Operating Systems
(1DT020 & 1TT802)

Lecture 8

Memory Management :
Virtual memory mechanism

April 28, 2008
Léon Mugwaneza

http://www.it.uu.se/edu/course/homepage/os/vt08

Review : Basic Readers/Writers Solution

« Correctness Constraints:

— Readers can access database when no writers
— Writers can access database when no readers or writers

— Only one thread manipulates state variables at a time

 Monitor DataBase
— 4 external procedures :
» BeginRead, EndRead,
» BeginWrite, EndWrite
— State variables
» int AR: # active readers;

initially = 0

» int WR: # waiting readers;

» initially = 0

» int AW: # active writers;
initially = 0

» int WW: # waiting writers;
initially = 0

» Condition okToRead = NIL
» Condition okToWrite = NIL

4/28/08

Reader () {
DataBase.BeginRead ()

// Now we are active!
// Perform actual

//read-only access
AccessDatabase (ReadOnly) ;

DataBase.EndRead () ;

}

Writer () {
DataBase.BeginWrite ()

// Now we are active!
// Perform actual

//read/write access
AccessDatabase (ReadWrite) ;

DataBase.EndWrite () ;

} Im/os-vt08-18-2

Review : DataBase Monitor’s operations

BeginRead () {

while ((AW + WW) > 0) { // -Is it safe to read?
WR++; // -No. Writers exist
okToRead.wait () ; // ->Sleep on cond var
WR--; // No longer waiting

}

AR++; // Now we are active!

}

EndRead () {
AR--; // No longer active
if (AR == 0 && WW > 0) // No other active readers
okToWrite.signal() ; // Wake up one writer

BeginWrite () ({

while ((AW + AR) > 0) { // -Is it safe to write?
WW++; // -No. Active users exist
okToWrite.wait () ; // -> Sleep on cond var
WW--; // No longer waiting

}

AW++; // Now we are active!

}
EndWrite () {

AW--; // No longer active

if (WW > 0){ // Give priority to writers
okToWrite.signal() ; // Wake up one writer

} else if (WR > 0) { // Otherwise, wake reader
okToRead.broadcast() ; // Wake all readers

4/28/08 '} Im/os-vt08-18-3

Simulation of Readers/Writers solution

Consider the following sequence of operators:
- R1,R2, W1, R3

On entry, each reader checks the following:
while ((AW + WW) > 0) { // Is it safe to read?

WR++; // No. Writers exist
okToRead.wait () ; // Sleep on cond var
WR--; // No longer waiting
}
AR++; // Now we are active!

First, R1 comes along:
AR=1,WR=0,AW=0,WW=0

Next, R2 comes along:
AR=2, WR=0,AW=0,WW=0
Now, readers may take a while to access database
— Situation: Locks released
— Only AR is non-zero

4/28/08 Im/os-vt08-18-4

Simulation(2)

* Next, W1 comes along:
while ((AW + AR) > 0) { // Is it safe to write?

WW++ ; // No. Active users exist
okToWrite.wait () ; // Sleep on cond var
WW--; // No longer waiting

}

AW++;

« Can’t start because of readers, so go to sleep:
AR=2, WR=0,AW=0, WW =1

* Finally, R3 comes along:
AR=2, WR=1, AW=0, WW =1

* Now, say that R2 finishes before R1:
AR=1,WR=1, AW=0, WW =1

* Finally, last of first two readers (R1) finishes and wakes

up writer:

if (AR == 0 && WW > 0) // No other active readers
okToWrite.signal () ; // Wake up one writer

4/28/08 Im/os-vt08-18-5

Simulation(3)

 When writer wakes up, get:
AR=0,WR=1, AW=1,WW=0

 Then, when writer finishes:

if (WW > 0){ // Give priority to writers
okToWrite.signal();// Wake up one writer

} else if (WR > 0) { // Otherwise, wake reader
okToRead.broadcast () ; // Wake all readers

}

— Writer wakes up reader, so get:
AR=1,WR=0,AW=0,WW=0

« When reader completes, we are finished

4/28/08 Im/os-vt08-18-6

Questions

Can readers starve? Consider BeginRead() code:
while ((AW + WW) > 0) { // Is it safe to read?

WR++; // No. Writers exist

okToRead.wait () ; // Sleep on cond var

WR--; // No longer waiting
}

AR++; // Now we are active!
 What if we erase the condition check in EndRead()?
AR--; // No longer active

1 == && WW > 0) // No other active readers|
okToWrite.signal(); // Wake up one writer
* Further, what if we turn the signal() into broadcast()
AR--; // No longer active

okToWrite.broadcast(); // Wake up all writers
Finally, what if we use only one condition variable (call it
“okToContinue”) instead of two separate ones?

— Both readers and writers sleep on this variable
— Must use broadcast() instead of signal()

4/28/08 Im/os-vt08-I18-7

Can we construct Monitors from Semaphores?

* Locking aspect is easy: Just use a mutex

« Can we implement condition variables this way?
Wait () { semaphore.P(); }
Signal () { semaphore.V(); }

* Does this work better?

Wait (Lock lock) {
lock.Release() ;
semaphore.P () ;
lock.Acquire() ;

}

4/28/08 Im/os-vt08-18-8

Construction of Monitors from Semaphores (con’t)

* Problem with previous try:

— P and V are commutative — result is the same no matter what
order they occur

— Wait and Signal on condition variables are NOT commutative

* Does this fix the problem?

Wait (Lock lock) {
lock.Release() ;
semaphore.P () ;
lock.Acquire() ;
}
Signal() {
if semaphore queue is not empty
semaphore.V () ;
}
— Not legal to look at contents of semaphore queue

— There is a race condition — signaler can slip in after lock release
and before waiter executes semaphore.P()

It is actually possible to do this correctly
— Complex solution for Hoare scheduling in book
— Can you come up with simpler Mesa-scheduled solution?

4/28/08 Im/os-vt08-18-9

Monitor Conclusion

* Monitors represent the logic of the program
— Wait if necessary

— Signal when change something so any waiting threads can
proceed

« Basic structure of monitor-based program:

Check and/or update
Use monitor procedure state variables

Wait if necessary

Do something so no need to wait

Check and/or update

Use monitor procedure .
state variables

4/28/08 Im/os-vt08-18-10

Java Language Support for Synchronization

« Java has explicit support for threads and thread
synchronization

« Bank Account example:

class Account {
private int balance;
// object constructor
public Account (int initialBalance) {
balance = initialBalance;
}

public synchronized int getBalance () {
return balance;
}

public synchronized void deposit (int amount) ({
balance += amount;
}

}

— Every object has an associated lock which gets automatically
acquired and released on entry and exit from a synchronized
method.

4/28/08 Im/os-vt08-18-11

Java Language Support for Synchronization (con’t)

- Java also has synchronized statements:

synchronized (object) {

}

— Since every Java object has an associated lock, this type of
statement acquires and releases the object’s lock on entry
and exit of the body

— Works properly even with exceptions:
synchronized (object) {

BoFoo();
\ "

void DoFoo () {
throw errException;
}

4/28/08 Im/os-vt08-18-12

Java Language Support for Synchronization (con’t 2)

* In addition to a lock, every object has a single condition
variable associated with it

— How to wait inside a synchronization method or block:
» void wait (long timeout); // Wait for timeout
» void wait(long timeout, int nanoseconds); //variant
» void wait () ;

— How to signal in a synchronized method or block:
» void notify () ; // wakes up oldest waiter
» void notifyAll(); // like broadcast, wakes everyone

— Condition variables can wait for a bounded length of time. This
is useful for handling exception cases:

tl = time.now() ;
while (!'ATMRequest()) {
wait (CHECKPERIOD) ;
t2 = time.new() ;
if (t2 - tl1 > LONG_TIME) checkMachine() ;

}
— Not all Java VMs equivalent!

» Different scheduling policies, not necessarily preemptive!

4/28/08 Im/os-vt08-18-13

Memory Management

* Address binding
 Address translation
* Virtual memory

Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne,
others from Kubiatowicz - CS162 ©UCB Fall 2007 (University of

California at Berkeley)

4/28/08 Im/os-vt08-18-14

code data files code data files
registers stack registers ||| registers ||| registers
stack stack stack

thread —» ;

%

?

§<_

— thread

single-threaded process

multithreaded process

 Threads encapsulate concurrency

— “Active” component of a process

 Address spaces encapsulate protection

4/28/08

— Keeps buggy program from trashing the system
— “Passive” component of a process

Recall: Single and Multithreaded Processes

Im/os-vt08-18-15

Binding of Instructions and Data to Memory

« Binding of instructions and data to addresses:

— Choose addresses for instructions and data from the standpoint of the
processor

datal: .word 32 0x300, 00000020

start: 1w $2,datal ($0) OXQOOVQZEWO
jal checkit 0x904 OC

loop: addi $2, $2, -1 0x908 2042FFFF
bne $2, $0, loop 0x90C 40FFFE

checkit: .. 0;

— Could we place datal, start, and/or checkit at different addresses?
» Yes. But need to modify some instructions or even data
> Absolute addresses have to be relocated
» When?
« Compile time/Load time/Execution time

— Related: which physical memory locations hold particular instructions or
data?

4/28/08 Im/os-vt08-18-16

Multi-step Processing of a Program for Execution

* Preparation of a program for St
execution involves components at:
— Compile and/or assembler time (i.e. . ' |
“gccu and or “asu) Zz?epmill';nd/or } ;:i%rgplle
— Link/Load time (unix “Id” does link)
— Execution time (e.g. dynamic libs)
. object
« Addresses can be bound to final S
values anywhere in this path ohjoell
— Depends on hardware support iioos
— Also depends on operating system sator
 Dynamic Libraries
— Linking postponed until execution - load
— Small piece of code, stub, used to G
locate the appropriate memory-resident
library routine L
— Stub replaces itself with the address of “namical J
the routine, and executes routine Sl%srfr? _ .
dynamic m-g;sg:;ry . f’“)fg L(‘:'uor;
linking rr:;r;gy time)

4/28/08 Im/os-vt08-18-17

Multiprogramming (First Version)

* Multiprogramming without Translation or Protection
— Must somehow prevent address overlap between threads

. OxFFFFFFFF
Operating
System

Application2 | 0x00020000

Applicationl
0x00000000

— Trick: Use Loader/Linker: Adjust addresses while program loaded into
memory (loads, stores, jumps)

» Everything adjusted to memory location of program
» Translation done by a linker-loader
» Was pretty common in early days

« With this solution, no protection: bugs in any program

can cause other programs to crash or even the OS

4/28/08 Im/os-vt08-18-18

Multiprogramming (Version with Protection)

« Can we protect programs from each other without translation?

) OxFFFFFFFF
Operating

System <«—— TimitAddr=0x10000]
Application2 0x00020000 ¢ BaseAddr=0x20000]

Applicationl

0x00000000

> Yes: use two special
registers BaseAddr and

Physical
LimitAddr to prevent user . Address

from straying outside
designated area (segment)
==> Segmentation

No: Errorl

— If user tries to access an illegal address, cause an error
— User may have multiple segments available (e.g x86)

» Loads and stores include segment ID in opcode:
x86 Example: mov [es:bx], ax.

» Operating system moves around segment base pointers as
necessary

— During switch, kernel loads new base/limit from TCB

1808 » User not allowed to change base/limit registers oSV t08IB-19

Issues with simple segmentation method

process 6

process 5

process 2

oS

—>

process 6

process 5

oS

—>

 Fragmentation problem
— Not every process is the same size

— Over time, memory space becomes fragmented

process 6

process 5

process 6

process 11

process 9

process 9

process 10

oS

oS

 Need enough physical memory for every process
— Doesn’t allow heap and stack to grow independently

— Want to put these as far apart in memory as possible so that
they can grow as needed

* Hard to do inter-process sharing

4/28/08

— Want to share code segments when possible
— Want to share memory between processes

— Helped by by providing multiple segments per process

Im/os-vt08-18-20

More Flexible Segmentation

subroutine

stack

Sqrt

symbol
table

main
program

logical address

4
2
3
user view of physical
memory space memory space :

 Logical View: multiple separate segments

— Typical: Code, Data, Stack

— Others: memory sharing, etc
« Each segment is given region of contiguous memory

— Has a base and limit
— Can reside anywhere in physical memory

4/28/08

Im/os-vt08-18-21

Implementation of Multi-Segment Model

Virtual
Address _ Error
Limit0
Limit1
imitz |V
Physical
Limitd |V Address

Limit5|N
Limit6 |N
Limit7 |V

« Segment map resides in processor
— Segment number mapped into base/limit pair
— Base added to offset to generate physical address
— Error check catches offset out of range
* As many chunks of physical memory as entries
— Segment addressed by portion of virtual address

— However, could be included in instruction instead:
» Xx86 Example: mov [es:bx], ax.

 What is “VIN”?

— Can mark segments as invalid; requires check as well

4/28/08 Im/os-vt08-18-22

Observations about Segmentation

Virtual address space has holes
— Segmentation efficient for sparse address spaces

— A correct program should never address gaps (except as mentioned
in moment)

» If it does, trap to kernel and dump core

When it is OK to address outside valid range:
— This is how the stack and heap are allowed to grow
— For instance, stack takes fault, system automatically increases size
of stack
Need protection mode in segment table
— For example, code segment would be read-only
— Data and stack would be read-write (stores allowed)
— Shared segment could be read-only or read-write

What must be saved/restored on context switch?
— Segment table stored in CPU, not in memory (small)

— Might store all of processes memory onto disk when switched (called
“swapping”)

4/28/08 Im/os-vt08-18-23

Schematic View of Swapping

operating
system

user
space

main memory

g N
u
@ swap out process P,
. process P,
@ swap in

backing store

« Extreme form of Context Switch: Swapping

— In order to make room for next process, some or all of the previous

process is moved to disk

» Likely need to send out complete segments

— This greatly increases the cost of context-switching
* Desirable alternative?

— Some way to keep only active portions of a process in memory at

any one time

— Need finer granularity control over physical memory

4/28/08

Im/os-vt08-18-24

Paging: Physical Memory in Fixed Size Chunks

* Problems with segmentation?
— Must fit variable-sized chunks into physical memory
— May move processes multiple times to fit everything
— Limited options for swapping to disk

* Fragmentation: wasted space
— External: free gaps between allocated chunks
— Internal: don’t need all memory within allocated chunks

« Solution to fragmentation from segments?
— Allocate physical memory in fixed size chunks (“pages”)
— Every chunk of physical memory is equivalent

» Can use simple vector of bits to handle allocation:
00110001110001101 ... 110010

» Each bit reloresents age of physical memory
1=allocated, 0=free
« Should pages be as big as our previous segments?
— No: Can lead to lots of internal fragmentation
» Typically have small pages (1K-16K)
— Consequently: need multiple pages/segment

4/28/08 Im/os-vt08-18-25

How to Implement Paging?

Virtual Address:

| PageTablePtr

| PageTableSize

Offset |
page #0
| page #1
page #2 |V,R,W
page #3 |V,R,W
v
Access page #4 =
Error page #5 |V,R,W

 Page Table (One per process)
— Resides in physical memory
— Contains physical page and permission for each virtual page

» Permissions include: Valid bits, Read, Write, etc

 Virtual address mapping
— Offset from Virtual address copied to Physical Address
» Example: 10 bit offset = 1024-byte pages
— Virtual page # is all remaining bits
» Example for 32-bits: 32-10 = 22 bits, i.e. 4 million entries
» Physical page # copied from table into physical address

— Check Page Table bounds and permissions

4/28/08

- Offset |

Physical Address

Check Perm|

v

Access
Error

Im/os-vt08-18-26

What about Sharing?

Virtual Address
(Process A): - Offset I

| PageTablePtrA page#0 | VR |
page #1
> page #2
page #3
page #4
page #5

Shared
Page

v

| PageTablePtrB |- page #0

page #1
page #2
page #3
} page #4
page #5 |V,RW

Virtual Address:
Process B - Offset I

4/28/08

This physical page
appears in address
space of both processes

Im/os-vt08-18-27

Simple Page Table Discussion

« What needs to be switched on a
L L L UL LU LLLC UL LU EEEE E context Switch?

0x00 [Ta | 0x00 —1 : — Page table pointer and limit
b __| i+ Analysis
¢ 4 0x04 ! : — Pros
0x04 % —] » Simple memory allocation
£ i 'I‘ » Easy to Share
g 1 0x08 — Con: What if address space is sparse?
h — D » E.g. on UNIX, code starts at 0,
0x08 = Page yoC | stack starts at (231-1).
j | Teble ‘ » With 1K pages, need 4 million
k g page table entries!
| h — Con: What if table really big?
Virtual 0x10 ey » Not all pages used all the time =
b would be nice to have working set
Memory c : of page table in memory
d| :* How about combining paging

Physical : and segmentation?
Memory :

Example (4 byte pages)

4/28/08 Im/os-vt08-18-28

Multi-level Translation

 What about a tree of tables?
— Lowest level page table==memory still allocated with bitmap

— Higher levels often segmented

« Could have any number of levels. Example (top segment):

Virtual
Address:

 What must be saved/restored on context switch?
— Contents of top-level segment registers (for this example)

Offset I

Limit4

Limitd

l

Offset

Physical Address

Limit6

Limit7

page #0 V,R
page #1 V,R
page #2 R,
page #3 |V,RW
page #4 N
page #5 |V,R,W
Access
Error

— Pointer to top-level table (page table)

4/28/08

Check Perm|

v

Access
Error

Im/os-vt08-18-29

Virtual

Address:

How long does Address translation take ?

l

- Offset

page #0 | V,R
page #1 | V,R
page #2 VR,
page #3 |V,R,W
Cimitd page #4 N
imi VRW
Base5| Limit5 page #5
Base6| Limit6 A
Base7 | Limit7 ccess
» Error

heck Pernj

v

Access
Error

« Cannot afford to translate on every access
— At least three DRAM accesses per actual DRAM access

— Or: perhaps 1/0O if page table partially on disk!

Physical Address

 Even worse: What if we are using caching to make

 Solution? Cache translations!

4/28/08

— Translation Cache: TLB (“Translation Lookaside Buffer”)

memory access faster than DRAM access???

Im/os-vt08-18-30

Caching Applied to Address Translation

Virtual i
Physical
Address _~ cqached? Address :
Ves mm——p p | Physical
No 4 Memory
| %
¥’

Translate
(MMU)

Data Read or Write
(untranslated)

* Question is one of page locality: does it exist?
— Instruction accesses spend a lot of time on the same page (since

accesses sequential)
— Stack accesses have definite locality of reference

— Data accesses have less page locality, but still some...

4/28/08 Im/os-vt08-18-31

Summary

Memory is a resource that must be shared
— Controlled Overlap: only shared when appropriate
— Translation: Change Virtual Addresses into Physical Addresses
— Protection: Prevent unauthorized Sharing of resources

Simple Protection through Segmentation
— Base+limit registers restrict memory accessible to user
— Can be used to translate as well

Full translation of addresses through Memory
Management Unit (MMU)

— Paging : Memory divided into fixed-sized chunks (pages) of memory

— Virtual page number from virtual address mapped through page table
to physical page number

— Offset of virtual address same as physical address

— Changing of page tables only available to kernel

— Every Access translated through page table

» Translation speeded up using a TLB (cache for recent
translations)

Multi-Level Tables

— Virtual address mapped to series of tables
— Permit sparse population of address space

4/28/08 Im/os-vt08-18-32

