
Operating Systems
(1DT020 & 1TT802)

Lecture 8

Memory Management :
Virtual memory mechanism

April 28, 2008

Léon Mugwaneza

 http://www.it.uu.se/edu/course/homepage/os/vt08

lm/os-vt08-l8-2
4/28/08

Review : Basic Readers/Writers Solution

Reader() {
DataBase.BeginRead()

 // Now we are active!
// Perform actual

 //read-only access
AccessDatabase(ReadOnly);

 DataBase.EndRead();
 }
 Writer() {

DataBase.BeginWrite()
 // Now we are active!

// Perform actual
 //read/write access

AccessDatabase(ReadWrite);
 DataBase.EndWrite();
 }

• Monitor DataBase
– 4 external procedures :

» BeginRead, EndRead,
» BeginWrite, EndWrite

– State variables
» int AR: # active readers;
 initially = 0
» int WR: # waiting readers;
» initially = 0
» int AW: # active writers;
 initially = 0
» int WW: # waiting writers;
 initially = 0
» Condition okToRead = NIL
» Condition okToWrite = NIL

• Correctness Constraints:
– Readers can access database when no writers
– Writers can access database when no readers or writers
– Only one thread manipulates state variables at a time

lm/os-vt08-l8-3
4/28/08

Review : DataBase Monitor’s operations
BeginRead() {

while ((AW + WW) > 0) { // -Is it safe to read?
WR++; // -No. Writers exist
okToRead.wait(); // ->Sleep on cond var
WR--; // No longer waiting

}
AR++; // Now we are active!

 }
 EndRead(){
 AR--; // No longer active

if (AR == 0 && WW > 0) // No other active readers
okToWrite.signal(); // Wake up one writer

}

 BeginWrite() {
while ((AW + AR) > 0) { // -Is it safe to write?

WW++; // -No. Active users exist
okToWrite.wait(); // -> Sleep on cond var
WW--; // No longer waiting

}
AW++; // Now we are active!

}
 EndWrite() {

AW--; // No longer active
if (WW > 0){ // Give priority to writers

okToWrite.signal(); // Wake up one writer
} else if (WR > 0) { // Otherwise, wake reader

okToRead.broadcast(); // Wake all readers
}

}

lm/os-vt08-l8-4
4/28/08

Simulation of Readers/Writers solution
• Consider the following sequence of operators:

– R1, R2, W1, R3

• On entry, each reader checks the following:
while ((AW + WW) > 0) { // Is it safe to read?

WR++; // No. Writers exist
okToRead.wait(); // Sleep on cond var
WR--; // No longer waiting

}
AR++; // Now we are active!

• First, R1 comes along:
AR = 1, WR = 0, AW = 0, WW = 0

• Next, R2 comes along:
AR = 2, WR = 0, AW = 0, WW = 0

• Now, readers may take a while to access database
– Situation: Locks released
– Only AR is non-zero

lm/os-vt08-l8-5
4/28/08

Simulation(2)

• Next, W1 comes along:
while ((AW + AR) > 0) { // Is it safe to write?

WW++; // No. Active users exist
okToWrite.wait(); // Sleep on cond var
WW--; // No longer waiting

}
AW++;

• Can’t start because of readers, so go to sleep:
AR = 2, WR = 0, AW = 0, WW = 1

• Finally, R3 comes along:
AR = 2, WR = 1, AW = 0, WW = 1

• Now, say that R2 finishes before R1:
AR = 1, WR = 1, AW = 0, WW = 1

• Finally, last of first two readers (R1) finishes and wakes
up writer:

if (AR == 0 && WW > 0) // No other active readers
okToWrite.signal(); // Wake up one writer

lm/os-vt08-l8-6
4/28/08

Simulation(3)

• When writer wakes up, get:
AR = 0, WR = 1, AW = 1, WW = 0

• Then, when writer finishes:
if (WW > 0){ // Give priority to writers

okToWrite.signal();// Wake up one writer
} else if (WR > 0) { // Otherwise, wake reader

okToRead.broadcast(); // Wake all readers
}

– Writer wakes up reader, so get:
AR = 1, WR = 0, AW = 0, WW = 0

• When reader completes, we are finished

lm/os-vt08-l8-7
4/28/08

Questions
• Can readers starve? Consider BeginRead() code:

while ((AW + WW) > 0) { // Is it safe to read?
WR++; // No. Writers exist
okToRead.wait(); // Sleep on cond var
WR--; // No longer waiting

}
AR++; // Now we are active!

• What if we erase the condition check in EndRead()?
AR--; // No longer active
if (AR == 0 && WW > 0) // No other active readers

okToWrite.signal(); // Wake up one writer

• Further, what if we turn the signal() into broadcast()
AR--; // No longer active
okToWrite.broadcast(); // Wake up all writers

• Finally, what if we use only one condition variable (call it
“okToContinue”) instead of two separate ones?

– Both readers and writers sleep on this variable
– Must use broadcast() instead of signal()

lm/os-vt08-l8-8
4/28/08

Can we construct Monitors from Semaphores?
• Locking aspect is easy: Just use a mutex
• Can we implement condition variables this way?

Wait() { semaphore.P(); }
Signal() { semaphore.V(); }

– Doesn’t work: Wait() may sleep with lock held
• Does this work better?

Wait(Lock lock) {
 lock.Release();
 semaphore.P();
 lock.Acquire();
}
Signal() { semaphore.V(); }

– No: Condition vars have no history, semaphores have history:
» What if thread signals and no one is waiting? NO-OP
» What if thread later waits? Thread Waits
» What if thread V’s and no one is waiting? Increment
» What if thread later does P? Decrement and continue

lm/os-vt08-l8-9
4/28/08

Construction of Monitors from Semaphores (con’t)
• Problem with previous try:

– P and V are commutative – result is the same no matter what
order they occur

– Wait and Signal on condition variables are NOT commutative
• Does this fix the problem?

Wait(Lock lock) {
 lock.Release();
 semaphore.P();
 lock.Acquire();
}
Signal() {
 if semaphore queue is not empty
 semaphore.V();
}

– Not legal to look at contents of semaphore queue
– There is a race condition – signaler can slip in after lock release

and before waiter executes semaphore.P()
• It is actually possible to do this correctly

– Complex solution for Hoare scheduling in book
– Can you come up with simpler Mesa-scheduled solution?

lm/os-vt08-l8-10
4/28/08

Monitor Conclusion
• Monitors represent the logic of the program

– Wait if necessary
– Signal when change something so any waiting threads can

proceed

• Basic structure of monitor-based program:

 Use monitor procedure

 Do something so no need to wait

 Use monitor procedure

Check and/or update
state variables

Wait if necessary

Check and/or update
state variables

lm/os-vt08-l8-11
4/28/08

Java Language Support for Synchronization

• Java has explicit support for threads and thread
synchronization

• Bank Account example:
class Account {

private int balance;
// object constructor
public Account (int initialBalance) {

balance = initialBalance;
}
public synchronized int getBalance() {

return balance;
}
public synchronized void deposit(int amount) {

balance += amount;
}

}
– Every object has an associated lock which gets automatically

acquired and released on entry and exit from a synchronized
method.

lm/os-vt08-l8-12
4/28/08

Java Language Support for Synchronization (con’t)
• Java also has synchronized statements:

synchronized (object) {
…

}
– Since every Java object has an associated lock, this type of

statement acquires and releases the object’s lock on entry
and exit of the body

– Works properly even with exceptions:
synchronized (object) {

…
DoFoo();
…

}
void DoFoo() {

throw errException;
}

lm/os-vt08-l8-13
4/28/08

Java Language Support for Synchronization (con’t 2)

• In addition to a lock, every object has a single condition
variable associated with it

– How to wait inside a synchronization method or block:
» void wait(long timeout); // Wait for timeout
» void wait(long timeout, int nanoseconds); //variant
» void wait();

– How to signal in a synchronized method or block:
» void notify(); // wakes up oldest waiter
» void notifyAll(); // like broadcast, wakes everyone

– Condition variables can wait for a bounded length of time. This
is useful for handling exception cases:

t1 = time.now();
while (!ATMRequest()) {

wait (CHECKPERIOD);
t2 = time.new();
if (t2 – t1 > LONG_TIME) checkMachine();

}
– Not all Java VMs equivalent!

» Different scheduling policies, not necessarily preemptive!

lm/os-vt08-l8-14
4/28/08

Memory Management

• Address binding
• Address translation
• Virtual memory

Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne,
others from Kubiatowicz - CS162 ©UCB Fall 2007 (University of
California at Berkeley)

lm/os-vt08-l8-15
4/28/08

Recall: Single and Multithreaded Processes

• Threads encapsulate concurrency
– “Active” component of a process

• Address spaces encapsulate protection
– Keeps buggy program from trashing the system
– “Passive” component of a process

lm/os-vt08-l8-16
4/28/08

Binding of Instructions and Data to Memory
• Binding of instructions and data to addresses:

– Choose addresses for instructions and data from the standpoint of the
processor

– Could we place data1, start, and/or checkit at different addresses?
» Yes. But need to modify some instructions or even data

Absolute addresses have to be relocated
» When?

• Compile time/Load time/Execution time
– Related: which physical memory locations hold particular instructions or

data?

data1: .word 32
…

start: lw $2,data1($0)
jal checkit

loop: addi $2, $2, -1
bne $2, $0, loop

…
checkit: …

0x300 00000020
 … …
0x900 8C020300
0x904 0C000340
0x908 2042FFFF
0x90C 1440FFFE
 …
0xD00 …

lm/os-vt08-l8-17
4/28/08

Multi-step Processing of a Program for Execution
• Preparation of a program for

execution involves components at:
– Compile and/or assembler time (i.e.

“gcc” and or “as”)
– Link/Load time (unix “ld” does link)
– Execution time (e.g. dynamic libs)

• Addresses can be bound to final
values anywhere in this path

– Depends on hardware support
– Also depends on operating system

• Dynamic Libraries
– Linking postponed until execution
– Small piece of code, stub, used to

locate the appropriate memory-resident
library routine

– Stub replaces itself with the address of
the routine, and executes routine

compiler and/or
assembler

lm/os-vt08-l8-18
4/28/08

Multiprogramming (First Version)
• Multiprogramming without Translation or Protection

– Must somehow prevent address overlap between threads

– Trick: Use Loader/Linker: Adjust addresses while program loaded into
memory (loads, stores, jumps)

» Everything adjusted to memory location of program
» Translation done by a linker-loader
» Was pretty common in early days

• With this solution, no protection: bugs in any program
can cause other programs to crash or even the OS

0x00000000

0xFFFFFFFF

Application1

Operating
System

Application2 0x00020000

lm/os-vt08-l8-19
4/28/08

Multiprogramming (Version with Protection)
• Can we protect programs from each other without translation?

DRAM

<?

+

Base

Limit

CPU

Virtual
Address

Physical
Address

No: Error!

– If user tries to access an illegal address, cause an error
– User may have multiple segments available (e.g x86)

» Loads and stores include segment ID in opcode:
x86 Example: mov [es:bx],ax.

» Operating system moves around segment base pointers as
necessary

– During switch, kernel loads new base/limit from TCB
» User not allowed to change base/limit registers

0x00000000

0xFFFFFFFF

Application1

Operating
System

Application2 0x00020000 BaseAddr=0x20000

LimitAddr=0x10000

 Yes: use two special
registers BaseAddr and
LimitAddr to prevent user
from straying outside
designated area (segment)
==> Segmentation

lm/os-vt08-l8-20
4/28/08

Issues with simple segmentation method

• Fragmentation problem
– Not every process is the same size
– Over time, memory space becomes fragmented

• Need enough physical memory for every process
– Doesn’t allow heap and stack to grow independently
– Want to put these as far apart in memory as possible so that

they can grow as needed

• Hard to do inter-process sharing
– Want to share code segments when possible
– Want to share memory between processes
– Helped by by providing multiple segments per process

process 11

lm/os-vt08-l8-21
4/28/08

More Flexible Segmentation

• Logical View: multiple separate segments
– Typical: Code, Data, Stack
– Others: memory sharing, etc

• Each segment is given region of contiguous memory
– Has a base and limit
– Can reside anywhere in physical memory

1

3

2

4

user view of
memory space

1
4

2

3

physical
memory space

1

2

lm/os-vt08-l8-22
4/28/08

Implementation of Multi-Segment Model

• Segment map resides in processor
– Segment number mapped into base/limit pair
– Base added to offset to generate physical address
– Error check catches offset out of range

• As many chunks of physical memory as entries
– Segment addressed by portion of virtual address
– However, could be included in instruction instead:

» x86 Example: mov [es:bx],ax.
• What is “V/N”?

– Can mark segments as invalid; requires check as well

Base0 Limit0 V
Base1 Limit1 V
Base2 Limit2 V
Base3 Limit3 N
Base4 Limit4 V
Base5 Limit5 N
Base6 Limit6 N
Base7 Limit7 V

OffsetSeg #Virtual
Address

Base2 Limit2 V
+ Physical

Address

> Error

lm/os-vt08-l8-23
4/28/08

Observations about Segmentation
• Virtual address space has holes

– Segmentation efficient for sparse address spaces
– A correct program should never address gaps (except as mentioned

in moment)
» If it does, trap to kernel and dump core

• When it is OK to address outside valid range:
– This is how the stack and heap are allowed to grow
– For instance, stack takes fault, system automatically increases size

of stack
• Need protection mode in segment table

– For example, code segment would be read-only
– Data and stack would be read-write (stores allowed)
– Shared segment could be read-only or read-write

• What must be saved/restored on context switch?
– Segment table stored in CPU, not in memory (small)
– Might store all of processes memory onto disk when switched (called

“swapping”)

lm/os-vt08-l8-24
4/28/08

Schematic View of Swapping

• Extreme form of Context Switch: Swapping
– In order to make room for next process, some or all of the previous

process is moved to disk
» Likely need to send out complete segments

– This greatly increases the cost of context-switching
• Desirable alternative?

– Some way to keep only active portions of a process in memory at
any one time

– Need finer granularity control over physical memory

lm/os-vt08-l8-25
4/28/08

Paging: Physical Memory in Fixed Size Chunks
• Problems with segmentation?

– Must fit variable-sized chunks into physical memory
– May move processes multiple times to fit everything
– Limited options for swapping to disk

• Fragmentation: wasted space
– External: free gaps between allocated chunks
– Internal: don’t need all memory within allocated chunks

• Solution to fragmentation from segments?
– Allocate physical memory in fixed size chunks (“pages”)
– Every chunk of physical memory is equivalent

» Can use simple vector of bits to handle allocation:
00110001110001101 … 110010

» Each bit represents page of physical memory
1⇒allocated, 0⇒free

• Should pages be as big as our previous segments?
– No: Can lead to lots of internal fragmentation

» Typically have small pages (1K-16K)
– Consequently: need multiple pages/segment

lm/os-vt08-l8-26
4/28/08

Physical Address
Offset

How to Implement Paging?

• Page Table (One per process)
– Resides in physical memory
– Contains physical page and permission for each virtual page

» Permissions include: Valid bits, Read, Write, etc
• Virtual address mapping

– Offset from Virtual address copied to Physical Address
» Example: 10 bit offset ⇒ 1024-byte pages

– Virtual page # is all remaining bits
» Example for 32-bits: 32-10 = 22 bits, i.e. 4 million entries
» Physical page # copied from table into physical address

– Check Page Table bounds and permissions

OffsetVirtual
Page #

Virtual Address:

Access
Error

>PageTableSize

PageTablePtr page #0

page #2
page #3
page #4
page #5

V,R
page #1 V,R

V,R,W
V,R,W

N
V,R,W

page #1 V,R

Check Perm

Access
Error

Physical
Page #

lm/os-vt08-l8-27
4/28/08

PageTablePtrB page #0
page #1
page #2
page #3

page #5

V,R
N

V,R,W
N

page #4 V,R
V,R,W

page #4 V,R

What about Sharing?

OffsetVirtual
Page #

Virtual Address
(Process A):

PageTablePtrA page #0
page #1

page #3
page #4
page #5

V,R
V,R

page #2 V,R,W
V,R,W

N
V,R,W

OffsetVirtual
Page #

Virtual Address:
Process B

Shared
Page

This physical page
appears in address

space of both processes

page #2 V,R,W

lm/os-vt08-l8-28
4/28/08

Simple Page Table Discussion
• What needs to be switched on a

context switch?
– Page table pointer and limit

• Analysis
– Pros

» Simple memory allocation
» Easy to Share

– Con: What if address space is sparse?
» E.g. on UNIX, code starts at 0,

stack starts at (231-1).
» With 1K pages, need 4 million

page table entries!
– Con: What if table really big?

» Not all pages used all the time ⇒
would be nice to have working set
of page table in memory

• How about combining paging
and segmentation?

a
b
c
d
e
f
g
h
i
j
k
l

0x00

0x04

0x08

Virtual
Memory

a
b
c
d

e
f
g
h

i
j
k
l

0x00

0x04

0x08

0x0C

0x10

Physical
Memory

4
3
1

Page
Table

Example (4 byte pages)

lm/os-vt08-l8-29
4/28/08

• What about a tree of tables?
– Lowest level page table⇒memory still allocated with bitmap
– Higher levels often segmented

• Could have any number of levels. Example (top segment):

• What must be saved/restored on context switch?
– Contents of top-level segment registers (for this example)
– Pointer to top-level table (page table)

Multi-level Translation

page #0
page #1

page #3
page #4
page #5

V,R
V,R

page #2 V,R,W
V,R,W

N
V,R,W

Offset
Physical Address

Virtual
Address: OffsetVirtual

Page #
Virtual
Seg #

Base0 Limit0 V
Base1 Limit1 V
Base2 Limit2 V
Base3 Limit3 N
Base4 Limit4 V
Base5 Limit5 N
Base6 Limit6 N
Base7 Limit7 V

Base2 Limit2 V

Access
Error>

page #2 V,R,W
Physical
Page #

Check Perm

Access
Error

lm/os-vt08-l8-30
4/28/08

• Cannot afford to translate on every access
– At least three DRAM accesses per actual DRAM access
– Or: perhaps I/O if page table partially on disk!

• Even worse: What if we are using caching to make
memory access faster than DRAM access???

• Solution? Cache translations!
– Translation Cache: TLB (“Translation Lookaside Buffer”)

How long does Address translation take ?

page #0
page #1

page #3
page #4
page #5

V,R
V,R

page #2 V,R,W
V,R,W

N
V,R,W

Offset
Physical Address

Virtual
Address: OffsetVirtual

Page #
Virtual
Seg #

Base0 Limit0 V
Base1 Limit1 V
Base2 Limit2 V
Base3 Limit3 N
Base4 Limit4 V
Base5 Limit5 N
Base6 Limit6 N
Base7 Limit7 V Access

Error>

Physical
Page #

Check Perm

Access
Error

lm/os-vt08-l8-31
4/28/08

Caching Applied to Address Translation

• Question is one of page locality: does it exist?
– Instruction accesses spend a lot of time on the same page (since

accesses sequential)
– Stack accesses have definite locality of reference
– Data accesses have less page locality, but still some…

Data Read or Write
(untranslated)

CPU Physical
Memory

TLB

Translate
(MMU)

No

Virtual
Address

Physical
Address

Yes
Cached?

Sa
ve

Re
sul

t

lm/os-vt08-l8-32
4/28/08

Summary
• Memory is a resource that must be shared

– Controlled Overlap: only shared when appropriate
– Translation: Change Virtual Addresses into Physical Addresses
– Protection: Prevent unauthorized Sharing of resources

• Simple Protection through Segmentation
– Base+limit registers restrict memory accessible to user
– Can be used to translate as well

• Full translation of addresses through Memory
Management Unit (MMU)

– Paging : Memory divided into fixed-sized chunks (pages) of memory
– Virtual page number from virtual address mapped through page table

to physical page number
– Offset of virtual address same as physical address
– Changing of page tables only available to kernel
– Every Access translated through page table

» Translation speeded up using a TLB (cache for recent
translations)

• Multi-Level Tables
– Virtual address mapped to series of tables
– Permit sparse population of address space

