
Operating Systems
(1DT020 & 1TT802)

Lecture 7
Process synchronisation :

 Semaphores,
 Monitors, and Condition Variables

(cont’d)

April 24, 2008

Léon Mugwaneza

 http://www.it.uu.se/edu/course/homepage/os/vt08

lm/os-vt08-l7-2
4/24/08

Goals for Today

• Continue with Synchronization Abstractions
– Semaphores, Monitors and condition variables

• Readers-Writers problem and solution
• Language Support for Synchronization

Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne,
others from Kubiatowicz - CS162 ©UCB Fall 2007 (University of
California at Berkeley)

lm/os-vt08-l7-3
4/24/08

Higher-level Primitives than Locks
• What is the right abstraction for synchronizing

threads that share memory?
– Want as high a level primitive as possible

• Good primitives and practices important!
– Since execution is not entirely sequential, really hard to find

bugs, since they happen rarely
– UNIX is pretty stable now, but up until about mid-80s (10

years after started), systems running UNIX would crash every
week or so – concurrency bugs

• Synchronization is a way of coordinating multiple
concurrent activities that are using shared state
– We will see a couple of ways of structuring the sharing

lm/os-vt08-l7-4
4/24/08

Semaphores
• Semaphores are a kind of generalized lock

– First defined by Dijkstra in late 60s
– Main synchronization primitive used in original UNIX

• Definition: a Semaphore has a non-negative integer value, a
wait queue and supports the following two operations (apart
from initialization):
– P(): an atomic operation that does the following:

if value = 0 then sleep
else decrement value by 1

» Course book calls this operation wait()
– V(): an atomic operation that does the following:

if there are any threads sleeping on that
 semaphore, wakeup 1 thread (at random)
else increment value by 1

» Course book calls this operation signal()
– Note that P() stands for “proberen” (to test) and V() stands for

“verhogen” (to increment) in Dutch
– DOWN() sometimes used for P(), and UP() for V()

Some implementations allow negative values (P always
decrements value by one, and V always increments value by one)

lm/os-vt08-l7-5
4/24/08

Value=2Value=1Value=0

Semaphores are not integers!
• Semaphores are like integers, except

– No negative values
– Only operations allowed are P and V – can’t read or write

value, except to set it initially
– Operations must be atomic

» Two P’s together can’t decrement value below zero
» Similarly, thread going to sleep in P won’t miss

wakeup from V – even if they both happen at same
time

• Semaphore from railway analogy
– Here is a semaphore initialized to 2 for resource control:

Value=0Value=0Value=2

lm/os-vt08-l7-6
4/24/08

Two uses of Semaphores
• Mutual Exclusion (initial value = 1)

– Also called “Binary Semaphore”.
– Can be used for mutual exclusion:

semaphore.P();
// Critical section goes here
semaphore.V();

• Scheduling Constraints (initial value = 0)
– Locks are fine for mutual exclusion, but what if you want a thread to wait for

something?
– Example: suppose you had to implement ThreadJoin which must wait for

thread to terminiate:
Initial value of semaphore = 0
ThreadJoin {
 semaphore.P();
}
ThreadFinish {
 semaphore.V();
}

• What if initial value > 1?
– Counting semaphore : consider a resource with N copies

» request a copy using P(), release copy using V()
» Scheduling constraints on resource utilization

lm/os-vt08-l7-7
4/24/08

Producer-consumer with a bounded buffer

• Problem Definition
– Producer puts things into a shared buffer
– Consumer takes them out
– Need synchronization to coordinate producer/consumer

• Don’t want producer and consumer to have to work in
lockstep, so put a fixed-size buffer between them
– Need to synchronize access to this buffer
– Producer needs to wait if buffer is full
– Consumer needs to wait if buffer is empty

• Example 1: GCC compiler
– cpp | cc1 | cc2 | as | ld

• Example 2: Coke machine
– Producer can put limited number of cokes in machine
– Consumer can’t take cokes out if machine is empty

Producer ConsumerBuffer

lm/os-vt08-l7-8
4/24/08

Correctness constraints for solution
• Correctness Constraints:

– Consumer must wait for producer to fill buffers, if none full
(scheduling constraint)

– Producer must wait for consumer to empty buffers, if all full
(scheduling constraint)

– Only one thread can manipulate buffer queue at a time (mutual
exclusion)

• Remember why we need mutual exclusion
– Because computers are “not very clever”
– Imagine if in real life: the delivery person is filling the machine and

somebody comes up and tries to stick their money into the
machine

• General rule of thumb:
Use a separate semaphore for each constraint
– Semaphore fullBuffers; // consumer’s constraint
– Semaphore emptyBuffers;// producer’s constraint
– Semaphore mutex; // mutual exclusion

lm/os-vt08-l7-9
4/24/08

Full Solution to Bounded Buffer
Semaphore fullBuffer = 0; // Initially, no coke
Semaphore emptyBuffers = num; // Initially, num empty slots

 Semaphore mutex = 1; // No one using machine

Producer(item) {
 While(True){
 do something else; // incuding producing item
 emptyBuffers.P(); // Wait until space

mutex.P(); // Wait until buffer free
Enqueue(item);
mutex.V();
fullBuffers.V(); // Tell consumers there is more coke

 }
}
Consumer() {

 While(True){
fullBuffers.P(); // Check if there’s a coke
mutex.P(); // Wait until machine free
item = Dequeue();
mutex.V();
emptyBuffers.V(); // tell producer a slot is free

 do something else; // including using item
 }
}

lm/os-vt08-l7-10
4/24/08

Discussion about Solution

• Why asymmetry?
– Producer does: emptyBuffer.P(), fullBuffer.V()
– Consumer does: fullBuffer.P(), emptyBuffer.V()

• Is order of P’s important?
– Yes! Can cause deadlock

• Is order of V’s important?
– No, except that it might affect scheduling efficiency

• What if we have 2 producers or 2 consumers?
– Do we need to change anything?

lm/os-vt08-l7-11
4/24/08

Motivation for Monitors and Condition Variables
• Semaphores are a huge step up; just think of trying to

do the bounded buffer with only loads and stores
– Problem is that semaphores are dual purpose:

» They are used for both mutex and scheduling constraints
» Example: the fact that flipping of P’s in bounded buffer

gives deadlock is not immediately obvious. How do you
prove correctness to someone?

• Cleaner idea: Use locks for mutual exclusion and
condition variables for scheduling constraints

• Monitor: zero or more condition variables for
managing concurrent access to shared data, together
with operations that are guaranteed to be mutual
exclusive
– Monitors are language constructs (programming paradigms)
– Some languages like Java provide this natively
– Most others use actual locks and condition variables

lm/os-vt08-l7-12
4/24/08

 Monitor with Condition Variables

• Lock: the lock provides mutual exclusion to shared data
– Always acquire before accessing shared data structure
– Always release after finishing with shared data
– Lock initially free

• Condition Variable: a queue of threads waiting for something inside a critical
section
– Two operations on conditions : condition.wait() and condition.signal()
– Key idea: make it possible to go to sleep inside critical section by

atomically releasing lock at time we go to sleep
– Contrast to semaphores: Can’t wait inside critical section

lm/os-vt08-l7-13
4/24/08

Simple Monitor Example (version 1)
• Here is an (infinite) synchronized queue

Lock lock;
Queue queue;

AddToQueue(item) {
lock.Acquire(); // Lock shared data
queue.enqueue(item); // Add item
lock.Release(); // Release Lock

}

RemoveFromQueue() {
lock.Acquire(); // Lock shared data
item = queue.dequeue();// Get next item or null
lock.Release(); // Release Lock
return(item); // Might return null

}

lm/os-vt08-l7-14
4/24/08

Condition Variables
• How do we change the RemoveFromQueue() routine to

wait until something is on the queue?
– Could do this by keeping a count of the number of things on the

queue (with semaphores), but error prone
• Condition Variable: a queue of threads waiting for

something inside a critical section
– Key idea: allow sleeping inside critical section by atomically

releasing lock at time we go to sleep

• Operations:
– Wait(): Atomically release lock and go to sleep. Re-acquire lock

later, before returning.
– Signal(): Wake up one waiter, if any
– Note some monitor definitions have a 3rd operation :

» Broadcast(): Wake up all waiters
• Rule: Must hold lock when doing condition variable

operations

lm/os-vt08-l7-15
4/24/08

Complete Monitor Example (with condition variable)
• Here is an (infinite) synchronized queue

Lock lock;
Condition dataready;
Queue queue;

AddToQueue(item) {
lock.Acquire(); // Get Lock
queue.enqueue(item); // Add item
dataready.signal(); // Signal any waiters
lock.Release(); // Release Lock

}

RemoveFromQueue() {
lock.Acquire(); // Get Lock
while (queue.isEmpty()) {

dataready.wait(&lock); // If nothing, sleep
}
item = queue.dequeue(); // Get next item
lock.Release(); // Release Lock
return(item);

}

lm/os-vt08-l7-16
4/24/08

Mesa vs. Hoare monitors
• Need to be careful about precise definition of signal and

wait. Consider a piece of our dequeue code:
while (queue.isEmpty()) {

dataready.wait(&lock); // If nothing, sleep
}
item = queue.dequeue();// Get next item

– Why didn’t we do this?
if (queue.isEmpty()) {

dataready.wait(&lock); // If nothing, sleep
}
item = queue.dequeue();// Get next item

• Answer: depends on the type of scheduling
– Hoare-style (most textbooks):

» Signaler gives lock, CPU to waiter; waiter runs immediately
» Waiter gives up lock, processor back to signaler when it exits critical

section or if it waits again
– Mesa-style (most real operating systems):

» Signaler keeps lock and processor
» Waiter placed on ready queue with no special priority
» Practically, need to check condition again after wait

lm/os-vt08-l7-17
4/24/08

Monitors are language constructs
• Programmer does not have to bother about lock :

Monitor queueMonitor{
Condition dataready;
Queue queue;

 //init{…}
// internal procedures (do not use cond. var.)

 // AddToQueue & RemoveFromQueue are external ops
AddToQueue(item) {

queue.enqueue(item); // Add item
dataready.signal(); // Signal any waiters

}
RemoveFromQueue() {

while (queue.isEmpty()) {
dataready.wait(); // If nothing, sleep

}
item = queue.dequeue(); // Get next item
return(item);

}
 } // end Monitor queueMonitor

 lock, and system call to lock.Acquire() and lock.Release()
will be inserted by the compiler

lm/os-vt08-l7-18
4/24/08

Readers/Writers Problem

• Motivation: Consider a shared database
– Two classes of users:

» Readers – never modify database
» Writers – read and modify database

– Is using a single lock on the whole database sufficient?
» Like to have many readers at the same time
» Only one writer at a time

R
R

R

W

lm/os-vt08-l7-19
4/24/08

Basic Readers/Writers Solution
• Correctness Constraints:

– Readers can access database when no writers
– Writers can access database when no readers or writers
– Only one thread manipulates state variables at a time

• Basic structure of a solution:
– Reader()
 Wait until no writers
 Access data base
 Check out – wake up a waiting writer

– Writer()
 Wait until no active readers or writers
 Access database
 Check out – wake up waiting readers or writer

– Monitor DataBase
» 4 external procedures :

• BeginRead, EndRead, BeginWrite, EndWrite
» State variables (Protected inside monitor)

• int AR: Number of active readers; initially = 0
• int WR: Number of waiting readers; initially = 0
• int AW: Number of active writers; initially = 0
• int WW: Number of waiting writers; initially = 0
• Condition okToRead = NIL
• Condition okToWrite = NIL

lm/os-vt08-l7-20
4/24/08

Code for Readers and Writers
Reader() {
DataBase.BeginRead()

 // Now we are active!
// Perform actual read-only access
AccessDatabase(ReadOnly);

 DataBase.EndRead();
 }

 Writer() {
DataBase.BeginWrite()

 // Now we are active!
// Perform actual read/write access
AccessDatabase(ReadWrite);

 DataBase.EndWrite();
 }

lm/os-vt08-l7-21
4/24/08

DataBase Monitor’s operations
BeginRead() {

while ((AW + WW) > 0) { // -Is it safe to read?
WR++; // -No. Writers exist
okToRead.wait(); // ->Sleep on cond var
WR--; // No longer waiting

}
AR++; // Now we are active!

 }
 EndRead(){
 AR--; // No longer active

if (AR == 0 && WW > 0) // No other active readers
okToWrite.signal(); // Wake up one writer

}

 BeginWrite() {
while ((AW + AR) > 0) { // -Is it safe to write?

WW++; // -No. Active users exist
okToWrite.wait(); // -> Sleep on cond var
WW--; // No longer waiting

}
AW++; // Now we are active!

}
 EndWrite() {

AW--; // No longer active
if (WW > 0){ // Give priority to writers

okToWrite.signal(); // Wake up one writer
} else if (WR > 0) { // Otherwise, wake reader

okToRead.broadcast(); // Wake all readers
}

}

lm/os-vt08-l7-22
4/24/08

Simulation of Readers/Writers solution
• Consider the following sequence of operators:

– R1, R2, W1, R3

• On entry, each reader checks the following:
while ((AW + WW) > 0) { // Is it safe to read?

WR++; // No. Writers exist
okToRead.wait(); // Sleep on cond var
WR--; // No longer waiting

}
AR++; // Now we are active!

• First, R1 comes along:
AR = 1, WR = 0, AW = 0, WW = 0

• Next, R2 comes along:
AR = 2, WR = 0, AW = 0, WW = 0

• Now, readers may take a while to access database
– Situation: Locks released
– Only AR is non-zero

lm/os-vt08-l7-23
4/24/08

Simulation(2)

• Next, W1 comes along:
while ((AW + AR) > 0) { // Is it safe to write?

WW++; // No. Active users exist
okToWrite.wait(); // Sleep on cond var
WW--; // No longer waiting

}
AW++;

• Can’t start because of readers, so go to sleep:
AR = 2, WR = 0, AW = 0, WW = 1

• Finally, R3 comes along:
AR = 2, WR = 1, AW = 0, WW = 1

• Now, say that R2 finishes before R1:
AR = 1, WR = 1, AW = 0, WW = 1

• Finally, last of first two readers (R1) finishes and wakes
up writer:

if (AR == 0 && WW > 0) // No other active readers
okToWrite.signal(); // Wake up one writer

lm/os-vt08-l7-24
4/24/08

Simulation(3)

• When writer wakes up, get:
AR = 0, WR = 1, AW = 1, WW = 0

• Then, when writer finishes:
if (WW > 0){ // Give priority to writers

okToWrite.signal();// Wake up one writer
} else if (WR > 0) { // Otherwise, wake reader

okToRead.broadcast(); // Wake all readers
}

– Writer wakes up reader, so get:
AR = 1, WR = 0, AW = 0, WW = 0

• When reader completes, we are finished

lm/os-vt08-l7-25
4/24/08

Questions
• Can readers starve? Consider BeginRead() code:

while ((AW + WW) > 0) { // Is it safe to read?
WR++; // No. Writers exist
okToRead.wait(); // Sleep on cond var
WR--; // No longer waiting

}
AR++; // Now we are active!

• What if we erase the condition check in EndRead()?
AR--; // No longer active
if (AR == 0 && WW > 0) // No other active readers

okToWrite.signal(); // Wake up one writer

• Further, what if we turn the signal() into broadcast()
AR--; // No longer active
okToWrite.broadcast(); // Wake up all writers

• Finally, what if we use only one condition variable (call it
“okToContinue”) instead of two separate ones?
– Both readers and writers sleep on this variable
– Must use broadcast() instead of signal()

lm/os-vt08-l7-26
4/24/08

Can we construct Monitors from Semaphores?
• Locking aspect is easy: Just use a mutex
• Can we implement condition variables this way?

Wait() { semaphore.P(); }
Signal() { semaphore.V(); }

– Doesn’t work: Wait() may sleep with lock held
• Does this work better?

Wait(Lock lock) {
 lock.Release();
 semaphore.P();
 lock.Acquire();
}
Signal() { semaphore.V(); }

– No: Condition vars have no history, semaphores have history:
» What if thread signals and no one is waiting? NO-OP
» What if thread later waits? Thread Waits
» What if thread V’s and no one is waiting? Increment
» What if thread later does P? Decrement and continue

lm/os-vt08-l7-27
4/24/08

Construction of Monitors from Semaphores (con’t)
• Problem with previous try:

– P and V are commutative – result is the same no matter what
order they occur

– Condition variables are NOT commutative
• Does this fix the problem?

Wait(Lock lock) {
 lock.Release();
 semaphore.P();
 lock.Acquire();
}
Signal() {
 if semaphore queue is not empty
 semaphore.V();
}

– Not legal to look at contents of semaphore queue
– There is a race condition – signaler can slip in after lock release

and before waiter executes semaphore.P()
• It is actually possible to do this correctly

– Complex solution for Hoare scheduling in book
– Can you come up with simpler Mesa-scheduled solution?

lm/os-vt08-l7-28
4/24/08

Monitor Conclusion
• Monitors represent the logic of the program

– Wait if necessary
– Signal when change something so any waiting threads can

proceed

• Basic structure of monitor-based program:

Use monitor procedure

 Do something so no need to wait

 Use monitor procedure

Check and/or update
state variables

Wait if necessary

Check and/or update
state variables

lm/os-vt08-l7-29
4/24/08

Java Language Support for Synchronization

• Java has explicit support for threads and thread
synchronization

• Bank Account example:
class Account {

private int balance;
// object constructor
public Account (int initialBalance) {

balance = initialBalance;
}
public synchronized int getBalance() {

return balance;
}
public synchronized void deposit(int amount) {

balance += amount;
}

}
– Every object has an associated lock which gets automatically

acquired and released on entry and exit from a synchronized
method.

lm/os-vt08-l7-30
4/24/08

Java Language Support for Synchronization (con’t)
• Java also has synchronized statements:

synchronized (object) {
…

}
– Since every Java object has an associated lock, this type of

statement acquires and releases the object’s lock on entry
and exit of the body

– Works properly even with exceptions:
synchronized (object) {

…
DoFoo();
…

}
void DoFoo() {

throw errException;
}

lm/os-vt08-l7-31
4/24/08

Java Language Support for Synchronization (con’t 2)
• In addition to a lock, every object has a single condition

variable associated with it
– How to wait inside a synchronization method or block:

» void wait(long timeout); // Wait for timeout
» void wait(long timeout, int nanoseconds);
//variant

» void wait();
– How to signal in a synchronized method or block:

» void notify(); // wakes up oldest waiter
» void notifyAll(); // like broadcast, wakes
everyone

– Condition variables can wait for a bounded length of time. This
is useful for handling exception cases:

t1 = time.now();
while (!ATMRequest()) {

wait (CHECKPERIOD);
t2 = time.new();
if (t2 – t1 > LONG_TIME) checkMachine();

}
– Not all Java VMs equivalent!

» Different scheduling policies, not necessarily preemptive!

lm/os-vt08-l7-32
4/24/08

Summary
• Semaphores : a non-negative integer value and queue

with following operations:
– Only time can set integer directly is at initialization time
– P(): an atomic operation that waits for semaphore to become

positive, then decrements it by 1 (Think of this as the wait()
operation)

– V(): an atomic operation that increments the semaphore by 1,
waking up a waiting P, if any (This of this as the signal() operation)

• Monitors: A lock plus one or more condition variables
– State variables and mutually exclusive operations
– Use condition variables to wait inside critical section

» Three Operations: Wait(), Signal(), and Broadcast()
• Readers/Writers

– Readers can access database when no writers
– Writers can access database when no readers
– Solution using a monitor

• Language support for synchronization:
– Java provides synchronized keyword and one condition-variable per object

(with wait() and notify())

