Operating Systems
(1DT020 & 1TT802)

Lecture 9
Memory Management :
Demand paging & page replacement
May 05, 2008

Léon Mugwaneza

http://lwww.it.uu.se/edu/course/homepage/os/vt08

Review: Multiprogramming (with Protection)
 Base and Limit registers

, OxFFFFFFFF
Operating
System <4———] TimitAddr=0x10000 |
Applica'l'ionZ 0x00020000 <_I_BaseAddl"=OXZOOOO I
Applicationl = Addresses bound at load time
0x00000000

» registers BaseAddr and LimitAddr to prevent
user from straying outside designated area

= Only OS can modify Base and limit

« Segmentation : Address translation (virtual memory)

= Addresses bound at link time

= Program thinks it is alone in
memory

= Base register added to
addresses

= Accesses outside area
checked using Limit register

* Program can have multiple
separate segments

No: Error! = Only OS can modify Base and
5/5/08 limit Im/os-vt08-19-2

Virtual
Address

Physical
Address

Review: Implementation of Multi-Segment Model

Virtual

Address

Limit0

Limit1
imit

Limit4

Limit5

Limit6

Limit7

ZZ< < <

 Virtual address space has holes

— Multiple segments efficient for sparse address spaces

Error

Physical
Address

— If a program addresses gaps, trap to kernel and dump core or extend area

* Need protection mode in segment table

— For example, code segment would be read-only, data and stack would be

read-write, etc.

« What must be saved/restored on context switch?

— Segment table stored in CPU, not in memory (small)

— Might store all of processes memory onto disk when switched (called

“swapping”)

5/5/08

Im/os-vt08-19-3

« Extreme form of Context Switch: Swapping

5/5/08

Review: Schematic View of Swapping

operating
system

user
space

main memory

g N
u
@ swap out process P,
. process P,
@ swap in

backing store

— In order to make room for next process, some or all of the previous

process is moved to disk

» Likely need to send out complete segments

— This greatly increases the cost of context-switching
* Desirable alternative?

— Some way to keep only active portions of a process in memory at

any one time

— Need finer granularity control over physical memory

Im/os-vt08-19-4

5/5/08

Goals for Today

* Paging
« Concept of paging to disk (Demand Paging)
 Page replacement policies

Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne,
others from Kubiatowicz - CS162 ©UCB Fall 2007 (University of

California at Berkeley)

Im/os-vt08-19-5

Paging: Physical Memory in Fixed Size Chunks

* Problems with segmentation?
— Must fit variable-sized chunks into physical memory
— May move processes multiple times to fit everything
— Limited options for swapping to disk

* Fragmentation: wasted space
— External: free gaps between allocated chunks
— Internal: don’t need all memory within allocated chunks

« Solution to fragmentation from segments?
— Allocate physical memory in fixed size chunks (“pages’)
— Every chunk of physical memory is equivalent

» Can use simple vector of bits to handle allocation:
00110001110001101 ... 110010

» Each bit represents pa?e of physical memory
1=allocated, 0=free

« Should pages be as big as our previous segments?
— No: Can lead to lots of internal fragmentation
» Typically have small pages (1K-16K)
— Consequently: need multiple pages/segment

5/5/08 Im/os-vt08-19-6

5/5/08

How to Implement Paging?

Virtual Address:

| PageTablePtr

| PageTableSize

Offset |
page #0
| page #1
page #2 |V,R,W
page #3 |V,R,W
v
Access page #4 =
Error page #5 |V,R,W

 Page Table (One per process)
— Resides in physical memory
— Contains physical page and permission for each virtual page

» Permissions include: Valid bits, Read, Write, etc

 Virtual address mapping
— Offset from Virtual address copied to Physical Address
» Example: 10 bit offset = 1024-byte pages
— Virtual page # is all remaining bits
» Example for 32-bits: 32-10 = 22 bits, i.e. 4 million entries
» Physical page # copied from table into physical address

— Check Page Table bounds and permissions

Physical Address

Check Perm|

v

Access
Error

Im/os-vt08-19-7

What about Sharing?

Virtual Address
(Process A): - Offset I

| PageTablePtrA page#0 | VR |
page #1
> page #2
page #3
page #4
page #5

Shared
Page

v

| PageTablePtrB |- page #0

page #1
page #2
page #3
} page #4
page #5 |V,RW

Virtual Address:
Process B - Offset I

5/5/08

This physical page
appears in address
space of both processes

Im/os-vt08-19-8

Simple Page Table Discussion

« What needs to be saved on a
L L L UL LU LLLC UL LU EEEE E context Switch?

0x00 [Ta | 0x00 —1 : — Page table pointer and limit
b __| i+ Analysis
¢ 4 0x04 ! : — Pros
0x04 % —] » Simple memory allocation
£ i 'I‘ » Easy to Share
g 1 0x08 — Con: What if address space is sparse?
h — D » E.g. on UNIX, code starts at 0,
0x08 = Page yoC | stack starts at (231-1).
j | Teble ‘ » With 1K pages, need 4 million
k g page table entries!
| h — Con: What if table really big?
Virtual 0x10 ey » Not all pages used all the time =
b would be nice to have working set
Memory c : of page table in memory
d| :* How about combining paging

Physical : and segmentation?
Memory :

Example (4 byte pages)

5/5/08 Im/os-vt08-19-9

Multi-level Translation

 What about a tree of tables?
— Lowest level page table==memory still allocated with bitmap

— Higher levels often segmented

« Could have any number of levels. Example (top segment):

Virtual
Address:

 What must be saved/restored on context switch?
— Contents of top-level segment registers (for this example)

Offset I

Limit4

Limitd

l

Offset

Physical Address

Limit6

Limit7

page #0 V,R
page #1 V,R
page #2 R,
page #3 |V,RW
page #4 N
page #5 |V,R,W
Access
Error

— Pointer to top-level table (page table)

5/5/08

Check Perm|

v

Access
Error

Im/os-vt08-19-10

Another common example: two-level page table
Physical
10 bits 10 bits 12 bits Address:

Offset |

Virtual
Address:

4KB

| PageTable Ptr

—p 4 bytes ¢— /

* Tree of Page Tables]

« Tables fixed size (1024 entries)
— On context-switch: save single

/
PageTablePtr register 7/

- Valid bits on Page Table Entries

— Don’t need every 2"4-level table
— Even when exist, 2"d-level tables can
reside on disk if not in use —> 4 bytes ¢— -

5/5/08 Im/os-vt08-19-11

What is in a PTE?
« What is in a Page Table Entry (or PTE)?

— Pointer to next-level page table or to actual page
— Permission bits: valid, read-only, read-write, write-only
 Example: Intel x86 architecture PTE:

— Address same format previous slide (10, 10, 12-bit offset)
— Intermediate page tables called “Directories”

Page Frame Number
(Physical Page Number)

Free o
o [0]¢[o[4 §|_§IUWP

5/5/08

31-12

Writeable
User accessible

U U
rop83cs

11-9 876 543210

Present (same as “valid” bit in other architectures)

: Page write transparent: external cache write-through
: Page cache disabled (page cannot be cached)
Accessed: page has been accessed recently
Dirty (PTE only): page has been modified recently
L=1=4MB page (directory only).

Bottom 22 bits of virtual address serve as offset

Im/os-vt08-19-12

Multi-level Translation Analysis

* Pros:

— Only need to allocate as many page table entries as we
need for application

» In other words, sparse address spaces are easy
— Easy memory allocation
— Easy Sharing
» Share at segment or page level (need additional
reference counting)
 Cons:
— One pointer per page (typically 4K — 16K pages today)
— Page tables need to be contiguous
» However, previous example keeps tables to exactly one
page in size
— Two (or more, if >2 levels) lookups per reference
» Seems very expensive!

5/5/08 Im/os-vt08-19-13

Inverted Page Table

* With all previous examples (“Forward Page Tables”)

— Size of page table is at least as large as amount of virtual memory
allocated to processes

— Physical memory may be much less
» Much of process space may be out on disk or not in use

Offset

» Hash

Table

« Answer: use a hash table
— Called an “Inverted Page Table”
— Size is independent of virtual address space
— Directly related to amount of physical memory
— Very attractive option for 64-bit address spaces

« Cons: Complexity of managing hash changes
— Often in hardware!

5/5/08 Im/os-vt08-19-14

Virtual
Address:

How long does Address translation take ?

Offset I

Limit4

Limitd

l

Offset

Physical Address

Limit6

Limit7

page #0 V,R
page #1 V,R
page #2 R,
page #3 |V,RW
page #4 N
page #5 |V,R,W
Access
Error

Check Perm|

v

Access
Error

« Cannot afford to translate on every access
— At least 2 DRAM accesses per actual DRAM access

— or : perhaps /O if page table partially on disk!

 Even worse: What if we are using caching to make

memory access faster than DRAM access???

 Solution? Cache translations!

5/5/08

— Translation Cache: TLB (“Translation Lookaside Buffer”)

Im/os-vt08-19-15

Caching Applied to Address Translation

Virtual i
Physical
Address _~ cqached? Address :
Ves mm——p p | Physical
No 4 Memory
| %
¥’

Translate
(MMU)

Data Read or Write
(untranslated, eg. Page table)

* Question is one of page locality: does it exist?
— Instruction accesses spend a lot of time on the same page (since

accesses sequential)
— Stack accesses have definite locality of reference

— Data accesses have less page locality, but still some...

5/5/08 Im/os-vt08-19-16

What Actually Happens on a TLB Miss?

« Hardware traversed page tables:

— On TLB miss, hardware in MMU looks at current page table to fill TLB
(may walk multiple levels)

» If PTE valid, hardware fills TLB and processor never knows
» If PTE marked as invalid, causes Page Fault, after which kernel
decides what to do afterwards
« Software traversed Page tables (like MIPS)

— On TLB miss, processor receives TLB fault

— Kernel traverses page table to find PTE
» If PTE valid, fills TLB and returns from fault
» If PTE marked as invalid, internally calls Page Fault handler

 Most chip sets provide hardware traversal

— Modern operating systems tend to have more TLB faults since they
use translation for many things

— Examples:
» shared segments
» user-level portions of an operating system

5/5/08 Im/os-vt08-19-17

5/5/08

What happens on a Context Switch?

Need to do something, since TLBs map virtual

addresses to physical addresses

— Address Space just changed, so TLB entries no longer valid!

Options?
— Invalidate TLB: simple but might be expensive
» What if switching frequently between processes?
— Include ProcessID in TLB
» This is an architectural solution: needs hardware

What if translation tables change?

— For example, to move page from memory to disk or vice versa...

— Must invalidate TLB entry!
» Otherwise, might think that page is still in memory!

How big does TLB actually have to be?

— Usually small: 128-512 entries (remember each entry corresponds

to a whole page)

Im/os-vt08-19-18

Demand Paging

 Modern programs require a lot of physical memory
— Memory per system growing faster than 25%-30%/year
« But they don’t use all their memory all of the time

— 90-10 rule: programs spend 90% of their time in 10% of their code
— Wasteful to require all of user’s code to be in memory

« Solution: use main memory as cache for disk

Processor

Control £ gacﬁm§| Tertiary
Second Main

Secondary | Storage
Level | [Memory| | Storage (Tape)
Cache | [DRAM)| (Disk)
(SRAM

P

Datapath

Yde)
diyp-uQ

5/5/08 Im/os-vt08-19-19

lllusion of Infinite Memory

A | (@
00| |- | Q"

w O

. |
able

............ Physical DlSk
Virtual Meymlorfl 50068
Memory 512 M

4 GB
Disk is larger than physical memory =

— In-use virtual memory can be bigger than physical memory
— Combined memory of running processes much larger than physical

memory
» More programs fit into memory, allowing more concurrency

Principle: Transparent Level of Indirection (page table)

— Supports flexible placement of physical data
» Data could be on disk or somewhere across network

— Variable location of data transparent to user program
» Performance issue, not correctness issue

5/5/08 Im/os-vt08-19-20

N\

Demand Paging Mechanisms
 PTE helps us implement demand paging
— Valid = Page in memory, PTE points at physical page
— Not Valid = Page not in memory; use info in PTE to find it on disk when
necessary
« Suppose user references page with invalid PTE?
— Memory Management Unit (MMU) traps to OS "
» Resulting trap is a “Page Fault”
— What does OS do on a Page Fault?: W
» Choose an old page to replace
» If old page modified (“D=1"), write contents back to disk
» Change its PTE and any cached TLB to be invalid
» Load new page into memory from disk
» Update page table entry, invalidate TLB for new entry
» Continue thread from original faulting location
— TLB for new page will be loaded when thread continued!
— While pulling pages off disk for one process, OS runs another process
from ready queue
» Suspended process sits on wait queue
 What if an instruction has side-effects?
— Unwind side-effects (easy to restart) or Finish off side-effects (messy!)
— Example 1: mov (sp)+,10.
» What if page fault occurs when write to stack pointer?
5/5/08 » Did sp get incremented before or after the page fault? Im/os-v108-19-21

Demand Paging Example

« Since Demand Paging like caching, can compute
average access time! (“Effective Access Time”)
— EAT = Hit Rate x Hit Time + Miss Rate x Miss Time

« Example:

— Memory access time = 200 nanoseconds

— Average page-fault service time = 8 milliseconds

— Suppose p = Probability of miss, 1-p = Probably of hit
— Then, we can compute EAT as follows:

EAT =(1-p)x200ns+px8ms
=(1-p) x200ns + p x 8,000,000ns
= 200ns + p x 7,999,800ns

* If one access out of 1,000 causes a page fault, then EAT
= 8.2 us:

— This is a slowdown by a factor of 40!

 What if want slowdown by less than 10%?

— 200ns x 1.1 <EAT=p<2.5x10°6
— This is about 1 page fault in 400000!

5/5/08 Im/os-vt08-19-22

Page Replacement Policies

Why do we care about Replacement Policy?
— Replacement is an issue with any cache
— Particularly important with pages
» The cost of being wrong is high: must go to disk
» Must keep important pages in memory, not toss them out

FIFO (First In, First Out)
— Throw out oldest page. Be fair — let every page live in memory for same
amount of time.
— Bad, because throws out heavily used pages instead of infrequently
used pages
MIN (Minimum):
— Replace page that won’t be used for the longest time
— Great, but can’t really know future...
— Makes good comparison case, however

RANDOM:

— Pick random page for every replacement
— Typical solution for TLB’s. Simple hardware
— Pretty unpredictable — makes it hard to make real-time guarantees

5/5/08 Im/os-vt08-19-23

Replacement Policies (Con’t)
LRU (Least Recently Used):

— Replace page that hasn’t been used for the longest time

— Programs have locality, so if something not used for a while, unlikely to
be used in the near future.

— Seems like LRU should be a good approximation to MIN.

— On each use, remove page from list and place at head

Head—»{Page 6

How to implement LRU? Use a list!

—p

— LRU page is at tail

Page 7|—»{Page 1

Tail (LRV)

Problems with this scheme for paging?

Page 2

— Need to know immediately when each page used so that can change

position in list...

— Many instructions for each hardware access

5/5/08

In practice, people approximate LRU (more later)

Im/os-vt08-19-24

Graph of Page Faults Versus The Number of Frames

16 |-
14 -
12
10 -

number of page faults

N ~ O
|

1 1

3 4
number of frames

* One desirable property: When you add memory the miss

rate goes down
— Does this always happen?
— Seems like it should, right?

* No: BelLady’s anomaly

— Certain replacement algorithms (FIFO) don’t have this obvious property!

5/5/08

Im/os-vt08-19-25

Adding Memory Doesn’t Always Help Fault Rate

 Does adding memory reduce number of page faults?
— Yes for LRU and MIN
— Not necessarily for FIFO! (Called Belady’s anomaly)

« After adding memory:
— With FIFO, number of fault increased (10 for 4 frames vs 9 for 3 frames)

— In contrast, with LRU or MIN, set of pages in memory with X frames is a

subset of set of pages in memory with X+1 frames

5/5/08 Im/os-vt08-19-26

Implementing LRU
Perfect:

— Timestamp page on each reference
— Keep list of pages ordered by time of reference
— Too expensive to implement in reality for many reasons

« Clock Algorithm: Arrange physical pages in circle with

single clock hand ~- =
— Approximate LRU (approx to approx to MIN) / \
— Replace an old page, not the oldest page Set of all pages
 Details: \ inMemory
— Hardware “use” bit per physical page:
» Hardware sets use bit on each reference N — 7’

» If use bit isn’t set, means not referenced in a long time
» hardware sets use bit in the TLB; use bit copied back to page table
when TLB entry gets replaced
— On page fault:
» Advance clock hand (not real time)

» Check use bit: 1—used recently; clear and leave alone
0—selected candidate for replacement

— Will always find a page or loop forever?
» Even if all use bits set, will eventually loop around=FIFO

One way to view clock algorithm:
— Crude partitioning of pages into two groups: young and old

— Why not partition into more than 2 groups? IM/0S-vt08-19-27
5/5/08

Nth Chance version of Clock Algorithm

« Nt chance algorithm: Give page N chances
— OS keeps counter per page: # sweeps
— On page fault, OS checks use bit:
» 1=>clear use and also clear counter (used in last sweep)
» 0=increment counter; if count=N, replace page
— Means that clock hand has to sweep by N times without page being
used before page is replaced
« How do we pick N?
— Why pick large N? Better approx to LRU
» If N ~ 1K, really good approximation
— Why pick small N? More efficient
» Otherwise might have to look a long way to find free page

« What about dirty pages?

— Takes extra overhead to replace a dirty page, so give dirty pages an
extra chance before replacing?

— Common approach:
» Clean pages, use N=1
» Dirty pages, use N=2 (and write back to disk when N=1)

5/5/08 Im/os-vt08-19-28

Free List
- " N
/ \ Advances as needed to keep
/ \\Taelisf full ("backgrotind”)
I Set of all pages .
\ in Memory , @

/
\
<~_ _"7

[Free Pages

For Processes

+ Keep set of free pages ready for use in demand paging

— Free list filled in background by Clock algorithm or other technique
(“Pageout demon’)

— Dirty pages start copying back to disk when enter list

— If page needed before reused, just return to active set
 Advantage: Faster for page fault

— Can always use page (or pages) immediately on fault

5/5/08 Im/os-vt08-19-29

Summary
« Paging : Memory divided into fixed-sized chunks (pages)
of memory

— Virtual page number from virtual address mapped through page table to
physical page number. Offset of virtual address same as physical address

— Changing of page tables only available to kernel
— Every Access translated through page table
» Translation speeded up using a TLB (cache for recent translations)
— Multi-Level Tables Permit sparse population of address space
« Demand paging: main memory used as cache for disk

 Replacement policies

— FIFO: Place pages on queue, replace page at end

— MIN: Replace page that will be used farthest in future

— LRU: Replace page used farthest in past

* Clock Algorithm: Approximation to LRU

— Arrange all pages in circular list

— Sweep through them, marking as not “in use”

— If page not “in use” for one pass, than can replace

« Nth-chance clock algorithm: Another approx LRU

— Give pages multiple passes of clock hand before replacing

» List of free page frames makes page fault handling faster
— Filled in back ground by pageout demon

5/5/08 Im/os-vt08-19-30

