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Goals for Today

• Finish goals of last lecture
– How do we provide multiprogramming?
– What are Processes?
– How are they related to Threads and Address Spaces?

Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne,
others from Kubiatowicz - CS162 ©UCB Fall 2007 (University of
California at Berkeley)
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Concurrency
• Stream (“thread”) of execution

– Independent Fetch/Decode/Execute loop
– Operating in some Address space

• Uniprogramming: one thread at a time
– MS/DOS, early Macintosh, batch processing
– Easier for operating system builder
– Get rid concurrency by defining it away
– Does this make sense for personal computers?

• Multiprogramming: more than one thread at a time
– Multics, UNIX/Linux, OS/2, Windows NT/2000/XP, Mac OS X
– Often called “multitasking”, but multitasking has other meanings

(talk about this later)
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The Basic Problem of Concurrency
• The basic problem of concurrency involves

resources:
– Hardware: single CPU, single DRAM, single I/O devices
– Multiprogramming API: users think they have exclusive

access to machine
• OS Has to coordinate all activity

– Multiple users, I/O interrupts, …
– How can it keep all these things straight?

• Basic Idea: Use Virtual Machine abstraction
– Decompose hard problem into simpler ones
– Abstract the notion of an executing program
– Then, worry about multiplexing these abstract machines

• Dijkstra did this for the “THE system”
– Few thousand lines vs 1 million lines in OS 360 (1K bugs)
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Single-Threaded Example

• Imagine the following C program:

main() {
   ComputePI(“pi.txt”);
   PrintClassList(“clist.text”);
}

• What is the behavior here?
– Program would never print out class list
– Why? ComputePI would never finish
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Use of Threads
• Version of program with Threads:

main() {
   CreateThread(ComputePI(“pi.txt”));
   CreateThread(PrintClassList(“clist.text”));
}

• What does “CreateThread” do?
– Start independent thread running given procedure

• What is the behavior here?
– Now, you would actually see the class list
– This should behave as if there are two separate CPUs

CPU1 CPU2 CPU1 CPU2

Time 
CPU1 CPU2
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Traditional UNIX Process

• Process: Operating system abstraction to represent
what is needed to run a single program
– Often called a “Heavy Weight Process”
– Formally: a single, sequential stream of execution in its own

address space
• Two parts:

– Sequential Program Execution Stream
» Code executed as a single, sequential stream of

execution
» Includes State of CPU registers

– Protected Resources:
» Main Memory State (contents of Address Space)
» I/O state (i.e. file descriptors)

• Important: There is no concurrency in a heavyweight
process



lm/os-vt08-l3-8
4/9/08

How do we multiplex processes?
• The current state of process held in a

process control block (PCB):
– This is a “snapshot” of the execution and

protection environment
– Only one PCB active at a time

• Give out CPU time to different processes
(CPU Scheduling or Process dispatching):
– Only one process “running” at a time
– Give more time to important processes

• Give pieces of resources to different
processes (Protection):
– Controlled access to non-CPU resources
– Sample mechanisms:

» Memory Mapping: Give each process their
own address space

» Kernel/User duality: Arbitrary multiplexing
of I/O through system calls

Process
Control
Block

pointers process
state

process id 
program counter

other registers

memory limits

list of open files

...
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CPU Switch From Process to Process

• This is also called a “context switch”
• How long does it take to switch from one process to another ?
• Code executed in kernel above is overhead

– Overhead sets minimum practical switching time
– Less overhead with SMT/hyperthreading, but… contention for resources

instead
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Diagram of Process State

• As a process executes, it changes state
– new:  The process is being created
– ready:  The process is waiting to run
– running:  Instructions are being executed
– waiting:  Process waiting for some event to occur
– terminated:  The process has finished execution



lm/os-vt08-l3-11
4/9/08

Process Scheduling

• PCBs move from queue to queue as they change state
– Decisions about which order to remove from queues are

Scheduling decisions
– Many algorithms possible
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Ready Queue And Various I/O Device Queues

• Process not running ⇒ PCB is in some scheduler queue
– Separate queue for each device/signal/condition
– Each queue can have a different scheduler policy
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What does it take to create a process?

• Must construct new PCB
– Inexpensive

• Must set up new translation map for address space
– More expensive

• Copy data from parent process? (Unix fork() )
– Semantics of Unix fork() are that the child process gets a

complete copy of the parent memory and I/O state
– Originally very expensive
– Much less expensive with “copy on write”

• Copy I/O state (file handles, etc)
– Medium expense
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Multiple Processes Collaborate on a Task

• (Relatively) High Context-Switch Overhead
• Separate address spaces isolates processes
• Need Inter-Process Communication mechanism (IPC):

– Shared-Memory Mapping
» Accomplished by mapping addresses to common DRAM
» Read and Write through memory

– Message Passing
» send() and receive() messages
» Works across network

Proc 1 Proc 2 Proc 3
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Shared Memory Communication

Prog 1
Virtual
Address
Space 1

Prog 2
Virtual
Address
Space 2

Data 2
Stack 1
Heap 1
Code 1
Stack 2
Data 1
Heap 2
Code 2
Shared

• Communication occurs by “simply” reading/writing
to shared address page
– Really low overhead communication
– Introduces complex synchronization problems

Code
Data
Heap
Stack
Shared

Code
Data
Heap
Stack
Shared
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Message Passing Communication

• Mechanism for processes to communicate and to
synchronize their actions

• Message system – processes communicate with
each other without resorting to shared variables

• Provides two operations:
– send(message) – message size fixed or variable
– receive(message)

• If P and Q wish to communicate, they need to:
– establish a communication link between them
– exchange messages via send/receive

• Implementation of communication link
– physical (e.g., shared memory, hardware bus, system calls/traps)
– logical (software)
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Modern “Lightweight” Process with Threads
• Thread: a sequential execution stream within process

(Sometimes called a “Lightweight process”)
– Process still contains a single Address Space
– No protection between threads

• Multithreading: a single program made up of a number
of different concurrent activities
– Sometimes called multitasking, as in Ada…

• Why separate the concept of a thread from that of a
process?
– Deal with the “thread” part of a process (concurrency) separate

from the “address space” (Protection)
• Heavyweight Process ≡ Process with one thread
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Single and Multithreaded Processes

• Threads encapsulate concurrency: “Active” component
• Address spaces encapsulate protection: “Passive” part

– Keeps buggy program from trashing the system
• Why have multiple threads per address space?
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Examples of multithreaded programs

• Embedded systems
– Elevators, Planes, Medical systems, Wristwatches
– Single Program, concurrent operations

• Most modern OS kernels
– Internally concurrent because have to deal with

concurrent requests by multiple users
– But no protection needed within kernel

• Database Servers
– Access to shared data by many concurrent users
– Also background utility processing must be done
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Examples of multithreaded programs (con’t)

• Network Servers
– Concurrent requests from network
– Again, single program, multiple concurrent operations
– File server, Web server, and airline reservation systems

• Parallel Programming (More than one physical CPU)
– Split program into multiple threads for parallelism
– This is called Multiprocessing

• Some multiprocessors are actually uniprogrammed:
– Multiple threads in one address space but one program at a

time
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Thread State
• State shared by all threads in process/addr space

– Contents of memory (global variables, heap)
– I/O state (file system, network connections, etc)

• State “private” to each thread
– Kept in TCB ≡ Thread Control Block
– CPU registers (including, program counter)
– Execution stack – what is this?

• Execution Stack
– Parameters, local variables, temporary storage
– return PCs are kept while called procedures are executing
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Classification

• Real operating systems have either
– One or many address spaces
– One or many threads per address space

• Windows 95/98/ME did not have real memory protection
– Users could overwrite process tables/System DLLs

Mach, OS/2, Linux
Windows 9x???
Win NT to XP,

Solaris, HP-UX, OS X

Embedded systems
(Geoworks, VxWorks,

JavaOS,etc)
JavaOS, Pilot(PC)

Traditional UNIXMS/DOS, early
Macintosh
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Summary

• Processes have two parts
– Threads (Concurrency)
– Address Spaces (Protection)

• Concurrency accomplished by multiplexing CPU Time:
– Unloading current thread (PC, registers)
– Loading new thread (PC, registers)
– Such context switching may be voluntary (yield(), I/O

operations) or involuntary (timer, other interrupts)
• Protection accomplished by restricting access:

– Memory mapping isolates processes from each other
– Dual-mode for isolating I/O, other resources


