
Operating Systems
(1DT020 & 1TT802)

Lecture 9
Memory Management :

Demand paging & page replacement

May 05, 2008

Léon Mugwaneza

 http://www.it.uu.se/edu/course/homepage/os/vt08

lm/os-vt08-l9-2
5/5/08

Review: Multiprogramming (with Protection)
• Base and Limit registers

0x00000000

0xFFFFFFFF

Application1

Operating
System

Application2 0x00020000 BaseAddr=0x20000

LimitAddr=0x10000

 Addresses bound at load time
 registers BaseAddr and LimitAddr to prevent

user from straying outside designated area
 Only OS can modify Base and limit

DRAM

<?

+

Base

Limit

CPU

Virtual
Address

Physical
Address

No: Error!

• Segmentation : Address translation (virtual memory)
 Addresses bound at link time
 Program thinks it is alone in

memory
 Base register added to

addresses
 Accesses outside area

checked using Limit register
 Program can have multiple

separate segments
 Only OS can modify Base and

limit

lm/os-vt08-l9-3
5/5/08

Review: Implementation of Multi-Segment Model

Base0 Limit0 V
Base1 Limit1 V
Base2 Limit2 V
Base3 Limit3 N
Base4 Limit4 V
Base5 Limit5 N
Base6 Limit6 N
Base7 Limit7 V

OffsetSeg #Virtual
Address

Base2 Limit2 V
+ Physical

Address

> Error

• Virtual address space has holes
– Multiple segments efficient for sparse address spaces
– If a program addresses gaps, trap to kernel and dump core or extend area

• Need protection mode in segment table
– For example, code segment would be read-only, data and stack would be

read-write, etc.
• What must be saved/restored on context switch?

– Segment table stored in CPU, not in memory (small)
– Might store all of processes memory onto disk when switched (called

“swapping”)

lm/os-vt08-l9-4
5/5/08

Review: Schematic View of Swapping

• Extreme form of Context Switch: Swapping
– In order to make room for next process, some or all of the previous

process is moved to disk
» Likely need to send out complete segments

– This greatly increases the cost of context-switching
• Desirable alternative?

– Some way to keep only active portions of a process in memory at
any one time

– Need finer granularity control over physical memory

lm/os-vt08-l9-5
5/5/08

Goals for Today

• Paging
• Concept of paging to disk (Demand Paging)
• Page replacement policies

Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne,
others from Kubiatowicz - CS162 ©UCB Fall 2007 (University of
California at Berkeley)

lm/os-vt08-l9-6
5/5/08

Paging: Physical Memory in Fixed Size Chunks
• Problems with segmentation?

– Must fit variable-sized chunks into physical memory
– May move processes multiple times to fit everything
– Limited options for swapping to disk

• Fragmentation: wasted space
– External: free gaps between allocated chunks
– Internal: don’t need all memory within allocated chunks

• Solution to fragmentation from segments?
– Allocate physical memory in fixed size chunks (“pages”)
– Every chunk of physical memory is equivalent

» Can use simple vector of bits to handle allocation:
00110001110001101 … 110010

» Each bit represents page of physical memory
1⇒allocated, 0⇒free

• Should pages be as big as our previous segments?
– No: Can lead to lots of internal fragmentation

» Typically have small pages (1K-16K)
– Consequently: need multiple pages/segment

lm/os-vt08-l9-7
5/5/08

Physical Address
Offset

How to Implement Paging?

• Page Table (One per process)
– Resides in physical memory
– Contains physical page and permission for each virtual page

» Permissions include: Valid bits, Read, Write, etc
• Virtual address mapping

– Offset from Virtual address copied to Physical Address
» Example: 10 bit offset ⇒ 1024-byte pages

– Virtual page # is all remaining bits
» Example for 32-bits: 32-10 = 22 bits, i.e. 4 million entries
» Physical page # copied from table into physical address

– Check Page Table bounds and permissions

OffsetVirtual
Page #

Virtual Address:

Access
Error

>PageTableSize

PageTablePtr page #0

page #2
page #3
page #4
page #5

V,R
page #1 V,R

V,R,W
V,R,W

N
V,R,W

page #1 V,R

Check Perm

Access
Error

Physical
Page #

lm/os-vt08-l9-8
5/5/08

PageTablePtrB page #0
page #1
page #2
page #3

page #5

V,R
N

V,R,W
N

page #4 V,R
V,R,W

page #4 V,R

What about Sharing?

OffsetVirtual
Page #

Virtual Address
(Process A):

PageTablePtrA page #0
page #1

page #3
page #4
page #5

V,R
V,R

page #2 V,R,W
V,R,W

N
V,R,W

OffsetVirtual
Page #

Virtual Address:
Process B

Shared
Page

This physical page
appears in address

space of both processes

page #2 V,R,W

lm/os-vt08-l9-9
5/5/08

Simple Page Table Discussion
• What needs to be saved on a

context switch?
– Page table pointer and limit

• Analysis
– Pros

» Simple memory allocation
» Easy to Share

– Con: What if address space is sparse?
» E.g. on UNIX, code starts at 0,

stack starts at (231-1).
» With 1K pages, need 4 million

page table entries!
– Con: What if table really big?

» Not all pages used all the time ⇒
would be nice to have working set
of page table in memory

• How about combining paging
and segmentation?

a
b
c
d
e
f
g
h
i
j
k
l

0x00

0x04

0x08

Virtual
Memory

a
b
c
d

e
f
g
h

i
j
k
l

0x00

0x04

0x08

0x0C

0x10

Physical
Memory

4
3
1

Page
Table

Example (4 byte pages)

lm/os-vt08-l9-10
5/5/08

• What about a tree of tables?
– Lowest level page table⇒memory still allocated with bitmap
– Higher levels often segmented

• Could have any number of levels. Example (top segment):

• What must be saved/restored on context switch?
– Contents of top-level segment registers (for this example)
– Pointer to top-level table (page table)

Multi-level Translation

page #0
page #1

page #3
page #4
page #5

V,R
V,R

page #2 V,R,W
V,R,W

N
V,R,W

Offset
Physical Address

Virtual
Address: OffsetVirtual

Page #
Virtual
Seg #

Base0 Limit0 V
Base1 Limit1 V
Base2 Limit2 V
Base3 Limit3 N
Base4 Limit4 V
Base5 Limit5 N
Base6 Limit6 N
Base7 Limit7 V

Base2 Limit2 V

Access
Error>

page #2 V,R,W
Physical
Page #

Check Perm

Access
Error

lm/os-vt08-l9-11
5/5/08

Physical
Address: OffsetPhysical

Page #

4KB

Another common example: two-level page table
10 bits 10 bits 12 bits

Virtual
Address: OffsetVirtual

P2 index
Virtual

P1 index

4 bytes

PageTable Ptr

• Tree of Page Tables
• Tables fixed size (1024 entries)

– On context-switch: save single
PageTablePtr register

• Valid bits on Page Table Entries
– Don’t need every 2nd-level table
– Even when exist, 2nd-level tables can

reside on disk if not in use 4 bytes

lm/os-vt08-l9-12
5/5/08

What is in a PTE?
• What is in a Page Table Entry (or PTE)?

– Pointer to next-level page table or to actual page
– Permission bits: valid, read-only, read-write, write-only

• Example: Intel x86 architecture PTE:
– Address same format previous slide (10, 10, 12-bit offset)
– Intermediate page tables called “Directories”

P: Present (same as “valid” bit in other architectures)
W: Writeable
U: User accessible

PWT: Page write transparent: external cache write-through
PCD: Page cache disabled (page cannot be cached)

A: Accessed: page has been accessed recently
D: Dirty (PTE only): page has been modified recently
L: L=1⇒4MB page (directory only).

Bottom 22 bits of virtual address serve as offset

lm/os-vt08-l9-13
5/5/08

Multi-level Translation Analysis

• Pros:
– Only need to allocate as many page table entries as we

need for application
» In other words, sparse address spaces are easy

– Easy memory allocation
– Easy Sharing

» Share at segment or page level (need additional
reference counting)

• Cons:
– One pointer per page (typically 4K – 16K pages today)
– Page tables need to be contiguous

» However, previous example keeps tables to exactly one
page in size

– Two (or more, if >2 levels) lookups per reference
» Seems very expensive!

lm/os-vt08-l9-14
5/5/08

• With all previous examples (“Forward Page Tables”)
– Size of page table is at least as large as amount of virtual memory

allocated to processes
– Physical memory may be much less

» Much of process space may be out on disk or not in use

• Answer: use a hash table
– Called an “Inverted Page Table”
– Size is independent of virtual address space
– Directly related to amount of physical memory
– Very attractive option for 64-bit address spaces

• Cons: Complexity of managing hash changes
– Often in hardware!

Inverted Page Table

OffsetVirtual
Page #

Hash
Table

OffsetPhysical
Page #

lm/os-vt08-l9-15
5/5/08

• Cannot afford to translate on every access
– At least 2 DRAM accesses per actual DRAM access
– or : perhaps I/O if page table partially on disk!

• Even worse: What if we are using caching to make
memory access faster than DRAM access???

• Solution? Cache translations!
– Translation Cache: TLB (“Translation Lookaside Buffer”)

How long does Address translation take ?

page #0
page #1

page #3
page #4
page #5

V,R
V,R

page #2 V,R,W
V,R,W

N
V,R,W

Offset
Physical Address

Virtual
Address: OffsetVirtual

Page #
Virtual
Seg #

Base0 Limit0 V
Base1 Limit1 V
Base2 Limit2 V
Base3 Limit3 N
Base4 Limit4 V
Base5 Limit5 N
Base6 Limit6 N
Base7 Limit7 V Access

Error>

Physical
Page #

Check Perm

Access
Error

lm/os-vt08-l9-16
5/5/08

Caching Applied to Address Translation

• Question is one of page locality: does it exist?
– Instruction accesses spend a lot of time on the same page (since

accesses sequential)
– Stack accesses have definite locality of reference
– Data accesses have less page locality, but still some…

Data Read or Write
(untranslated, eg. Page table)

CPU Physical
Memory

TLB

Translate
(MMU)

No

Virtual
Address

Physical
Address

Yes
Cached?

Sa
ve

Re
sul

t

lm/os-vt08-l9-17
5/5/08

What Actually Happens on a TLB Miss?

• Hardware traversed page tables:
– On TLB miss, hardware in MMU looks at current page table to fill TLB

(may walk multiple levels)
» If PTE valid, hardware fills TLB and processor never knows
» If PTE marked as invalid, causes Page Fault, after which kernel

decides what to do afterwards
• Software traversed Page tables (like MIPS)

– On TLB miss, processor receives TLB fault
– Kernel traverses page table to find PTE

» If PTE valid, fills TLB and returns from fault
» If PTE marked as invalid, internally calls Page Fault handler

• Most chip sets provide hardware traversal
– Modern operating systems tend to have more TLB faults since they

use translation for many things
– Examples:

» shared segments
» user-level portions of an operating system

lm/os-vt08-l9-18
5/5/08

What happens on a Context Switch?
• Need to do something, since TLBs map virtual

addresses to physical addresses
– Address Space just changed, so TLB entries no longer valid!

• Options?
– Invalidate TLB: simple but might be expensive

» What if switching frequently between processes?
– Include ProcessID in TLB

» This is an architectural solution: needs hardware

• What if translation tables change?
– For example, to move page from memory to disk or vice versa…
– Must invalidate TLB entry!

» Otherwise, might think that page is still in memory!
• How big does TLB actually have to be?

– Usually small: 128-512 entries (remember each entry corresponds
to a whole page)

lm/os-vt08-l9-19
5/5/08

Demand Paging
• Modern programs require a lot of physical memory

– Memory per system growing faster than 25%-30%/year
• But they don’t use all their memory all of the time

– 90-10 rule: programs spend 90% of their time in 10% of their code
– Wasteful to require all of user’s code to be in memory

• Solution: use main memory as cache for disk

O
n-C

hip
C
ache

Control

Datapath

Secondary
Storage
(Disk)

Processor

Main
Memory
(DRAM)

Second
Level
Cache
(SRAM)

Tertiary
Storage
(Tape)

Caching

lm/os-vt08-l9-20
5/5/08

Page
Table

TLB

Illusion of Infinite Memory

• Disk is larger than physical memory ⇒
– In-use virtual memory can be bigger than physical memory
– Combined memory of running processes much larger than physical

memory
» More programs fit into memory, allowing more concurrency

• Principle: Transparent Level of Indirection (page table)
– Supports flexible placement of physical data

» Data could be on disk or somewhere across network
– Variable location of data transparent to user program

» Performance issue, not correctness issue

Physical
Memory
512 MB

Disk
500GB

∞

Virtual
Memory
4 GB

lm/os-vt08-l9-21
5/5/08

• PTE helps us implement demand paging
– Valid ⇒ Page in memory, PTE points at physical page
– Not Valid ⇒ Page not in memory; use info in PTE to find it on disk when

necessary
• Suppose user references page with invalid PTE?

– Memory Management Unit (MMU) traps to OS
» Resulting trap is a “Page Fault”

– What does OS do on a Page Fault?:
» Choose an old page to replace
» If old page modified (“D=1”), write contents back to disk
» Change its PTE and any cached TLB to be invalid
» Load new page into memory from disk
» Update page table entry, invalidate TLB for new entry
» Continue thread from original faulting location

– TLB for new page will be loaded when thread continued!
– While pulling pages off disk for one process, OS runs another process

from ready queue
» Suspended process sits on wait queue

• What if an instruction has side-effects?
– Unwind side-effects (easy to restart) or Finish off side-effects (messy!)
– Example 1: mov (sp)+,10.

» What if page fault occurs when write to stack pointer?
» Did sp get incremented before or after the page fault?

Demand Paging Mechanisms

lm/os-vt08-l9-22
5/5/08

Demand Paging Example
• Since Demand Paging like caching, can compute

average access time! (“Effective Access Time”)
– EAT = Hit Rate x Hit Time + Miss Rate x Miss Time

• Example:
– Memory access time = 200 nanoseconds
– Average page-fault service time = 8 milliseconds
– Suppose p = Probability of miss, 1-p = Probably of hit
– Then, we can compute EAT as follows:

EAT = (1 – p) x 200ns + p x 8 ms
 = (1 – p) x 200ns + p x 8,000,000ns

 = 200ns + p x 7,999,800ns
• If one access out of 1,000 causes a page fault, then EAT

= 8.2 μs:
– This is a slowdown by a factor of 40!

• What if want slowdown by less than 10%?
– 200ns x 1.1 < EAT ⇒ p < 2.5 x 10-6

– This is about 1 page fault in 400000!

lm/os-vt08-l9-23
5/5/08

Page Replacement Policies
• Why do we care about Replacement Policy?

– Replacement is an issue with any cache
– Particularly important with pages

» The cost of being wrong is high: must go to disk
» Must keep important pages in memory, not toss them out

• FIFO (First In, First Out)
– Throw out oldest page. Be fair – let every page live in memory for same

amount of time.
– Bad, because throws out heavily used pages instead of infrequently

used pages
• MIN (Minimum):

– Replace page that won’t be used for the longest time
– Great, but can’t really know future…
– Makes good comparison case, however

• RANDOM:
– Pick random page for every replacement
– Typical solution for TLB’s. Simple hardware
– Pretty unpredictable – makes it hard to make real-time guarantees

lm/os-vt08-l9-24
5/5/08

Replacement Policies (Con’t)
• LRU (Least Recently Used):

– Replace page that hasn’t been used for the longest time
– Programs have locality, so if something not used for a while, unlikely to

be used in the near future.
– Seems like LRU should be a good approximation to MIN.

• How to implement LRU? Use a list!

– On each use, remove page from list and place at head
– LRU page is at tail

• Problems with this scheme for paging?
– Need to know immediately when each page used so that can change

position in list…
– Many instructions for each hardware access

• In practice, people approximate LRU (more later)

Page 6 Page 7 Page 1 Page 2Head

Tail (LRU)

lm/os-vt08-l9-25
5/5/08

Graph of Page Faults Versus The Number of Frames

• One desirable property: When you add memory the miss
rate goes down

– Does this always happen?
– Seems like it should, right?

• No: BeLady’s anomaly
– Certain replacement algorithms (FIFO) don’t have this obvious property!

lm/os-vt08-l9-26
5/5/08

Adding Memory Doesn’t Always Help Fault Rate
• Does adding memory reduce number of page faults?

– Yes for LRU and MIN
– Not necessarily for FIFO! (Called Belady’s anomaly)

• After adding memory:
– With FIFO, number of fault increased (10 for 4 frames vs 9 for 3 frames)
– In contrast, with LRU or MIN, set of pages in memory with X frames is a

subset of set of pages in memory with X+1 frames

D
C

E

B
A

D

C
B

A

DCBAEBADCBA E

3
2
1

Ref:
Page:

CD4

E
D

B
A

E

C
B

A

DCBAEBADCBA E

3
2
1

Ref:
Page:

lm/os-vt08-l9-27
5/5/08

Implementing LRU
• Perfect:

– Timestamp page on each reference
– Keep list of pages ordered by time of reference
– Too expensive to implement in reality for many reasons

• Clock Algorithm: Arrange physical pages in circle with
single clock hand

– Approximate LRU (approx to approx to MIN)
– Replace an old page, not the oldest page

• Details:
– Hardware “use” bit per physical page:

» Hardware sets use bit on each reference
» If use bit isn’t set, means not referenced in a long time
» hardware sets use bit in the TLB; use bit copied back to page table

when TLB entry gets replaced
– On page fault:

» Advance clock hand (not real time)
» Check use bit: 1→used recently; clear and leave alone

0→selected candidate for replacement
– Will always find a page or loop forever?

» Even if all use bits set, will eventually loop around⇒FIFO
• One way to view clock algorithm:

– Crude partitioning of pages into two groups: young and old
– Why not partition into more than 2 groups?

Set of all pages
in Memory

lm/os-vt08-l9-28
5/5/08

Nth Chance version of Clock Algorithm
• Nth chance algorithm: Give page N chances

– OS keeps counter per page: # sweeps
– On page fault, OS checks use bit:

» 1⇒clear use and also clear counter (used in last sweep)
» 0⇒increment counter; if count=N, replace page

– Means that clock hand has to sweep by N times without page being
used before page is replaced

• How do we pick N?
– Why pick large N? Better approx to LRU

» If N ~ 1K, really good approximation
– Why pick small N? More efficient

» Otherwise might have to look a long way to find free page
• What about dirty pages?

– Takes extra overhead to replace a dirty page, so give dirty pages an
extra chance before replacing?

– Common approach:
» Clean pages, use N=1
» Dirty pages, use N=2 (and write back to disk when N=1)

lm/os-vt08-l9-29
5/5/08

Free List

• Keep set of free pages ready for use in demand paging
– Free list filled in background by Clock algorithm or other technique

(“Pageout demon”)
– Dirty pages start copying back to disk when enter list
– If page needed before reused, just return to active set

• Advantage: Faster for page fault
– Can always use page (or pages) immediately on fault

Set of all pages
in Memory

Single Clock Hand:
Advances as needed to keep
freelist full (“background”)

D

D

Free Pages
For Processes

lm/os-vt08-l9-30
5/5/08

Summary
• Paging : Memory divided into fixed-sized chunks (pages)

of memory
– Virtual page number from virtual address mapped through page table to

physical page number. Offset of virtual address same as physical address
– Changing of page tables only available to kernel
– Every Access translated through page table

» Translation speeded up using a TLB (cache for recent translations)
– Multi-Level Tables Permit sparse population of address space

• Demand paging: main memory used as cache for disk
• Replacement policies

– FIFO: Place pages on queue, replace page at end
– MIN: Replace page that will be used farthest in future
– LRU: Replace page used farthest in past

• Clock Algorithm: Approximation to LRU
– Arrange all pages in circular list
– Sweep through them, marking as not “in use”
– If page not “in use” for one pass, than can replace

• Nth-chance clock algorithm: Another approx LRU
– Give pages multiple passes of clock hand before replacing

• List of free page frames makes page fault handling faster
– Filled in back ground by pageout demon

