Solutions to Examination in Scientific Computing

1. (a) \(Ax = \lambda x \Rightarrow A^{-1}Ax = \lambda A^{-1}x \Rightarrow \lambda^{-1}x = A^{-1}x. \) Hence, \(\lambda^{-1} \) is an eigenvalue to \(A^{-1} \) with eigenvector \(x \).

(b) A Taylor-expansion around \(x_j \) and denote \(u(x_j) \) by \(u \) etc., yields

\[
u(x_j \pm h) = u(x_j) \pm hu_x + \frac{h^2}{2}u_{xx} \pm \frac{h^3}{6}u_{xxx} \pm \frac{h^4}{24}u_{xxxx} + \mathcal{O}(h^5)
\]

\[
u(x_{j+1}) - 2u(x_j) + \nu(x_{j-1}) = \frac{h^2}{2} \left((1 - 2 + 1)u_x + (\frac{h^2}{2} + \frac{h^2}{2})u_{xx} + (\frac{h^3}{6} - \frac{h^3}{6})u_{xxx} + \frac{h^4}{24}u_{xxxx} + \mathcal{O}(h^5)\right) = u_{xx} + \mathcal{O}(h^2).
\]

(c) \(||Qx||_2^2 = (Qx)^H(Qx) = x^HQ^HQx. \) But since \(Q \) is unitary we have that \(Q^HQ = I \) and \(||Qx||_2^2 = x^Hx = ||x||_2^2 \Rightarrow ||Qx||_2 = ||x||_2. \)

2. (a) Gersgorin’s discs, row-version

- Disc 1, \(|\lambda - 8| \leq 0.1 + 0.2 = 0.3. \)
- Disc 2, \(|\lambda - 6| \leq 0.2 + 0.3 = 0.5. \)
- Disc 3, \(|\lambda - 10| \leq 0.5 + 0.5 = 1.0. \)

Three disjoint discs \(\Rightarrow \) one eigenvalue in each.

(b) The code is an implementation of the Power method. The resulting number 10.0888... is the eigenvalue to \(A \) with largest magnitude, i.e. the eigenvalue in Disc 3.

(c) The convergence rate depends on the quotient between the two eigenvalues with largest magnitude, i.e. the eigenvalue in Disc 1 (\(\lambda_2 \)) and the eigenvalue in Disc 3 (\(\lambda_3 \)). In the worst case \(\lambda_2 = 8.3 \) we have

\[
\frac{|\lambda_2 - \lambda_1|}{\lambda_1} \approx \frac{8.3}{10.0888} = 0.82. \]

A way to achieve better convergence is to use shift with \(\sigma \) and compute the eigenvalues \(\tilde{\lambda}_i \) of \(A - \sigma I \). Use for instance \(\sigma = \frac{5.5 + 8.3}{2} = 6.9, \Rightarrow \) the two eigenvalues with smallest magnitude fulfill \(|\tilde{\lambda}_2,3| \leq 1.4 \). Hence \(\frac{|\lambda_2 - \lambda_1|}{\lambda_1} \approx \frac{1.4}{3.1888} = 0.31 < 0.82. \)

Another possibility is to shift with \(\sigma = 10 \) and employ the inverse power method.

3. (a) Use the energy-method and define the norm \(||u(\cdot, t)||^2 = \int_0^1 u^2(x, t)dx. \) Then

\[
\frac{d}{dt} ||u(\cdot, t)||^2 = \frac{d}{dt} \int_0^1 u^2(x, t)dx = 2 \int_0^1 uu_tdx = [u_t = u_{xx}]
\]

\[
2 \int_0^1 uu_{xx}dx = [\text{part. int.}] = 2[uu_x]_0^1 - \int_0^1 u_x^2 = 0 - \int_0^1 u_x^2 \leq 0.
\]

Thus, \(||u(\cdot, t)|| \leq ||f|| \Rightarrow \) the solution depends continuously on given data. Since we have assumed a unique solution, the PDE is well-posed.
(b) Use Fourier technique and replace \(u^n_j \rightarrow \hat{u}^n_\omega e^{i2\pi \omega x_j} \) \(\Rightarrow \)

\[
\frac{\hat{u}^{n+1}_\omega - \hat{u}^n_\omega}{\Delta t} = \hat{u}^{n+1}_\omega e^{i2\pi \omega x_j} e^{i2\pi h} - 2 + e^{-i2\pi \omega h}.
\]

Rearranging gives

\[
\hat{u}^{n+1}_\omega \left(1 + a_\omega \frac{2\Delta t}{h^2} \right) = \hat{u}^n_\omega,
\]

where \(a_\omega = 1 - \cos (2\pi \omega h) \). The finite difference scheme is unconditionally stable if \(\hat{u}^{n+1}_\omega \leq \hat{u}^n_\omega \) which in this case is true if \(1 + a_\omega \frac{2\Delta t}{h^2} \geq 1 \). But since \(a_\omega \geq 0 \) and \(\Delta t \geq 0 \) it is clear that \(\hat{u}^{n+1}_\omega \leq \hat{u}^n_\omega \).

(c) The number of non-zero elements has increased due to fill-in from the factorization. This might cause problems with computer memory if the matrix \(A \) is large. One way to avoid fill-in is to use an iterative method to solve the system of equations instead.

4.

5.

\[
A \begin{pmatrix} a \\ b \end{pmatrix} = y,
\]

where

\[
A = \begin{pmatrix}
1 & 10.0 \\
1 & 10.2 \\
1 & 10.4 \\
1 & 10.6 \\
1 & 10.8 \\
1 & 11.0
\end{pmatrix}, \quad
y = \begin{pmatrix}
0.5 \\
1.0 \\
2.5 \\
4.5 \\
6.5 \\
8.0
\end{pmatrix}.
\]

The normal equations \(A^T A \begin{pmatrix} a \\ b \end{pmatrix} = A^T b \) reads

\[
\begin{pmatrix}
6 & 63 \\
63 & 662.2
\end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix}
23 \\
247.1
\end{pmatrix}.
\]

\(\Rightarrow \)

\[
\begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix}
-80.166 \\
8
\end{pmatrix}.
\]

\(\Rightarrow \)

\[
y = 8x - 80.2
\]

6.

\[
A \begin{pmatrix} \beta \\ \alpha \end{pmatrix} = \ln y,
\]

where

\[
A = \begin{pmatrix}
1 & 10.0 \\
1 & 10.2 \\
1 & 10.4 \\
1 & 10.6 \\
1 & 10.8 \\
1 & 11.0
\end{pmatrix}, \quad
\ln y = \begin{pmatrix}
-0.6931 \\
0 \\
0.9163 \\
1.5041 \\
1.8718 \\
2.0794
\end{pmatrix},
\]

and \(\alpha = \ln C \) The normal equations \(A^T A \begin{pmatrix} \beta \\ \alpha \end{pmatrix} = A^T \ln y \)
reads\[
\begin{pmatrix}
6 & 63 \\
63 & 662.2
\end{pmatrix}
\begin{pmatrix}
\beta \\
\alpha
\end{pmatrix} = \begin{pmatrix}
5.678 \\
61.63
\end{pmatrix}.
\]
\[\Rightarrow \begin{pmatrix}
\beta \\
\alpha
\end{pmatrix} = \begin{pmatrix}
-29.15 \\
2.867
\end{pmatrix}.
\]
\[\Rightarrow y = e^{-29.15 + 2.867x}.
\]

7. (a) Let V be the space
\[V = \{ v \mid v \text{ cont on } [0, 1], v' \text{ piecewise cont on } [0, 1], v(0) = v(1) = 0 \}.
\]
If u solves the ODE and $v \in V$, it follows from integration by parts that
\[\int_0^1 v(x)f(x) \, dx = \int_0^1 v(x)u''(x) \, dx
\]
\[= [v(x)u'(x)]_0^1 - \int_0^1 v'(x)u'(x) \, dx
\]
Since $v(0) = v(1) = 0$, the boundary terms vanish. The variational formulation is: Find $u \in V$ such that
\[-\int_0^1 v'(x)u'(x) \, dx = \int_0^1 v(x)f(x) \, dx, \quad \forall v \in V.
\]

(b) The Discrete Fourier Transform $\hat{u} = W_N u$, where W_N is a Fourier matrix of size $N \times N$ can be accomplished through the (Inverse) Fast Fourier Transform (FFT). The basic idea behind the algorithm is that the multiplication can be split into two multiplications $y_1 = W_{N/2} x_1$ and $y_2 = W_{N/2} x_2$, where y_i, x_i are vectors of size $N/2$. The final result \hat{u} is then obtained through a combination of y_1 and y_2. The splitting is repeated recursively until the length of the vectors is 1. The total number of arithmetic operations required is $O(N \log_2 N)$.