
Operating Systems
(1DT020 & 1TT802)

Lecture 6
Process synchronisation :

 Hardware support , Semaphores,
Monitors, and Condition Variables

April 22, 2008

Léon Mugwaneza

 http://www.it.uu.se/edu/course/homepage/os/vt08

lm/os-vt08-l6-2
4/22/08

Review: Synchronization problem with Threads
• One thread per transaction, each running:

Deposit(acctId, amount) {
 acct = GetAccount(actId); /* May use disk I/O */
 acct->balance += amount;
 StoreAccount(acct); /* Involves disk I/O */
}

• Unfortunately, shared state can get corrupted:
Thread 1 Thread 2

load r1, acct->balance
load r1, acct->balance
add r1, amount2
store r1, acct->balance

add r1, amount1
store r1, acct->balance

• Atomic Operation: an operation that always runs to
completion or not at all
– It is indivisible: it cannot be stopped in the middle and state cannot be modified

by someone else in the middle

• Race Condition: outcome depends on process
interleaving

lm/os-vt08-l6-3
4/22/08

Review: Too Much Milk Solution #3
• Here is a possible two-note solution:

Thread A Thread B
leave note A; leave note B;
while (note B) {//X if (noNote A) {//Y
 do nothing; if (noMilk) {
} buy milk;
if (noMilk) { }
 buy milk; }
} remove note B;
remove note A;

• Does this work? Yes. Both can guarantee that:
– It is safe to buy, or
– Other will buy, ok to quit

• At X:
– if no note B, safe for A to buy,
– otherwise wait to find out what will happen

• At Y:
– if no note A, safe for B to buy
– Otherwise, A is either buying or waiting for B to quit

lm/os-vt08-l6-4
4/22/08

Review: Solution #3 discussion
• Our solution protects a single “Critical-Section” piece of

code for each thread:
if (noMilk) {

 buy milk;
}

• Solution #3 works, but it’s really unsatisfactory
– Really complex – even for this simple an example

» Hard to convince yourself that this really works
– A’s code is different from B’s – what if lots of threads?

» Code would have to be slightly different for each thread
– While A is waiting, it is consuming CPU time

» This is called “busy-waiting”
• There’s a better way

– Have hardware provide better (higher-level) primitives than atomic load
and store

– Build even higher-level programming abstractions on this new hardware
support

lm/os-vt08-l6-5
4/22/08

Too Much Milk: Solution #4
• Suppose we have some sort of implementation of a lock

(more in the next lecture)
– Lock.Acquire() – wait until lock is free, then grab
– Lock.Release() – Unlock, waking up anyone waiting
– These must be atomic operations – if two threads are waiting for the

lock and both see it’s free, only one succeeds to grab the lock
• Then, our milk problem is easy:

milkLock.Acquire();
if (noMilk)
 buy milk;
milkLock.Release();

• Once again, section of code between Acquire() and
Release() called a “Critical Section”

• Of course, you can make this even simpler: suppose
you are out of ice cream instead of milk
– Skip the test since you always need more ice cream
– Only Critical Sections need to be accessed in a synchronized way

lm/os-vt08-l6-6
4/22/08

Where are we going with synchronization?

• We are going to implement various higher-level
synchronization primitives using atomic operations
– Everything is pretty painful if only atomic primitives are load and store
– Need to provide primitives useful at user-level

Load/Store Disable Ints Test&Set Comp&Swap

Locks Semaphores Monitors Send/Receive

Cooperating Processes

Hardware

Higher-
level
API

Programs

lm/os-vt08-l6-7
4/22/08

Goals for Today

• Hardware Support for Synchronization
• Higher-level Synchronization Abstractions

– Semaphores, monitors, and condition variables

• Programming paradigms for concurrent programs

Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne,
others from Kubiatowicz - CS162 ©UCB Fall 2007 (University of
California at Berkeley)

lm/os-vt08-l6-8
4/22/08

High-Level Picture
• The abstraction of threads is good:

– Maintains sequential execution model
– Allows simple parallelism to overlap I/O and computation

• Unfortunately, still too complicated to access state
shared between threads
– Consider “too much milk” example
– Implementing a concurrent program with only loads and stores

would be tricky and error-prone

• Today, we’ll implement higher-level operations on
top of atomic operations provided by hardware
– Develop a “synchronization toolbox”
– Explore some common programming paradigms

lm/os-vt08-l6-9
4/22/08

How to implement Locks?
• Lock: prevents someone from doing something

– Lock before entering critical section and
before accessing shared data

– Unlock when leaving, after accessing shared data
– Wait if locked

» Important idea: all synchronization involves waiting
» Should sleep if waiting for a long time

• Atomic Load/Store: get solution like Too Much Milk #3
– Pretty complex and error prone

• Hardware Lock instruction
– Is this a good idea?
– Complexity?

» Done in the Intel 432
» Each feature makes hardware more complex and slow

– What about putting a task to sleep?
» How do you handle the interface between the hardware

and scheduler?

lm/os-vt08-l6-10
4/22/08

• How can we build multi-instruction atomic operations?
– Recall: dispatcher gets control in two ways.

» Internal : Thread does something to relinquish the CPU (what?)
» External: Interrupts cause dispatcher to take CPU

– On a uniprocessor, can avoid context-switching by:
» Avoiding internal events (although virtual memory tricky)
» Preventing external events by disabling interrupts

• Consequently, naïve Implementation of locks:
LockAcquire() { disable Ints; }
LockRelease() { enable Ints; }

LockAcquire and LockRelease are system calls (in OS kernel)
– Why ?
Remember how a process calls a procedure in OS kernel ?

• Problems with this approach:
– Can’t let user do this! Consider following:

LockAcquire();
While(TRUE) {;}

– Real-Time system—no guarantees on timing!
» Critical Sections might be arbitrarily long

– What happens with I/O or other important events?
» “Reactor about to meltdown. Help?”

Naïve use of Interrupt Enable/Disable

lm/os-vt08-l6-11
4/22/08

Disabling and enabling Interrupts

• Interrupts invoked with interrupt lines from devices
• CPU interrupt controller chooses interrupt request to honor

– Priority encoder picks highest enabled interrupt
– Interrupt identity specified with ID line
– Internal Mask flags enable/disable interrupts (mask set/cleared only in

kernel mode)
• CPU can configure some devices so as they do not generate

interrupts (devices controlled by polling)
• Non-maskable interrupt line (NMI) can’t be disabled

Network

IntsIDs

Interrupts

Control
NMI

CPU

Priority Encoder

Tim
er

Int Masks

lm/os-vt08-l6-12
4/22/08

Better Implementation of Locks by Disabling
Interrupts

• Key idea: maintain a lock variable and impose mutual
exclusion only during operations on that variable

int value = FREE;

Acquire() {
disable interrupts;
if (value == BUSY) {

put thread on wait queue;
 //calling thread sleeping

update thread state
 call scheduler

} else {
value = BUSY;

}
enable interrupts;

}

Release() {
disable interrupts;
if (anyone on wait queue) {

take thread off wait queue
 place thread on ready queue

 } else {
value = FREE;

}
enable interrupts;

}

• Locks are provided by the OS (like unix pipes - see lab1)
– Acquire and Release are system calls, we also need calls to

create and close (“kill”) locks
– Have 1 wait queue and 1 lock variable per lock

lm/os-vt08-l6-13
4/22/08

New Lock Implementation: Discussion
• Why do we need to disable interrupts at all?

– Avoid interruption between checking and setting lock value
– Otherwise two threads could think that they both have lock

• Note: unlike previous solution, the critical section
(inside Acquire()) is very short
– Users of lock can take as long as they like in their own critical

section: doesn’t impact global machine behavior
– Critical interrupts taken in time!

Acquire() {
disable interrupts;
if (value == BUSY) {

put thread on wait queue;
 //calling thread sleeping

update thread state
 call scheduler

} else {
value = BUSY;

 }
enable interrupts;

}

Critical
Section

lm/os-vt08-l6-14
4/22/08

Interrupt re-enable in “going” to sleep
• What about re-enabling ints when going to sleep?

• Before putting thread on the wait queue?
– Release can check the queue and not wake up thread

• After putting the thread on the wait queue
– Release puts the thread on the ready queue, but Acquire still

“thinks” thread needs to go to sleep
– Misses wakeup and still holds lock (deadlock!)

A non-issue : kernel handles this very often.
– scheduler will enable interrupts while launching the next thread

Acquire() {
disable interrupts;

 if (value == BUSY) {
put thread on wait queue;

 //calling thread sleeping
update thread state;

 call scheduler;
} else {

 value = BUSY;
 }

enable interrupts;
}

Enable Position
Enable Position

Enable Position

lm/os-vt08-l6-15
4/22/08

What if a thread does not release lock ?

• What about exceptions that occur after lock is
acquired?

mylock.acquire();
a = b / 0;
mylock.release()

– Who releases the lock?
• What if thread terminates without releasing the lock?

– Who releases the lock?
• Os releases lock when threads terminates or error

causes thread abortion
– Are there errors which do not cause process abortion ?

» Yes (eg. Page fault - see later)

lm/os-vt08-l6-16
4/22/08

Atomic Read-Modify-Write instructions
• Problems with previous solution:

– Can’t give lock implementation to users
– Doesn’t work well on multiprocessor or multi-core CPU

» Disabling interrupts on all processors/cores requires
messages and would be very time consuming

• Alternative: atomic instruction sequences
– These instructions read a value from memory and write a new

value atomically
– Hardware is responsible for implementing this correctly

» on both uniprocessors (not too hard)
» and multiprocessors/multi-core (requires help from cache

coherence protocol)
– Unlike disabling interrupts, can be used on uniprocessors,

multiprocessors, and multi-core CPUs

lm/os-vt08-l6-17
4/22/08

Examples of Read-Modify-Write
• test&set (address, register){ /* most architectures */

register = M[address]; /* actual inst. slightly ≠*/
 M[address] = 1; /* 68000: TAS, INTEL : BTS*/ }
• swap (address, register)

 temp = M[address];
M[address] = register;
register = temp;

}
• compare&swap (address, reg1, reg2) { /* 68000, Sparc */

if (reg1 == M[address]) {
M[address] = reg2;
set bit of CCR=1 //CCR is Condition Code Register

 } else {
set bit of CCR=0

 }
}
 compare and exchange on X86

• load-linked AND store conditional /* R4000, alpha */
 loop:

ll r1, addr; // Load-linked - read lock : r1<-M[addr]
 //Remember addr

movi r2, 1; // Try to set lock (movi+sc)
sc r2, addr; //Store conditional(try to do M[addr]<-r2)
//store only if addr saved by ll not written meanwhile
beqz r1, loop; // loop if lock read by ll was busy

lm/os-vt08-l6-18
4/22/08

Implementing Locks with test&set

• Another flawed, but simple solution:
int value = 0; // Free
Acquire() {

loop: test&set(&value, reg);
 if reg==1 goto loop; // while (busy) loop;

}
Release() {

value = 0;
}

• Explanation:
– If lock is free, test&set reads 0 and sets value=1, so lock is now

busy. It returns 0 so while exits.
– If lock is busy, test&set reads 1 and sets value=1 (no change). It

returns 1, so while loop continues
– When we set value = 0, someone else can get lock

• Busy-Waiting: thread consumes cycles while waiting
– Also called spinlocking

lm/os-vt08-l6-19
4/22/08

Problem: Busy-Waiting for Lock
• Positives for this solution

– Machine can receive interrupts
– No system call (remember system calls

have overhead)
– Works on a multiprocessor/multi-core

• Negatives
– This is very inefficient because the busy-waiting thread will

consume cycles waiting
– Waiting thread may take cycles away from thread holding lock

(no one wins!)
– Priority Inversion: If busy-waiting thread has higher priority

than thread holding lock ⇒ no progress!
• For semaphores and monitors, waiting thread may wait

for an arbitrary length of time!
– Thus even if busy-waiting was OK for locks, definitely not ok

for other primitives
– Good solutions (exams!) should not have busy-waiting!

lm/os-vt08-l6-20
4/22/08

Better Locks using test&set
• Can we build test&set locks without busy-waiting?

– Can’t entirely, but can minimize!
– Idea: only busy-wait to atomically check lock value

• Note: guard variable reset by OS when thread go sleep
– Why can’t we do it just before or just after the syst call to go sleep?

Release() {
// Short busy-wait time
loop : test&set &guard, reg

 if reg==1 goto loop;
if anyone on wait queue {

perfom call to OS to take
thread off wait queue
and place it on ready
queue;

} else {
value = FREE;

}
guard = 0;

int guard = 0;
int value = FREE;

Acquire() {
// Short busy-wait time
loop : test&set &guard, reg

 if reg==1 goto loop;
if (value == BUSY) {
 perfom syscall to put
 thread on wait queue,
 And guard = 0
} else {

value = BUSY;
guard = 0;

}
}

lm/os-vt08-l6-21
4/22/08

Higher-level Primitives than Locks
• What is the right abstraction for synchronizing

threads that share memory?
– Want as high a level primitive as possible

• Good primitives and practices important!
– Since execution is not entirely sequential, really hard to find

bugs, since they happen rarely
– UNIX is pretty stable now, but up until about mid-80s (10

years after started), systems running UNIX would crash every
week or so – concurrency bugs

• Synchronization is a way of coordinating multiple
concurrent activities that are using shared state
– We will see a couple of ways of structuring the sharing

lm/os-vt08-l6-22
4/22/08

Semaphores
• Semaphores are a kind of generalized lock

– First defined by Dijkstra in late 60s
– Main synchronization primitive used in original UNIX

• Definition: a Semaphore has a non-negative integer value, a
wait queue and supports the following two operations (apart
from initialization):
– P(): an atomic operation that does the following:

if value = 0 then sleep
else decrement value by 1

» Course book calls this operation wait()
– V(): an atomic operation that does the following:

if there are any threads sleeping on that
 semaphore, wakeup 1 thread (at random)
else increment value by 1

» Course book calls this operation signal()
– Note that P() stands for “proberen” (to test) and V() stands for

“verhogen” (to increment) in Dutch
– DOWN() sometimes used for P(), and UP() for V()

Some implementations allow negative values (P always
decrements value by one, and V always increments value by one)

lm/os-vt08-l6-23
4/22/08

Value=2Value=1Value=0

Semaphores are not integers!
• Semaphores are like integers, except

– No negative values
– Only operations allowed are P and V – can’t read or write

value, except to set it initially
– Operations must be atomic

» Two P’s together can’t decrement value below zero
» Similarly, thread going to sleep in P won’t miss

wakeup from V – even if they both happen at same
time

• Semaphore from railway analogy
– Here is a semaphore initialized to 2 for resource control:

Value=0Value=0Value=2

lm/os-vt08-l6-24
4/22/08

Two uses of Semaphores
• Mutual Exclusion (initial value = 1)

– Also called “Binary Semaphore”.
– Can be used for mutual exclusion:

semaphore.P();
// Critical section goes here
semaphore.V();

• Scheduling Constraints (initial value = 0)
– Locks are fine for mutual exclusion, but what if you want a thread to wait for

something?
– Example: suppose you had to implement ThreadJoin which must wait for

thread to terminiate:
Initial value of semaphore = 0
ThreadJoin {
 semaphore.P();
}
ThreadFinish {
 semaphore.V();
}

• What if initial value > 1?
– Counting semaphore : consider a resource with N copies

» request a copy using P(), release copy using V()
» Scheduling constraints on resource utilization

lm/os-vt08-l6-25
4/22/08

Producer-consumer with a bounded buffer

• Problem Definition
– Producer puts things into a shared buffer
– Consumer takes them out
– Need synchronization to coordinate producer/consumer

• Don’t want producer and consumer to have to
work in lockstep, so put a fixed-size buffer
between them
– Need to synchronize access to this buffer
– Producer needs to wait if buffer is full
– Consumer needs to wait if buffer is empty

• Example 1: GCC compiler
– cpp | cc1 | cc2 | as | ld

• Example 2: Coke machine
– Producer can put limited number of cokes in machine
– Consumer can’t take cokes out if machine is empty

Producer ConsumerBuffer

lm/os-vt08-l6-26
4/22/08

Correctness constraints for solution
• Correctness Constraints:

– Consumer must wait for producer to fill buffers, if none full
(scheduling constraint)

– Producer must wait for consumer to empty buffers, if all full
(scheduling constraint)

– Only one thread can manipulate buffer queue at a time (mutual
exclusion)

• Remember why we need mutual exclusion
– Because computers are “not very clever”
– Imagine if in real life: the delivery person is filling the machine and

somebody comes up and tries to stick their money into the
machine

• General rule of thumb:
Use a separate semaphore for each constraint
– Semaphore fullBuffers; // consumer’s constraint
– Semaphore emptyBuffers;// producer’s constraint
– Semaphore mutex; // mutual exclusion

lm/os-vt08-l6-27
4/22/08

Full Solution to Bounded Buffer
Semaphore fullBuffer = 0; // Initially, no coke
Semaphore emptyBuffers = num; // Initially, num empty slots

 Semaphore mutex = 1; // No one using machine

Producer(item) {
 While(True){
 do something else; // incuding producing item
 emptyBuffers.P(); // Wait until space

mutex.P(); // Wait until buffer free
Enqueue(item);
mutex.V();
fullBuffers.V(); // Tell consumers there is more coke

 }
}
Consumer() {

 While(True){
fullBuffers.P(); // Check if there’s a coke
mutex.P(); // Wait until machine free
item = Dequeue();
mutex.V();
emptyBuffers.V(); // tell producer a slot is free

 do something else; // including using item
 }
}

lm/os-vt08-l6-28
4/22/08

Discussion about Solution

• Why asymmetry?
– Producer does: emptyBuffer.P(), fullBuffer.V()
– Consumer does: fullBuffer.P(), emptyBuffer.V()

• Is order of P’s important?
– Yes! Can cause deadlock

• Is order of V’s important?
– No, except that it might affect scheduling efficiency

• What if we have 2 producers or 2 consumers?
– Do we need to change anything?

lm/os-vt08-l6-29
4/22/08

Motivation for Monitors and Condition Variables
• Semaphores are a huge step up; just think of trying to

do the bounded buffer with only loads and stores
– Problem is that semaphores are dual purpose:

» They are used for both mutex and scheduling constraints
» Example: the fact that flipping of P’s in bounded buffer

gives deadlock is not immediately obvious. How do you
prove correctness to someone?

• Cleaner idea: Use locks for mutual exclusion and
condition variables for scheduling constraints

• Monitor: zero or more condition variables for
managing concurrent access to shared data, together
with operations that are guaranteed to be mutual
exclusive
– Monitors are language constructs
– Some languages like Java provide this natively
– Most others use actual locks and condition variables

lm/os-vt08-l6-30
4/22/08

 Monitor with Condition Variables

• Lock: the lock provides mutual exclusion to shared data
– Always acquire before accessing shared data structure
– Always release after finishing with shared data
– Lock initially free

• Condition Variable: a queue of threads waiting for something inside a
critical section
– Two operations on conditions : condition.wait() and

condition.signal()
– Key idea: make it possible to go to sleep inside critical section by

atomically releasing lock at time we go to sleep
– Contrast to semaphores: Can’t wait inside critical section

lm/os-vt08-l6-31
4/22/08

Simple Monitor Example
• Here is an (infinite) synchronized queue

Lock lock;
Condition dataready;
Queue queue;

AddToQueue(item) {
lock.Acquire(); // Get Lock
queue.enqueue(item); // Add item
dataready.signal(); // Signal any waiters
lock.Release(); // Release Lock

}

RemoveFromQueue() {
lock.Acquire(); // Get Lock
while (queue.isEmpty()) {

dataready.wait(&lock); // If nothing, sleep
// and release lock

}
item = queue.dequeue(); // Get next item
lock.Release(); // Release Lock
return(item);

}
• Note: lock, lock.Acquire(), and lock.Release inserted by compiler

lm/os-vt08-l6-32
4/22/08

Summary
• Important concept: Atomic Operations

– An operation that runs to completion or not at all
– These are the primitives on which to construct various

synchronization primitives
• hardware atomicity primitives:

– Disabling of Interrupts, test&set, swap, comp&swap, load-
linked/store conditional

• Several constructions of Locks
– Must be very careful not to waste/tie up machine resources

» Shouldn’t disable interrupts for long
» Shouldn’t spin wait for long

– Key idea: Separate lock variable, use hardware mechanisms to
protect modifications of that variable

• Semaphores, Monitors, and Condition Variables
– Higher level constructs that are harder to “screw up”

