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Matrix factorizations |

LU, LDU, Cholesky LDLT

Tridiagonalization QTAQ=T, A- symmetric

Aasen’s algorithm: A= LTLT

Bidiagonalization @ AV = B, A(m, n), B - upper bi-diagonal

v

v

v

> QR

Golub, Van Loan, Matrix Computations, many editions.
Note: Some of the algorithms are not numerically stable.
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Any real matrix A can be decomposed into a unitary matrix U
times an upper triangular matrix T, which has the eigenvalues of A
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Matrix factorizations

e Schur decomposition A= Q * T
Any real matrix A can be decomposed into a unitary matrix U
times an upper triangular matrix T, which has the eigenvalues of A
on its diagonal. Note: Eigenvalue-revealing factorization
e Eigenvalue decomposition
A - square. If all its eigenvectors are linearly independent, then
A= QDQ", where Q is orthogonal and D is diagonal, containing
the eigenvalues of A.
e Singular value decomposition SVD
Question: Can we diagonalize a general matrix using unitary
matrices?

QAQ) =%
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SVD

Let A(m,n), n < mor n> m, rank(A) = rank(A*)k.

Definition

If there exist p # 0 and vectors u and v, such that
Av=pu and A*u=pv

then p is called a singular value of A, and u,v are a pair of singular
vectors, corresponding to .



The existence of singular values and vectors is shown...

via the following construction:

Av = pu, A'u=pv

AL =le o=l

The matrix A is selfadjoint, has real eigenvalues and a complete eigenvector
space.

Furthermore, ;2 is an eigenvalue of A*A with eigenvector u and of AA* with
eigenvector v, because

can be written as

Av=pu, — A*Av=pA*u=p’v
A*u=pv, — AAu=pAv=_,u



Singular Value Decomposition

Theorem (SVD)

Any m x n matrix A with dimensions, say, m > n, can be factorized

as
(2N T
A_U(0>V ,

where U € R™*™ and V € R"*" are orthogonal, and ¥ € R™*" s
diagonal,

Y = diag(o1, 02, ...,0n),
01>2022>--2>0,20.



SVD

m X n mX m m X n



SVD




Thin SVD

Partition U = (U; U,), where U; € R™*",

A= UV,




Thin SVD




Fundamental Subspaces |

The range of the matrix A:

R(A) ={y | y = Ax, for arbitrary x}.
Assume that A has rank r:

012> 20r>041=--=0p=0.

Outer product form:

r r
y=Ax= E 0',‘U,‘V,-TX: E oiv; Tx Ju; = E o;u;.
i=1 i=1



Fundamental Subspaces |l

The null-space of the matrix A:

N(A) = {x| Ax = 0}.

r
Ax = g a;u;v,-Tx
i=1

Any vector z = Z7=r+1 Biv; is in the null-space:

AZ—(ZUIUI Z /BIVI =

i=r+1



Fundamental Subspaces

Theorem (Fundamental subspaces)

1. The singular vectors uy, uy, . .., u, are an orthonormal basis in
R(A) and
rank(A) = dim(R(A)) = r.

2. The singular vectors v, i1, V,y2,...,V, are an orthonormal

basis in N'(A) and
dim(WNV(A) =n—r.

3. The singular vectors vy, o, ..., v, are an orthonormal basis in
R(AT).
4. The singular vectors u,41, Uri2, ..., Uy are an orthonormal

basis in N'(AT).



SVD matrix expansion

A=UxvT

n _— —
AZZJ,‘U,‘V,—T: + +
i=1



SVD of a matrix with full column rank |

=R e e
INENOVIN R

>> [U,S,V]=svd(A)



SVD of a matrix with full column rank Il

U = 0.2195
0.3833
0.5472
0.7110

-0.8073
-0.3912
0.0249
0.4410

0.7738

0.0236
-0.4393
0.8079
-0.3921

\

0.5472
-0.7120
-0.2176

0.3824

0.3220 -
0.9467

0.9467
0.3220



Thin SVD

>> [U,S,V]=svd(A,0)

U=20
0
0
0
S =5
vV =20

o

.2195
.3833
.5472
.7110

L7794
0

.3220
.9467

.8073
.3912
.0249
.4410

L7738

.9467
.3220




Rank deficient matrix |

>> A(:,3)=A(:,1)+0.5%xA(:,2)

A = 1.0000 1.0000 1.5000
1.0000 2.0000 2.0000
1.0000 3.0000 2.5000
1.0000 4.0000 3.0000

>> [U,S,V]=svd(A,0)

U = 0.2612 -0.7948 -0.5000
0.4032 -0.3708 0.8333
0.5451 0.0533 -0.1667

0.6871 0.4774 -0.1667



Rank deficient matrix Il

S = 7.3944

vV = 0.2565
0.7372
0.6251

SVD is rank-revealing!

0.9072

-0.6998
0.5877
-0.4060

0.6667
0.3333
-0.6667




Null Space

The third column of V is a basis vector in N(A):

>> A%V (:,3)

ans =
1.0e-15 =

-0.2220
-0.2220



Historical notes

SVD has many different names:

>

>

>

First derivation of the SVD by Eugenio Beltrami (1873)
Full proof by Camille Jordan (1874)
James Joseph Sylvester (1889), independently discovers SVD

Erhard Schmidt (1907), first to derive an optimal, low-rank
approximation of a larger problem

Hermann Weyl (1912) - determination of the rank in the
presence of errors

Eckart-Young decomposition and optimality properties of SVD
(1936), psychometrics

Numerically efficient algorithms to compute the SVD - works
by Gene Golub 1970 (Golub-Kahan)



Best approximation / Eckart-Young Property |

Frobenius norm

1/2
|AllF = (E a?,-)
iJ




Best approximation / Eckart-Young Property |l

Theorem

Assume that the matrix A € R™*" has rank r and choose k, such
that r > k. The Frobenius norm matrix approximation problem

in [|[A—Z
L [ I3

has the solution
Z=Ac=UX, V],

where U, = (u1, ..., uk), Vik = (vi1,..., v), and
Zk :diag(al,...,ak).



Best approximation / Eckart-Young Property Il

Proof: )
(1) Observe: if Ay = Zlajuj-vj*, then ||A — Axl| = oki1-
J:

(2) Observe: Consider the subspace, spanned by the first k + 1
singular vectors of A, W. Then, ||Aw|]2 > ok + 1||wl2,w € W.
(3) Assume that there exists a matrix B of rank k, such that

|A = Bl|» < oks1. Then, there exists a subspace W of size n — k,
such that Bw =0, w € W.

[Aw(l2 = [[(A = B)wlj2 < |A = Bll2||wl[2 < oks1][w][2. From
dinemsion argiments W N W # ().



Singular vectors, another view

Consider the rows of A(m, n)
as points in an n-dimensional
space and find the best
linear fit through the origin.

= arg max AV, o1 = [l Al
v|[=
Vo = ar, max Avl|3
smarg | max A}
v4x_3=a_3
(v, v)+(v.x_3)=(v,a_3)
) A

[viir2 - =0



Principal Component Analysis (PCA) |

Data matrix R™*" 5 X = UX VT

Each column of X is an observation of a real-valued random vector
with mean zero.

The right singular vectors v; are called principal components
directions of X. The vector

Z] = XV1 = o171

has the largest sample variance amongst all normalized linear
combinations of the columns of X:

2

01

Var(z1) = Var(Xv;) = —.

m



Principal Component Analysis (PCA) I

The normalized variable u; is called the normalized first principal
component of X.

The second principal component is the vector of largest sample
variance of the deflated data matrix X — o1 vlT, and so on.



Test example borrowed from

Computational Statistics with Application to Bioinformatics

Prof. William H. Press Spring Term, 2008, The University of Texas
at Austin



Example

Consider some gene expression data, represented by the so-called
‘design matrix’ X = {Xj;}

Each column of X corresponds to a separate observation, in this
case, a separate micro array experiment under a different condition.
N rows are genes (1:500) and M columns are the corresponding
responses.

Assumptions:

- the individual experiments (columns of X) have zero mean.

- scale data to unit standard deviation.



load yeastarray_t2.txt;
size (yeastarray_t2)

ans = 500 300
yclip = prctile(yeastarray_t2(:),[1,991])
yclip = -204 244

data = max(yclip(l),min(yclip(2),yeastarray_t2));

dmean= mean (data, 1) ;

dstd std(data,1);

data (data - repmat (dmean, [size (data,l1),1]))./...
repmat (dstd, [size(data,l),1]1);

genecolormap = [min (1, (1:64)/32); 1l-abs(1-(1:64)/32);

min (1, (64-(1:64))/32)]1";
figure(l),clf,colormap (genecolormap) ;
image (20xdata+32)

EXY
e

HFALT AT

R

Q&3







[U S V] = svd(data, 0);

PCAcoords = UxS;

plot (PCAcoords(:,1),PCScoords(:,2),"'r.")
axis equal




The squares of the singular values are proportional to the portion of
the total variance (L norm of X) that each accounts for.

ssq = diag(S)."2;
semilogy (ssq,’ .b’)




We can produce fake data and compare:

fakedata = randn (500, 300);
[Uf Sf Vf] = svd(fakedata,0);
sfsqg = diag(Sf)."2;
semilogy(sfsqg,’.r")




For the data in this example, a sensible use of PCA (i.e., SVD)
would be to project the data into the subspace of the first 20 SVs,
where we can be sure that it is not noise.

[

% Truncate the first 20 singular values/vectors
strunc = diag(S);

strunc(2l:end) = 0;

filtdata20 = Uxdiag(strunc) *V’;

figure (2),clf,colormap (genecolormap) ;

image (20xfiltdata20+32)

% Truncate the first 5 singular values/vectors
strunc(6:end) = 0;

filtdatab5 = Uxdiag(strunc)*V’;

figure (3),clf,colormap (genecolormap) ;

image (20*xfiltdata5+32)






How to interpret the singular vectors? The first three vectors u are
"eigengenes’, the linear combination of genes that explain the most
data.

plot (U(:,1:3))




The first three vectors v are 'eigenarrays’, the linear combination of
experiments that explain the most data.

)‘ il m

plot (V(:,1:3))

: ,,,»Q ﬂ’irl‘ / N“

\l




Consider a toy example

pdata = randn(500,300);

pdata(101:200,51:100) = pdata(l101:200,51:100) + 1;

pdata(301:400,201:250) = pdata(301:400,201:250) - 1;

pmean = mean (pdata,l);

pstd = std(pdata,l);

pdata = (pdata - repmat (pmean, [size (pdata,1),1]1))./...
repmat (pstd, [size (pdata,1l),1]);

colormap (genecolormap)

image (20xpdata+32)






Consider a toy example

[Up Sp Vp] = svd(pdata,0);

spsqg = diag(Sp) ."2;

semilogy (spsg(l1:50)," .b")

Should we expect the eigengenes/eigenarrays to show the separate

main effects?
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M\\W | ”‘ b W ym }"'W ﬂ' "W"M 'N“'
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Solving Least Squares problems by SVD

Ax = b, A(m, n)
A=UrLV
ULVx=b — x=V(Z"}(U"b))



Least Squares by SVD |

A= 1 1 b = 7.9700
1 2 10.2000
1 3 14.2000
1 4 16.0000
1 5 21.2000

>> [Ul,S,V]=svd(A,0)

Ul =0.1600 -0.7579
0.2853 -0.4675
0.4106 -0.1772
0.5359 0.1131
0.6612 0.4035



Least Squares by SVD I

S = 7.6912 0 V =0.2669 -0.9637
0 0.9194 0.9637 0.2669

>> x=Vx* (S\ (UL’ xb))

x = 4.2360
3.2260



Least Squares by SVD, in R |

> A.svd<-svd (A)

> A.svd
$d

[1] 7.6912131 0.9193696

[,1]
.1600071
.2853078
.4106086
.5359094
.6612102

O O O O O

O O O O O

[,2]

.7578903
.4675462
.1772020
.1131421
.4034862




Least Squares by SVD, in R I

Sv

[,1] [,2]
[1,] 0.2669336 0.9637149
[2,] 0.9637149 -0.2669336

> x=A.svdS$v %$x% diag(l/A.svdS$d) %$*% t (A.svdSu) %*%
> x

[1,] 4.236
[2,] 3.226



Linear dependence — SVD

Theorem

Let the singular values of A satisfy
0-12...Za-r>o-r+1:...:0'nzo‘

Then the rank of A is equal to r.

Rank = the number of linearly independent columns of A.



Linear dependence |

A=[1 1; 1 2; 1 3; 1 4]

singval=svd (A)

% Third col=linear combination of first two
Al=[A A(:,1)+0.5%xA(:,2)]

singvall=svd(Al)



Linear dependence |l

Result:

A =

e e e

.0000
.0000
.0000
.0000

Al =

e e

singvall =

Sw N

Sw N

7.3944
0.9072
0

.0000
.0000
.0000
.0000

singv

w NN

al = 5.7794
0.7738

.5000
.0000
.5000
.0000




Almost linear dependence |

A2=[A A(:,1)+0.5%A(:,2)+0.0001lrrandn(4,1)]
singval2=svd (A2)

A2 = 1.0000 1.0000 1.4999
1.0000 2.0000 2.0001
1.0000 3.0000 2.5000
1.0000 4.0000 3.0001

singval2 = 7.3944
0.9072
0.0001




Almost linear dependence? |

Run Matlab demo
~/.../STAT/Labs/Lab_QR_SVD/Small_singular_
values.m


~/.../STAT/Labs/Lab_QR_SVD/Small_singular_values.m
~/.../STAT/Labs/Lab_QR_SVD/Small_singular_values.m

Computing the SVD in a numerically efficient way



Computing the SVD

1. Transform A to bidiagonal form by unitary transformations

* *
* *

ddots . x

*

QLAQr = B =

2. Diagonalize B by two orthogonal transformations
QuBQr = QLQLAQRQR = X

The cost for the bidiagonalization is 4mn® — 4/3n3.
The cost for SVD: 4m?n + 8mn? + 9n3.
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