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ABSTRACT
Web-based social networking services enable people who share in-
terests to find each other and collaborate in online and offline social
activities. Thanks to the widespread popularity of networked hand-
held devices, constantly carried by members of the public through-
out their daily activities, new possibilities of collaboration and in-
teraction are emerging, among people who are not only socially
close to each other, but also in physical proximity. However, a
challenge arises as to how to enable people with similar interests
to find each other, so to fulfill their social activities anywhere and
anytime, while constantly moving around. In this paper, we present
ADESSO, a semi-distributed directory and matching service that
supports opportunistic social networking in delay tolerant networks.
ADESSO consists of a set of self-organising brokers, automatically
elected based on their mobility patterns. Users offload their re-
quests to perform social activities onto brokers upon encounters;
brokers then collaborate, by means of either request exchanges
or broker fusion, in order to match activities in a way that satis-
fies users’ social preferences. Preliminary performance evaluation,
conducted using real human mobility traces and social networks,
shows that ADESSO generates matches that highly satisfy users’
preferences, entailing only a small overhead.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous; C.2.4
[Distributed Systems]: Distributed Applications

General Terms
Algorithms
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Web-based social networking services (e.g., MySpace, Last.fm,
Facebook, Flickr, Twitter, etc.) enable people who share interests
(e.g., music tastes or hobbies) to come together in global online
communities, and participate in the collective production and shar-
ing of information (e.g., pictures, Twitter updates, music profiles,
etc.). They can also be used to arrange real world activities, as dif-
ferent as the recently organised parties1 and demonstrations during
the 2009 civil unrest in Iran2.

Thanks to the widespread popularity of handheld networked de-
vices (e.g., iPhone, gPhone and Blackberry), constantly carried by
members of the public throughout their daily activities, new possi-
bilities of social interactions are emerging, among people who are
not only socially close to each other, but who also have a connec-
tion through physical proximity. Consider, for example, employ-
ees wishing to arrange out-of-work sport activities, immigrants liv-
ing in the same neighbourhood willing to meet to help each other,
or single people willing to organise a date with someone who of-
ten visits the same places (and is not simply living in the same
metropolitan city). Community building and localised dating ser-
vices are examples of opportunistic social networking, whereby
both social and physical proximity are exploited to provide new
forms of situated social interactions [5].

In this paper, we are interested in providing support for these
kinds of interactions in human delay tolerant networks (also called
pocket switched networks [13]), that is, enabling social activities
between people who share interests and who have been physically
close to each other (either directly or indirectly through third par-
ties). To realise this goal, a user must first specify her interest in
performing an ‘activity’, along with her ‘social preferences’ (i.e.,
some qualities of the users with whom she would like to perform
such an activity), as part of what we call a ‘user task’. Such tasks
must also define a time-to-live (TTL), before which the user ex-
pects to receive one or more recommendations about whom they
can perform the activity with. While existing related research ef-
forts in human DTNs have been designed to spread information
in the network (e.g., [16, 19]), in our scenario the goal is to col-
late tasks together instead, so to be able to perform socially good
matches. Hence, directory-based approaches, developed to sup-
port service discovery, offer a more suitable interaction paradigm;
however, as we highlight in Section 2, available solutions are not
directly applicable to human delay tolerant networks (DTNs).

In this paper, we present ADESSO, a semi-distributed self-organising
directory and matching middleware service that supports oppor-
tunistic social networking in human DTNs (Section 3). Specifi-

1http://news.bbc.co.uk/1/hi/wales/north_east/7861733.stm
2http://www.rsf.org/News-and-information-fall-victim.html



cally, ADESSO supports the semantic specification of users’ tasks
(Section 3.1). In order to enable mobile users to publish their
tasks in the network, ADESSO dynamically elects brokers based
on nodes’ mobility patterns (i.e., nodes’ popularity) (Section 3.2).
Popular nodes are those that are most likely to meet the largest
number of other nodes in the network, and thus to gather the highest
number of tasks. In order to maximise the chances of performing
good matches (i.e., matches of tasks from users who have expressed
reciprocal and high preferences in their social networks), brokers
interact with each other when they meet, performing collaborative
matching on tasks they carry (broker collaboration). Furthermore,
ADESSO dynamically de-elects bad quality brokers (e.g., brokers
that are no longer encountering large numbers of nodes) by hav-
ing popular brokers claim stewardship of tasks from less popular
ones (broker fusion) (Section 3.3). Finally, ADESSO performs se-
mantic and social-aware task matching (Section 3.4) and notifies
interested users by means of a delay-tolerant networking proto-
col (Section 3.5). We have conducted an extensive performance
evaluation of ADESSO, using real human mobility traces and so-
cial networks (Section 4). Our preliminary evaluation confirms that
ADESSO generates matches that highly satisfy users’ social prefer-
ences, while entailing only a small communication overhead. The
summary of our contributions and future work are finally discussed
in Section 5.

2. RELATED WORK
Two streams of research are closely related to the work presented

in this paper: semi-distributed solutions to the problem of service
discovery in mobile settings, and mobility-aware protocols for con-
tent dissemination in delay-tolerant settings.

Semi-Distributed Communication Middleware. The problem of
finding and matching users’ tasks in human DTNs is very similar to
the problem of finding services in pervasive settings. A variety of
centralised directory services (e.g., Salutation [23], Jini [3]) have
been proposed to find services in mobile settings; however, they all
rely on the constant availability of static directories embedded in a
fixed backbone. To overcome this limiting assumption, fully dis-
tributed protocols (e.g., SLP [12], UPnP [2]) have been proposed
instead, but they do not scale well to dynamic settings, as they rely
on broadcasting of service advertisements (i.e., our users’ tasks).
Semi-distributed solutions have beed shown to be a good compro-
mise. Ariadne [22], for example, uses a protocol to dynamically
elect brokers when needed: nodes acting as directories periodically
advertise their presence (up to a given number of hops); a timeout
expires when a node has not heard from a directory for a given pe-
riod of time. At that point, the node initiates a directory-election
protocol, broadcasting an election message in the network (again
up to a given number of hops), and ending up by selecting as bro-
ker the node that “covers” the largest number of other nodes. The
major limitation of this protocol is that it does not consider node
mobility. A node’s coverage is a very dynamic parameter: because
of mobility, coverage may take very different values from the time
an election is launched, to the time a service request needs to be an-
swered (e.g., a node may be selected as broker and then disappear
from the network soon after). This causes the costly election mech-
anism to be frequently re-launched. Furthermore, Ariadne relies on
a synchronous publication/election strategy, under the assumption
that nodes are connected to other nodes in the network most of the
time. However, we have analysed the Bluetooth colocation traces
of real human mobility ([11, 24]) and seen that the opposite holds,
that is, a node’s neighbourhood is often empty or very sparse, re-
quiring the middleware to support a delay-tolerant task publication
and broker election mechanism instead.

Mobility-Aware Communication Middleware. In the area of delay-
tolerant networking, various routing protocols (e.g, [16, 19]) have
been proposed that reason about node mobility patterns to decide
how best to route content, making sure that relevant content reaches
interested nodes, while minimising network overhead. These rout-
ing protocols have been used, for example, to port the publish-
subscribe interaction paradigm to the mobile setting: in [10] and
[4], each node acts as a broker, periodically broadcasting its inter-
ests to the one-hop away neighbours; adjacent brokers who receive
these beacons store the information, along with a timestamp that
enables them to maintain fresh information about local interests.
A routing framework is then offered that is capable of disseminat-
ing content end-to-end, using metrics of social interactions. These
routing protocols and frameworks assume that humans follow fairly
regular movement patterns in their daily life, so that these can be
learned over time; moreover, they assume that like-minded people
are more likely to be colocated, or in close spatial proximity, than
those who share no interests. Such assumptions have been con-
firmed by a number of studies on human behaviour [20, 14]. These
approaches cannot be directly used to enable local social network-
ing, as the interaction paradigm is fundamentally different: while
in publish-subscribe and DTN settings content is spread in the net-
work in a one-to-many fashion, we aim to gather users’ tasks to-
gether, thus increasing the chances of finding quality matches be-
tween users who are directly or indirectly connected in the partially
learned social network. However, a similar mobility-aware reason-
ing can be exploited to dynamically elect brokers that, based on
their past movement and colocation patterns, are expected to serve
well as matching catalysts in the near future.

In the next section, we thus propose a semi-distributed direc-
tory and matching middleware service, whereby publication and
matching of tasks is achieved by means of dynamically elected and
self-organising brokers, based on nodes’ historical movement and
colocation patterns.

3. ADESSO: A SEMI-DISTRIBUTED, SELF-
ORGANISING DIRECTORY AND MATCH-
ING SERVICE

In order to enable the kind of technologically-mediated social
interactivity described in Section 1, we need a middleware that
supports: (1) the semantic specification of user tasks and associ-
ated social preferences (Section 3.1); (2) their publication in the
network (Section 3.2); (3) the further dissemination of the injected
information in the network, in order to increase the chances of find-
ing a good match (Section 3.3); (4) the matching of user tasks, in
a way that satisfies users’ social preferences (Section 3.4); and (5)
the notification of computed matches back to the interested users
(Section 3.5).

3.1 Task Specification
In terms of specification, we use a semantic model extending

the Friend-Of-A-Friend (FOAF [1]) ontology defined in [6] to en-
able mobile users to specify a user task as a combination of four
elements. An activity they would like to perform, a set of social
preferences related to such an activity, a number k stating how
many recommendations the user would like to receive from the
system when matching that activity, and, finally, an expiry time
(reffered to as TTL in the remaining of the paper) before which a
match should be returned. To avoid ambiguity, activities are seman-
tically defined by referring to existing ontologies (e.g., SUMO),
taxonomies (e.g., Wordnet) or Web pages (e.g., Wikipedia). So-
cial preferences are expressed as a specialization of the directed
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Figure 1: Task Lifecycle

weighted ‘foaf:knows’ relation, indicating how much the user en-
joys performing the stated activity with its known social relations.
A lightweight semantic matchmaker [8], specifically developed to
run efficiently on portable devices, is then employed to match ac-
tivities.

Once the task has been specified, it is ready to be injected into the
network. In order to understand how task publication, dissemina-
tion, matching and notification work, the full task lifecycle will be
illustrated first. As shown in Fig. 1, task publication (Section 3.2)
starts when a new task is created (time t1); the task needs to be
handed over to a broker that will then mediate its matching with
other users’ tasks. However, at the time of publication t1, the pub-
lisher may not be within reach of any broker; it thus keeps the task
locally for a maximum period of time called Incubation period (du-
ration Inc = t2 − t1), during which the publisher tries to hand
off the task to any broker it meets. If a broker has not been met
by time t2, a broker will then be dynamically elected in what we
term the Election period (duration Elect = t3 − t2). By the end
of the publication phase, a broker has received the newly created
task and added it to the pool of tasks it is in charge of. During the
task dissemination phase (Section 3.3), the broker will then collab-
orate with any broker it meets, trying to create quality matches for
the tasks it carries (duration Dissem = t4 − t3). Finally, once
a task has been matched at time t4 (Section 3.4), the notification
phase starts (Section 3.5), during which the broker will send rec-
ommendations back to the users involved in the performed match
(duration Notif = t5 − t4). The overall lifecycle of a task must
not last longer than the task’s TTL, that is, TTL = t5 − t1. If a
task cannot be matched before the end of its TTL, the task expires
and the user who issued it is notified.

3.2 Task Publication
During the Task Publication phase, a newly created task is handed

over from a publisher to a broker, with potential broker election re-
quired, in case no broker is encountered. Rather than attempting to
carry out these functionalities instantaneously, ADESSO deals with
them in a more delay-tolerant fashion: task injection is attempted
for an incubation period t2 − t1, during which the publisher mon-
itors its colocated nodes and hands off its task as soon as a broker
is encountered. If no broker is encountered during this period, then
broker election is attempted within an election period, following
the strategy discussed below.

Each node monitors, throughout its lifetime, its contacts with
other nodes in the network, in a way similar to that described by
the Habit protocol [18]. Specifically, encounters are first simply
logged (“node A encounters node B at time t”); if encounters with
B become frequent, then B becomes a familiar stranger to A, and
node A starts logging more detailed information about their en-
counters (i.e., day of the week/time of the day encounters occur).
Based on the collected logs, A can now compute what we call a reg-
ularity weight, that is, the number of times A has met B in a given
regularity interval (e.g., Monday 9am-10am), over a certain obser-
vation period (e.g., last four weeks). This information can thus be
used by each node to predict how likely they are to encounter what

familiar stranger nodes in the near future.
Furthermore, each node logs how many different devices it en-

counters during a given time interval ∆T . This value is contin-
uously updated and locally fed in input to a Kalman filter [15],
in order to predict how many devices this node is likely to meet
in a forthcoming period ∆T . We call this predicted value node
popularity Pop∆T (N); for example, Pop24h(N) = 6 means that
node N expects to encounter 6 different nodes in the next 24 hours.
Nodes advertise their predicted popularity continuously, together
with their presence. Such information is used to estimate the qual-
ity of a node to act as broker: intuitively, the higher a node’s pop-
ularity, the higher the chances of it gathering many tasks from
colocated devices, the higher the probability of performing qual-
ity matches.

When a publisher N initiates a broker election mechanism, the
previously described regularity logs are used to estimate which
nodes, among its familiar strangers, are likely to be encountered
before the end of the election period. These nodes’ regularity val-
ues are then used, together with the nodes’ estimated popularity,
to elect a broker. More formally, N computes, for each familiar
stranger X , a utility function:

UElect(N,X) = RWElect(N,X) ∗ Pop(X)

where RWElect(N,X) is the maximum regularity weight recorded
between N and X , for any timeslot tsi within the Elect period,
that is, RWElect(N,X) = max(RWtsi(N,X))), ∀tsi ⊂ Elect;
Pop(X) is the latest predicted popularity value recorded by N for
X . The node with the highest utility is then elected.

Once a broker A has been (pre)elected, the publisher node N
waits until the two encounter: at that point, A is notified it is now
a broker, and tasks are off-loaded from N to A. However, while
moving, should N encounter a node C with better predicted popu-
larity than A, then N would elect C as broker instead, and offload
its current tasks to it. Furthermore, should N meet an existing bro-
ker after A has been pre-elected but before the two have actually
met, the election process would be invalidated and N would sub-
mit its tasks to the just met broker. Finally, should the end of the
election period be reached without N actually meeting A, N would
self-elect itself as broker.

3.3 Task Dissemination
During the Task Dissemination phase, elected brokers cooper-

ate upon encountering each other, in order to enhance the quality
of social-based matching. ADESSO realises this cooperation by
means of two mechanisms: Broker Fusion and Broker Collabora-
tion.

Broker Fusion - When two brokers meet, if one (say A) is of
much lower quality than the other (say B), then the lower quality
one transfers all its unmatched tasks to the other, and ceases to act
as broker. Superiority among brokers is determined by their pop-
ularity: upon encounters, A and B exchange their latest predicted
popularity; if the difference is greater than a parametric threshold,
the best broker takes over. For instance, if A has current predicted
popularity Pop∆T (A) = 75, B has current predicted popularity
Pop∆T (B) = 155, and the tolerated difference is 25% of the most
popular one, than B takes the load off A and A ceases to act as bro-
ker, as Pop∆T (A) < Pop∆T (B) ∗ (1 − 0.25). Broker fusion is
an essential mechanism to self-maintain the directory and matching
service provided by ADESSO: in fact, poor quality nodes who have
self-elected themselves as brokers (because of unavailability of any
other broker in a given time period) as well as brokers whose popu-
larity has decreased over time (because of changes in their mobility



patterns) are automatically removed from their brokers’ duties. In
so doing, only a minimal number of brokers are active at any given
time, thus avoiding tasks being spread all over the network.

Broker fusion allows filtering out bad brokers. However, when
two popular brokers meet, fusing them may not be the best action,
as we may de-elect a broker that was relied upon by many other
nodes, and that will thus have to be re-elected soon after. In these
cases, ADESSO opts for broker collaboration instead.

Broker Collaboration - When two brokers of comparable qual-
ity encounter each other, the one with the smallest number of (cur-
rently unmatched) tasks (say A) transfers such tasks to the other
broker (say B). B then performs a matching for the whole set
of tasks, generating a list of pairs (i.e., matched tasks) that max-
imises the overall utility. Each task whose best match belonged to
the other broker, is validated and ready to be notified. If a task T
requires more than 1 recommendation (i.e., k > 1), ADESSO re-
turns the k best matching tasks for T . Unmatched tasks, as well as
tasks whose best match was already managed by the same broker,
return to such broker instead, in the hope of finding better match-
ing tasks later. ADESSO performs broker collaboration and fusion
only once brokers are within reach (1 hop) of each other; this is to
avoid leaving the system in an inconsistent state, due to task lists
being lost while traveling multi-hop from one broker to another.
Also, broker fusion and collaboration require whole task lists to be
exchanged (and processed), causing both communication and com-
putation overhead; we thus limit this overhead to situations where
brokers are indeed physically in reach. Moreover, as ADESSO bro-
kers are the most popular nodes in the network, hence it is likely
they will meet during their tasks lifecycle, thus being able to per-
form quality matches without using expensive multi-hop commu-
nication.

3.4 Task Matching
The utility that users experience from local social networking de-

pends on the ability of brokers to collate tasks from socially-related
users, and to compute matches that satisfy users’ social preferences.
The lack of a global vision of the social network, which is due
to its inherent distribution (each user has knowledge of its social
links only), prevents centralised reasoning on user social prefer-
ences, as could be done in Web 2.0 social networking services.
Instead, individual pieces of this network, encoded within tasks,
are gathered by brokers in order to build a larger view of the so-
cial network. Algorithms for propagation of social preferences, in
order to guess missing links from existing ones, could be further de-
ployed within ADESSO to let brokers operate on denser networks
as demonstrated in [7].

Based on the view of the social network that each broker has
crawled, task matching can then be carried out using a variety of
algorithms. In this paper we consider the LocalSatisfaction algo-
rithm as defined in [6]. Specifically, let us consider, for simplicity
of presentation, that each task has to be matched by one other task
only, i.e., k = 1 (e.g., the user is interested in being recommended
one single user with whom to perform an activity). Given a pair of
matched tasks (T1, T2), submitted by users U1 and U2 respectively,
we define utility(T1, T2) as the weight of the directed edge from
U1 to U2 in the social network, if such edge exists, and 0 other-
wise. When a task T has to be matched, LocalSatisfaction scans
the full list of advertised and yet unexpired tasks, and returns the
one delivering the best utility from the requesting user perspective
only.

Note that in [6] the authors relied on a simplified middleware,
whereby a statically chosen set of nodes was acting as brokers: task
publication could only occur when within reach of a broker, and

task dissemination simply consisted of brokers comparing tasks
when within reach of each other. Such a solution is obviously quite
limiting in real DTN settings, as nodes who rarely encounter the
pre-selected brokers will suffer from unmatched (or poorly matched)
tasks; moreover, it is not clear how many and which brokers to se-
lect. The ADESSO semi-distributed, self-organising directory and
matching service presented in this paper overcomes these limita-
tions by dynamically electing brokers when needed.

3.5 Task Notification
Tasks that have been matched, as well as those that have expired,

are notified back to the involved users during Task Notification.
Contrary to task matching, that requires an information gathering
protocol, task notification requires information to be routed towards
specific nodes in the network (i.e., unicast messages from a bro-
ker to nodes involved in a match). To accomplish this, we rely in
this paper on existing routing protocols: for example, if a match
has to be urgently notified, epidemic-style protocols can be used;
however, if delays are tolerable and sparing resources is more im-
portant, then a variety of delay-tolerant routing protocols ([18, 19,
16]) can be used within ADESSO instead. An investigation of the
most suitable approach to be adopted within ADESSO will be in-
vestigated as part or our future work.

4. EVALUATION
This section presents the performance evaluation of the ADESSO

middleware. We begin with a description of the simulation setup
we used and the metrics we have been collecting. We then list the
experiments we have conducted and analyse the results obtained.
A custom-built event simulator was developed in Java 5.0.

4.1 Simulation Setup
Mobility Traces In terms of human movement, the MIT traces

contain colocation information from 100 subjects (staff and stu-
dents) at the MIT campus over the course of the 2004-2005 aca-
demic year, to whom Bluetooth-enabled Nokia 6600 phones were
given; colocation information was collected via frequent (every 5
minute) Bluetooth device discoveries. To make the dataset more
manageable, we have extracted three months of colocation data,
corresponding to September-October-November 2004.

Social Network From the same trace set, which includes phone
calls and text messages exchanged between users, we have ex-
tracted a social network whereby a link between user A and user
B is created if A sent a text message or made a phone call to B;
these links are also weighted, depending on the intensity of the
activity between the two users. This implicit social network ex-
traction allowed us to tie real social behaviour with the actual users
movement.

Publication Events Distribution The rate of task publication is
expected to vary across users and across timeslots (e.g., day/night,
week-days/week-ends). To model task publication as realistically
as possible, we have used real text message traces, from the same
MIT trace subset, as an analogy for the publication of user tasks.
During the three months of experiment, more than 3000 messages
were generated.

4.2 Metrics
In order to evaluate ADESSO, we collected three metrics:
Matching: The first metric we use is to count how many tasks

are successfully matched, so that users effectively get recommenda-
tions for their requested activity. However, percentage of matches
is in itself a poor metric, as we are not particularly interested in
matches between strangers, but rather in matches of high social



value (i.e., among users who enjoy carrying out a given activity
together).

Satisfaction: We thus use the satisfaction metric to quantify how
well the system performed in matching user tasks, with respect to
their users’ weighted social network. The optimal result for a user
(U1) submitting task (T1), would be if it were matched with the
currently active task whose owner (U2) is ranked highest by U1.
Although U2 may inhabit a separate partition of the network from
U1, we use this upper bound as it gives an indication of U1’s po-
tential best utility (called ‘best matching hope’ hereafter). The ra-
tio between the utility that T1 actually does generate, and the ‘best
matching hope’ U1 wanted to achieve, is defined as the satisfaction.
Note that for measuring the generated satisfaction of each matched
task, we only consider the first task recommended by the system
(out of the k recommendations that may be requested by the user).

Overhead: We have measured the communication overhead in-
curred by ADESSO both in terms of the number of messages gener-
ated in the system due to broker election, fusion and collaborations,
and in terms of the the traffic generated by those messages. Both
the number of messages and the traffic generated have an impact
on mobile nodes’ resource consumption (e.g., battery).

For the estimation of the traffic generated, tasks are assumed to
have an average size of 1 kB (we created a basic task specification,
with an activity that refers to an existing ontology, that has three
social preferences, and a TTL, and the actual size of such file was
around 500 bytes, we have thus used 1kB as a plausible approxi-
mation of richer user task descriptions). Note that in the evalua-
tion of both the number of messages and the traffic generated, only
the overhead entailed by broker nodes is considered; information
exchanged by non-broker nodes such as the exchange of node’s
popularity is ignored as it can be integrated in the node’s HELLO
protocol. Finally, we have measured the maximum required buffer
size on elected brokers used to store user tasks.

4.3 Benchmark
We compare the performance of ADESSO with the following

protocols:
Random, Independent Brokers: In this scenario, brokers are

elected by mobile nodes but without reasoning on nodes’ mobility
patterns. Furthermore, elected brokers neither fuse nor collaborate.
This scenario allows us to assess the benefits of reasoning on nodes’
popularity for electing quality brokers as well as the benefits of
broker collaboration and fusion in finding good recommendations
for the users.

Epidemic Request Propagation and Matching: In this sce-
nario, all the nodes in the network act as brokers. Upon encoun-
tering each other, brokers exchange a copy of all their unmatched
tasks, leading to an epidemic flooding propagation of user tasks in
the network. When a task is about to expire it is matched locally
in all the brokers that have a copy of it, and all the correspond-
ing recommendations are sent back to the requesting user. We ex-
pect in the scenario a very high satisfaction, as each task will be
matched with its ‘best matching hope’ if the two tasks are in reach
of each other (n-hops away). However, we also expect a very high
overhead both in terms of traffic generated, number of events and
required buffer size, as tasks are being exponentially duplicated in
the network.

4.4 ADESSO Matching, Satisfaction and Over-
head

We compare in this experiment the matching, satisfaction and
overhead generated by ADESSO with respect to the protocols im-
plemented in our benchmark, i.e., Epidemic Task Propagation and
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Figure 2: ADESSO: Distribution of Satisfaction

Matching, and Random Independent Brokers.
ADESSO Matching: As expected, Epidemic has the highest

percentage of matched requests, i.e., 93%, followed by ADESSO
with 81%, then Random Brokers (56%).

ADESSO Satisfaction: We have measured the distribution of
the satisfaction generated by the various algorithms of our bench-
mark and results are depicted in Fig. 2, where the X axis represents
task identifiers and the Y axis contains the generated satisfaction
for that user task. ADESSO clearly outperforms the random inde-
pendent brokers. Finally, as expected, Epidemic-based task propa-
gation and matching generates a better satisfaction than ADESSO.
By aggregating the values of the generated satisfaction for all the
matched tasks, Epidemic-based matching performs 26% better than
ADESSO. However, the overhead of the Epidemic-based task prop-
agation and matching is significantly higher than ADESSO’s gen-
erated overhead as shown in Table 1 and analysed below.

ADESSO Overhead: Table 1 compares the overhead, in terms
of number of messages, traffic generated and buffer size, as re-
quired by ADESSO and Epidemic. We do not consider the random
independent brokers as those brokers do not interact with each other
and thus do not send any messages and do not generate any traffic.
As shown, Epidemic generates a traffic of 3 orders of magnitude
higher than ADESSO with a massive traffic of more than 6.6 GB
during the three months experiment, which makes it unfeasible for
use in real mobile settings. ADESSO further requires 43% less
memory than Epidemic to store user tasks.

Overall, results show that ADESSO is a valuable choice for the
realisation of the Local Social Networking vision as it generates a
fairly high satisfaction while entailing a very low overhead.

No. Messages Traffic (MB) Buffer Size (kB)
ADESSO 682 2.5 132
Epidemic 114020 6686 234

Table 1: ADESSO Overhead

5. CONCLUSION
While social networking Web sites enable virtual interactions

between socially related people (i.e., Global Social Networking),
the widespread adoption of networked handheld devices will fos-
ter physical interactions between them (i.e., Local Social Network-
ing). In order to enable the Local Social Networking vision, we
presented ADESSO, a self-organising directory and matching mid-
dleware service that exploits radio connectivity to find out people
that are colocated and share similar interests. ADESSO supports



semantic task specification, as well as task publication, dissemi-
nation, matching and notification by means of self-organising bro-
kers. Brokers are dynamically elected based on their mobility pat-
terns and their popularity; upon meeting each other, they may either
collaborate or fuse, thus dynamically re-organising themselves and
eventually de-electing bad quality brokers. Our preliminary per-
formance evaluation, conducted using real human mobility traces
and social networks, confirmed that ADESSO generates matches
that highly satisfy users social preferences entailing only a small
overhead.

As part of our ongoing work, we are conducting experiments
using different mobility traces (i.e., 36 users in the city of Cam-
bridge, UK [24], 500 cabs in the city of San Fransisco (USA) [21])
and social networks. We also aim at investigating the most appro-
priate mobility-aware routing protocol for task notification within
ADESSO. Our future work includes the integration of incentive
mechanisms in ADESSO (such as [17]), to ensure that elected bro-
kers will behave effectively and will be rewarded for doing so. Fi-
nally, we are investigating the integration of privacy-aware match-
ing algorithms as performed by privacy-aware service discovery
protocols, where untrusted brokers can carry out ‘blind’ matching
of sensitive information [9].
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