistical properties of this estimate we should consider (remember (1.2))

β̂
′

= β′CHo(CHo)−

−β′CHo(CHo)−CHH ′C′(CHo)o((CHo)o′

CHH ′C ′(CHo)o)−(CHo)o′

+x′HH ′C′(CHo)o((CHo)o′

CHH ′C ′(CHo)o)−(CHo)o′

+z′((CHo)o′

CH)o′

(CHo)o′

and then assume some conditions so that the term including z will disappear. Moreover,
in practise the condition x0 ∈ C(C′ : V ) may not be satisfied and then a pretreatment of
data has to take place, e.g. a projection of data on the space C(C′ : V ).

Example 1.2. (Singular Gauss-Markov model). In an experiment where eating behavior
of n diary cows was studied through administration of food one could keep the total
amount of food fixed (say t) over 24h. During the 24h it was recorded how much each of
the n cows was eating. Due to breeding and local environment the cows are correlated
with a covariance matrix σ2V , where σ2 is an unknown scale parameter. Since the cows
are part of many feeding experiments the correlation between cows may be supposed to
be known. The main idea is to relate the recorded values to various variables such as
lactation, amount of produced milk and various variables measuring the quality of the
milk. If the measurements are denoted x0i, i = 1, 2, . . . , n and the other explanatory
variables c1, c2, . . . ck the following linear model may be set up:

xi = µ +

k∑

j=1

βjcji + ǫi

which in matrix notation equals

x′ = β′C + e′,

where C = (1n, c1, c2, . . . , ck)′, cj = (cji) and e ∼ Nn(0, σ2V ) where σ2 is an unknown
parameter. As an estimator of σ2 we may use

(n − k − 1)σ̂2 = (x′ − β̂
′

C)()′.

Thus, if we are able to estimate β all parameters can be estimated.
The technical treatment of the model goes as follows. Observe that by making a one-

one transformation of x there is no information loss. Thus, x will be premultiplied by 1′

and 1o′

. Note that x′1 = t implies that V 1 = 0 and

β′C1 = x′1 = t.

This means that according to the model we have an equation with no variation and thus
the equation can be treated as a deterministic equation which puts restrictions on β.
Solving this equation leads to

β′ = t(C1)− + θ(C1)o′

,
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where θ is an arbitrary vector of proper size. Moreover,

x′1o = t(C1)−C1o + θ(C1)o′

C1o + ẽ,

where ẽ ∼ Nn(0,1o′

V 1o). In this model the MLE is obtained via

β̂
′

C1o = t(C1)−C1o + θ̂(C1)o′

C1o,

where

θ̂(C1)o′

C1o = (x′ − t(C1)−C)1o(1o′

V 1o)−11o′

C′(C1)o

×((C1)o′

C1o(1o′

V 1o)−11o′

C′(C1)o)−(C1)o′

C1o.

from which β̂ can be obtained under certain conditions on C.
In the example it was supposed that that x′1 = t which implied that 1′V = 0.

However, as noted above we may assume to have models where V is singular without
any exact restrictions on x. When restrictions are put on the covariance matrix we have
restrictions on the random variable which only hold with probability 1. Therefore, it has
in this case also to be assumed that data belongs to a proper subspace which indeed may
be difficult to verify. Moreover, for the linear model

x′ = β′C + e′, e = (0, σ2V )

with restrictions

β′K = h

the situation can be described via the following model:

(x′ : h) = β′(C : K) + e′, e = (0, σ2W ),

where

W =

(
V 0

0 0

)
.

1.4 The General Multivariate Linear Model

We will study models which are based on an underlying multivariate normal distribu-
tion. Closely connected to linearity is the multivariate normal distribution since a linear
function of a normal variable also is normally distributed. The theory around the nor-
mal distribution is well developed and one can among others show that the general linear
model under certain conditions belongs to the exponential family which is very important.
For example, there exist complete and sufficient statistics. Moreover all moments and
cumulants are at our disposal.
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The general linear multivariate model equals

X = BC + E, (1.5)

where X : p×n is a random matrix which corresponds to the observations, B : p×k is an
unknown parameter matrix and C : k × n is a known design matrix. Furthermore, E ∼
Np,n(0,Σ, I), where Σ is an unknown p.d. matrix. According to the model specifications
the model consists of independently distributed columns and therefore C is also called a
between individuals design matrix. In order to be able to draw any conclusions from the
model we have to estimate the unknown parameters B and Σ. Following the statistical
paradigm we also have to verify the model and this usually takes place with the help of
residuals.

If looking at the likelihood function, L(B,Σ), we have

L(B,Σ) ∝ |Σ|n/2exp(−1/2tr{Σ−1(X0 − BC)()′})

= |Σ|n/2exp(−1/2tr{Σ−1S0 + Σ−1(X0P C′ − BC)()′}),

where ∝ denotes proportional to and

S0 = X0(I − P C′)X ′

0.

Let S be as S0 but with X0 replaced by X. From here it follows that the model belongs
to the exponential family and that XP C′ and Σ are sufficient statistics. It can be shown
that the statistics also are complete. The MLEs for B and Σ are obtained from

B̂C = XP C′ , (1.6)

nΣ̂ = S

since (1.6) is a linear consistent equation system in B and the likelihood is always smaller
or equal to (2π)−pn/2|n−1S0|

n/2exp(−np/2), where the upper bound is obtained when

inserting B̂C and Σ̂.

Example 1.3. Many variables: In environmental monitoring one may use many chemical
biomarkers. For example, in Sweden, among others one follows calcium, magnesium,
sodium, potassium, sulphate, cloride, flouride, nitrogen, phosphor, conductivity and other
substances/properties in lakes spread over the whole country. Observations are taken many
times over the year. Imagine that we would like to compare two regions a specific year.
Then one may select 20 lakes from each region and the response variables would be the
above mentioned chemical variables where for example an average over the summer months
may be used. The model for the data with 10 response variables and 40 observations
equally distributed over 2 lakes can be presented in the following way:

X = BC + E,

where X: 10× 40, B: 10× 2 consists of the mean parameters, E ∼ N10,40(0,Σ, I) where
Σ: 10 × 10 is the the unknown dispersion matrix, and

C =

(
1′

20 0

0 1′

20

)
.
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Example 1.4. Repeated measurements with unstructured mean: Another strategy for
comparing regions than presented in Eaxmple 1.3 would be to focus on one of the chemical
variables, for example nitrogen. Moreover, instead of averaging over the summer months
as in Example 1.3 we may use the measurements from June, July and August. Thus we
can set up the following model

X = BC + E,

where X: 3× 40, B: 3× 2 consists of the mean parameters, E ∼ N3,40(0,Σ, I) where Σ:
3 × 3 is the unknown dispersion matrix, and the between individuals design matrix C is
as in Example 1.3.

There are two natural follow up questions concerning the models presented in Examples
1.3 and 1.4. The first is concerned with the repeated measurements for nitrogen over the
summer months. It would be of interest to use a linear models for these measurements,
in particular if we would include data from some more months. Then we would have a
complete analogy with analysis of growth curve data but here, instead of growth, nitrogen
over time is studied. The second question is if we can analyze all ten chemical variables over
time. In this case we have an analogy with a spatio-temporal model setting. Here, instead
of geographic spatial information we have been observing different chemical variables.
Both these extensions are outside the general multivariate linear model setting. Under
certain restrictions they can be analyzed with bilinear regression models since the mean
structure instead of linear is bilinear. This implies, among others, that the models do not
belong to the exponential family.

1.5 Bilinear Regression Models: An Introduction

Throughout, BRM is used as an acronym for Bilinear Regression Model. In the end of
the previous section it was noted that even under normality assumptions we have very
natural models which do not belong to the exponential family. It has been noted in the
previous section that if the model has a linear mean structure the model belongs to the
exponential family. In this section, among others, it will be shown that a bilinear mean
structure will put the model outside the exponential family and instead will belong to
the curved exponential family. Remember that if a matrix is pre- and post-multiplied by
other matrices we perform a bilinear transformation. Often the mean structure ABC is
considered, where the unknown parameter is given by B.

Hence, we have a bilinear model

X = ABC + E, (1.7)

where X: p× n, the unknown mean parameter matrix B: q × k, the two design matrices
A: p × q and C: k × n, and the error matrix E build up the model. Moreover, let E be
normally distributed with independent columns, with mean 0, and a covariance matrix Σ

for the elements within each column. Therefore, the density function for X is proportional
to

|Σ|−1/2nexp(−1/2tr{Σ−1(X − ABC)(X − ABC)′})
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and after some manipulations it may be shown that this model belongs to the curved
exponential family. For example, it can can be seen by a reparameterization, i.e let
A = Γ

(
I

0

)
T where Γ is orthogonal and T is a non-singular matrix. Moreover, let Θ = TB,

Ψ = Γ′ΣΓ and

Ψ−1 =

(
Ψ11 Ψ12

Ψ21 Ψ22

)
.

Then, the density function is proportional to

|Ψ|−1/2nexp(−1/2(tr{Ψ−1XX ′} − 2tr{Ψ11BCX ′

1}

+tr{Ψ12BCX ′

2} + tr{ABCC′B′A′}))

which shows that the model belongs to the curved exponential family.
The above mentioned model is often termed Growth Curve model and was introduced

by Potthoff & Roy (1964), although very similar models had been considered earlier. The
A matrix is often refereed to as the within individuals design matrix and C as in (1.5) is
called between individuals design matrix.

A natural extension of the BRM is the following ”Sum of Profiles” model

X =

m∑

i=1

AiBiCi + E,

where the sample matrix X: p × n, the mean parameter matrices Bi: qi × ki, the within
individual design matrices equal Ai: p × qi and the between individual design matrices
Ci: ki × n are such that

C(C ′

m) ⊆ C(C ′

m−1) ⊆ · · · ⊆ C(C ′

1). (1.8)

Let E be normally distributed with independent columns, mean 0, and a covariance matrix
Σ for the elements within each column. Observe that instead of (1.8) we may suppose

C(Am) ⊆ C(Am−1) ⊆ · · · ⊆ C(A1). (1.9)

The model will be termed extended bilinear regression model and in order to distinguish
between (1.8) and (1.9) as well as indicate m in the profile expression EBRMm

B and
EBRMm

W will be used, where the subscripts B and W stand for between and within
depending on if (1.8) or (1.9) is assumed to hold. The conditions in (1.8) or (1.9) are
mathematically motivated since they lead to explicit MLEs. There is an analogy with the
Behrens-Fisher problem, i.e. we want to compare two groups concerning equality in mean
with the additional assumption that random variables corresponding to the observations
from different groups have different variances, i.e.

x′ = µ′C + e′,

where µ′ = (µ′

1 : µ′

2),

C =

(
1′

n1
⊗

(
1

0

)
: 1′

n2
⊗

(
0

1

))
,
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and

e′ ∼ Nn(0,

(
σ2

1In1
0

0 σ2
2In2

)
), n = n1 + n2.

To compare µ1 and µ2 will not give any precise answer about differences between groups,
i.e. their distributions, unless σ2

i is taken into account. If (1.8) or (1.9) do not hold we
have instead of a common mean and different variances, different means and a common
dispersion. The situation is called seemingly unrelated regression (SUR) and has been
extensively studied in a univariate setting. In the multivariate case it becomes more
difficult to interpret results and there are reasons to avoid this type of models.

We conclude the section by giving some examples.

Example 1.5. BRM ; Liming data: For many years there is a problem with acidification
and to help lakes to recover one is liming them to stimulate the recovering process. Below
we present a data set which includes 20 lakes from 2 regions were pH concentration has
been measured at three different depths. Since pH is highest close to surface and thereafter
diminish we may tray to model the concentration with a linear model. Data is presented
in Table 1. The following matrices are involved in the analyses: X is the random matrix
which corresponds to data and X ∼ N3,20(ABC,Σ, I), where B is an unknown parameter
matrix and Σ is p.d. but unstructured,

A =




1 0.5
1 5
1 10


 , C =

(
1′

10 ⊗

(
1

0

)
: 1′

10 ⊗

(
0

1

))
.

Example 1.6. Melatonin and acute severe depression: Already more than 20 years ago
depression was studied concerning its relation to various hormones, in particular melatonin.
Among others the melatonin peak level was found lowered in acutely ill depressed patients
in comparison to healthy subjects. Melatonin measurements are illustrated in Figure
1. Peak levels remained low when these patients were re-examined during remission.
Therefore melatonin levels may be viewed as a bio-marker for depression. Typical for
melatonin as well as some other hormones (e.g. cortisol) is that they follow a day and
night cycle.
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Table 1: Selected data from the integrated monitoring of the effects of liming project at
SLU, Sweden. pH = minus the decimal logarithm of the hydrogen ion activity.

lake depth pH region lake depth pH region

1 0.5 6.72 1 11 0.5 7.29 2
1 5.0 6.61 1 11 5.0 6.78 2
1 10.0 6.41 1 11 10.0 6.76 2
2 0.5 6.80 1 12 0.5 6.91 2
2 5.0 6.80 1 12 5.0 6.91 2
2 10.0 6.70 1 12 10.0 6.71 2
3 0.5 7.16 1 13 0.5 7.23 2
3 5.0 7.12 1 13 5.0 7.37 2
3 10.0 7.01 1 13 10.0 7.10 2
4 0.5 7.17 1 14 0.5 6.81 2
4 5.0 7.20 1 14 5.0 6.68 2
4 10.0 7.08 1 14 10.0 6.18 2
5 0.5 6.96 1 15 0.5 6.66 2
5 5.0 6.68 1 15 5.0 6.47 2
5 10.0 6.48 1 15 10.0 6.17 2
6 0.5 7.23 1 16 0.5 6.89 2
6 5.0 7.02 1 16 5.0 6.59 2
6 10.0 6.80 1 16 10.0 6.19 2
7 0.5 6.87 1 17 0.5 6.98 2
7 5.0 6.73 1 17 5.0 6.64 2
7 10.0 6.43 1 17 10.0 6.24 2
8 0.5 7.15 1 18 0.5 6.88 2
8 5.0 7.18 1 18 5.0 7.01 2
8 10.0 6.80 1 18 10.0 6.71 2
9 0.5 7.23 1 19 0.5 7.01 2
9 5.0 7.03 1 19 5.0 6.90 2
9 10.0 6.73 1 19 10.0 6.80 2

10 0.5 7.24 1 20 0.5 7.20 2
10 5.0 7.19 1 20 5.0 7.17 2
10 10.0 6.99 1 20 10.0 7.07 2
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Figure 1: Serum melatonin for acute depressed patients (∗) and a control group of healthy
individuals (+). Group averaged sample means have been joined in the figure.

The following model may be used: X ∼ N10,60(ABC,Σ, I), where (ω = π/24)

A =




1 sin(ω) cos(ω) sin(2ω) cos(2ω)
1 sin(4ω) cos(4ω) sin(4 ∗ 2ω) cos(4 ∗ 2ω)
1 sin(8ω) cos(8ω) sin(8 ∗ 2ω) cos(8 ∗ 2ω)
1 sin(12ω) cos(12ω) sin(12 ∗ 2ω) cos(12 ∗ 2ω)
1 sin(14ω) cos(14ω) sin(14 ∗ 2ω) cos(14 ∗ 2ω)
1 sin(16ω) cos(16ω) sin(16 ∗ 2ω) cos(16 ∗ 2ω)
1 sin(18ω) cos(18ω) sin(18 ∗ 2ω) cos(18 ∗ 2ω)
1 sin(20ω) cos(20ω) sin(20 ∗ 2ω) cos(20 ∗ 2ω)
1 sin(22ω) cos(22ω) sin(22 ∗ 2ω) cos(22 ∗ 2ω)
1 sin(24ω) cos(24ω) sin(24 ∗ 2ω) cos(24 ∗ 2ω)




,

C =

(
1′

28 ⊗

(
1

0

)
: 1′

32 ⊗

(
0

1

))
.

Example 1.7. BRM , Potthoff & Roy (1964) classical data set. Data consist of growth
measurements, i.e. the distance in mm. from the center of the pituitary to the pterygo-
maxillary fissure, for 11 girls and 16 boys at ages t1 = 8, t2 = 10, t3 = 12, and t4 = 14.
The design matrices equal

A =




1 t1
1 t2
1 t3
1 t4


 , Linear growth, A =




1 t1 t21
1 t2 t22
1 t3 t23
1 t4 t24


 , Quadratic growth,
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C =

(
1′

11 ⊗

(
1

0

)
: 1′

16 ⊗

(
0

1

))
.

Then, the model is given by either X ∼ N4,27(A1BC,Σ, I) or X ∼ N4,27(A2BC,Σ, I).
The data is presented in Table 2 and illustrated in Figure 2. One can see that there
is a difference between boys and girls and later we are going to investigate if there is a
model which can be analyzed statistically, including a validation of the model, where the
difference between gender can be tested.

Table 2: Four repeated measurements were taken at ages t1 = 8, t2 = 10, t3 = 12, and
t4 = 14 from 11 girls and 16 boys.

id gender t1 t2 t3 t4 id gender t1 t2 t3 t4

1 F 21.0 20.0 21.5 23.0 14 M 23.0 22.5 24.0 27.5
2 F 21.0 21.5 24.0 25.5 15 M 25.5 27.5 26.5 27.0
3 F 20.5 24.0 24.5 26.0 16 M 20.0 23.5 22.5 26.0
4 F 23.5 24.5 25.0 26.5 17 M 24.5 25.5 27.0 28.5
5 F 21.5 23.0 22.5 23.5 18 M 22.0 22.0 24.5 26.5
6 F 20.0 21.0 21.0 22.5 19 M 24.0 21.5 24.5 25.5
7 F 21.5 22.5 23.0 25.0 20 M 23.0 20.5 31.0 26.0
8 F 23.0 23.0 23.5 24.0 21 M 27.5 28.0 31.0 31.5
9 F 20.0 21.0 22.0 21.5 22 M 23.0 23.0 23.5 25.0
10 F 16.5 19.0 19.0 19.5 23 M 21.5 23.5 24.0 28.0
11 F 24.5 25.0 28.0 28.0 24 M 17.0 24.5 26.0 29.5

25 M 22.5 25.5 25.5 26.0
26 M 23.0 24.5 26.0 30.0
27 M 22.0 21.5 23.5 25.0

Example 1.8. EBRM3
B: Let us start from the very beginning and suppose that we have

a random vector x associated to observations which follow the model

x = µ + e,

where e ∼ Np(0,Σ). Now assume that there exist a linear relation among the components
in µ, i.e. µ ∈ C(A). Thus, µ = Aβ for some β and x = Aβ + e. Moreover, suppose that
we have n independent observations which all have the same within individual model µ ∈
C(A) and suppose that there additionally exists a linear model between the independent
observations. For example, there are three groups of individuals; one corresponding to a
placebo treatment and the others corresponding to two different treatments, respectively.
Thus we end up in the following model

X = ABC + E,
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Figure 2: The distance in mm. from the center of the pituitary to the pterygomaxillary
fissure in boys (–) and girls (- -) at ages 8,10,12 and 14.

where X = (x1, x2, . . . , xn), B = (β1, β2, β3), E ∼ Nn,p(0, I,Σ) and

C =




1 1 . . . 1 0 0 . . . 0 0 0 . . . 0
0 0 . . . 0 1 1 . . . 1 0 0 . . . 0
0 0 . . . 0 0 0 . . . 0 1 1 . . . 1


 .

Furthermore, assume that we have a polynomial growth. Then the Vandermonde matrix,
for example,

A =




1 t1 . . . tq−1
1

1 t2 . . . tq−1
2

...
...

. . .
...

1 tp . . . tq−1
p




describes the connection between growth and time. In this model all individuals follow the
same polynomial growth model. However, if each treatment group follows a polynomial
of different order we may for example have the following model

X = A1B1C1 + A2B2C2 + A3B3C3 + E,

where

C1 =




1 1 . . . 1 0 0 . . . 0 0 0 . . . 0
0 0 . . . 0 1 1 . . . 1 0 0 . . . 0
0 0 . . . 0 0 0 . . . 0 1 1 . . . 1



 ,

C2 =

(
1 1 . . . 1 0 0 . . . 0 0 0 . . . 0
0 0 . . . 0 1 1 . . . 1 0 0 . . . 0

)
,
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C3 =
(

1 1 . . . 1 0 0 . . . 0 0 0 . . . 0
)
,

A1 =




1 t1 . . . tq−3
1

1 t2 . . . tq−3
2

...
...

. . .
...

1 tp . . . tq−3
p


 , B1 = (β1, β2, β3),

A′

2 =
(

tq−2
1 tq−2

2 . . . tq−2
p

)
, B2 = (β3, β4),

A′

3 =
(

tq−1
1 tq−1

2 . . . tq−1
p

)
, B3 = β5.

Observe that C(C ′

3) ⊆ C(C′

2) ⊆ C(C ′

1). The above example implies, for example, that the
mean of the placebo group and the treatment groups respectively equal

β11 + β12t + · · · + β1(q−2)t
q−3,

β21 + β22t + · · · + β2(q−2)t
q−3 + β2(q−1)t

q−2,

β31 + β32t + · · · + β3(q−2)t
q−3 + β3(q−1)t

q−2 + β3qt
q−1.

Example 1.9. EBRM3
W Now the model in Example 1.8 will be reconsidered. The exam-

ple indicates how the EBRM3
B and EBRM3

W are related. However, in general the relation
between EBRM3

B and EBRM3
W is not so clear. It follows that the following model is

equivalent to the model in Example 1.8:

X = A1Θ1C1 + A2Θ2C2 + A3Θ3C3 + E,

where

C1 =
(

0 0 . . . 0 1 1 . . . 1 0 0 . . . 0
)
,

C2 =
(

0 0 . . . 0 1 1 . . . 1 0 0 . . . 0
)
,

C3 =
(

0 0 . . . 0 0 0 . . . 0 1 1 . . . 1
)
,

A1 =




1 t1 . . . tq−1
1

1 t2 . . . tq−1
2

...
...

. . .
...

1 tp . . . tq−1
p


 , Θ1 = (β′

1, β3, β5)
′,

A2 =




1 t1 . . . tq−2
1

1 t2 . . . tq−2
2

...
...

. . .
...

1 tp . . . tq−2
p


 , Θ2 = (β′

2, β4)
′,
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A3 =




1 t1 . . . tq−3
1

1 t2 . . . tq−3
2

...
...

. . .
...

1 tp . . . tq−3
p


 , Θ3 = β3.

The interesting point is that now C(A3) ⊆ C(A2) ⊆ C(A1) holds instead of C(C′

3) ⊆
C(C ′

2) ⊆ C(C ′

1). Moreover, when considering EBRM3
B {Bi}, i = 1, 2, 3, are the objects

of interest whereas in EBRM3
W the parameters {Θi}, i = 1, 2, 3, are of interest. For

example, if estimability conditions are considered it is not necessary that the estimability
of B1 implies the estimability of Θ1. Of course if {Bi} is estimable then also {Θi},
i = 1, 2, 3, but usually we are not interested to estimate all parameters in {Bi}, i = 1, 2, 3,
uniquely and then it is not so easy to find out estimability conditions for Θi. Moreover,
to derive D[Θi] from D[Bi] without knowledge about C[Bi, Bj ], i 6= j, is impossible.


