Operating Systems
(1DT020 & 1TT802)

Lecture 3
Processes, threads,
process dispatching

(cont’d)
April 9, 2008
Léon Mugwaneza

http://www.it.uu.se/edu/course/homepage/os/vt08

Goals for Today

* Finish goals of last lecture
— How do we provide multiprogramming?

— What are Processes?
— How are they related to Threads and Address Spaces?

Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne,
others from Kubiatowicz - CS162 ©UCB Fall 2007 (University of

California at Berkeley)

4/9/08 Im/os-vt08-13-2

Concurrency

« Stream (“thread”) of execution

— Independent Fetch/Decode/Execute loop
— Operating in some Address space

* Uniprogramming: one thread at a time
— MS/DOS, early Macintosh, batch processing
— Easier for operating system builder
— Get rid concurrency by defining it away
— Does this make sense for personal computers?

* Multiprogramming: more than one thread at a time
— Multics, UNIX/Linux, 0S/2, Windows NT/2000/XP, Mac OS X

— Often called “multitasking”, but multitasking has other meanings
(talk about this later)

4/9/08 Im/os-vt08-13-3

The Basic Problem of Concurrency

The basic problem of concurrency involves
resources:

— Hardware: single CPU, single DRAM, single I/O devices

— Multiprogramming API: users think they have exclusive
access to machine

OS Has to coordinate all activity
— Multiple users, I/O interrupts, ...
— How can it keep all these things straight?
Basic Idea: Use Virtual Machine abstraction
— Decompose hard problem into simpler ones
— Abstract the notion of an executing program
— Then, worry about multiplexing these abstract machines

Dijkstra did this for the “THE system”

— Few thousand lines vs 1 million lines in OS 360 (1K bugs)

4/9/08 Im/os-vt08-13-4

Single-Threaded Example

* Imagine the following C program:

main() {
ComputePI (“pi.txt”);
PrintClassList(“clist. text”) ;

« What is the behavior here?

— Program would never print out class list
— Why? ComputePIl would never finish

4/9/08 Im/os-vt08-13-5

Use of Threads

« Version of program with Threads:

main() {
CreateThread (ComputePI (“pi.txt"”));
CreateThread (PrintClassList (“clist.text”)) ;

e What does “CreateThread” do?

— Start independent thread running given procedure

« What is the behavior here?

— Now, you would actually see the class list
— This should behave as if there are two separate CPUs

CPU1 CPU2 CPU1 CPU2 CPU1 CPU2

Time ———p

4/9/08 Im/os-vt08-13-6

Traditional UNIX Process

* Process: Operating system abstraction to represent
what is needed to run a single program

— Often called a “Heavy Weight Process”

— Formally: a single, sequential stream of execution in its own
address space

« Two parts:
— Sequential Program Execution Stream

» Code executed as a single, sequential stream of
execution

» Includes State of CPU registers

— Protected Resources:
» Main Memory State (contents of Address Space)
» 110 state (i.e. file descriptors)

 Important: There is no concurrency in a heavyweight
process

4/9/08 Im/os-vt08-13-7

How do we multiplex processes?

* The current state of process held in a _
process control block (PCB): pointers prscigfess
— This is a “snapshot” of the execution and _
protection environment process id
— Only one PCB active at a time program counter
* Give out CPU time to different processes _
(CPU Scheduling or Process dispatching): other registers

— Only one process “running” at a time
— Give more time to important processes
* Give pieces of resources to different list of open files
processes (Protection):
— Controlled access to non-CPU resources
— Sample mechanisms:

» Memory Mapping: Give each process their Process
own address space

» Kernel/User duality: Arbitrary multiplexing Control
of 1/0 through system calls Block

memory limits

4/9/08 Im/os-vt08-13-8

CPU Switch From Process to Process

process P, operating system process P,

interrupt or system call
executing ll

Y
N save state into PCB,

* idle

reload state from PCB, 1
>idle interrupt or system call executing

| ~—¥

save state into PCB;

idle

) reload state from PCB,,

axecuting | _'¥
\'4

 This is also called a “context switch”

 How long does it take to switch from one process to another ?
 Code executed in kernel above is overhead
— Overhead sets minimum practical switching time

— Less overhead with SMT/hyperthreading, but... contention for resources
instead Im/os-vt08-13-9

4/9/08

Diagram of Process State

admitted interrupt exit terminated

scheduler dispatch

I/O or event completion I/O or event wait

waiting

* As a process executes, it changes state

— new: The process is being created

— ready: The process is waiting to run

— running: Instructions are being executed

— waiting: Process waiting for some event to occur
— terminated: The process has finished execution

4/9/08 Im/os-vt08-13-10

Process Scheduling

— >
»| ready queue CPU
I/O queue «<— |/Orequest [¢&—
time slice
expired
ﬂﬁh: fork a
W child
interrupt wait for an
\ocours interrupt

« PCBs move from queue to queue as they change state

— Decisions about which order to remove from queues are
Scheduling decisions

— Many algorithms possible

4/9/08 Im/os-vt08-13-11

Ready Queue And Various I/O Device Queues

* Process not running = PCB is in some scheduler queue

— Separate queue for each device/signal/condition
— Each queue can have a different scheduler policy

Ready
Queue

Tape
Unit 0

Disk
Unit 0

Disk
Unit 2

Ether
Netwk 0

4/9/08

Head »| Link »| Link Link
Tail Registers Registers Registers
Other Other Other
Head D State State State
Tail - PCB, PCBg PCB,¢
Head »| Link pP——¥» Link —1_
Tail Registers Registers =
Other Other
Head -1 State State
Tail - PCB, PCB,
Head L|.nk
- Reglsters
Tail Other
State
PCBg

Im/os-vt08-13-12

What does it take to create a process?

e Must construct new PCB
— Inexpensive

Must set up new translation map for address space
— More expensive

Copy data from parent process? (Unix fork ())

— Semantics of Unix fork () are that the child process gets a
complete copy of the parent memory and I/O state

— Originally very expensive
— Much less expensive with “copy on write”
Copy I/O state (file handles, etc)

— Medium expense

4/9/08 Im/os-vt08-13-13

Multiple Processes Collaborate on a Task

* (Relatively) High Context-Switch Overhead
« Separate address spaces isolates processes

* Need Inter-Process Communication mechanism (IPC):
— Shared-Memory Mapping
» Accomplished by mapping addresses to common DRAM
» Read and Write through memory
— Message Passing
» send () and receive () messages
» Works across network

4/9/08 Im/os-vt08-13-14

Shared Memory Communication

Prog 1 .
Virtual Virtual
Address Address
Space 1 Space 2

« Communication occurs by “simply” reading/writing
to shared address page

— Really low overhead communication
— Introduces complex synchronization problems

4/9/08 Im/os-vt08-13-15

Message Passing Communication

 Mechanism for processes to communicate and to
synchronize their actions

 Message system — processes communicate with
each other without resorting to shared variables

 Provides two operations:
- send (message) — message size fixed or variable

— receilve (message)

* If P and Q wish to communicate, they need to:
— establish a communication link between them
— exchange messages via send/receive

* Implementation of communication link
— physical (e.g., shared memory, hardware bus, system calls/traps)
— logical (software)

4/9/08 Im/os-vt08-13-16

Modern “Lightweight” Process with Threads

* Thread: a sequential execution stream within process
(Sometimes called a “Lightweight process”)

— Process still contains a single Address Space
— No protection between threads

« Multithreading: a single program made up of a number
of different concurrent activities

— Sometimes called multitasking, as in Ada...

 Why separate the concept of a thread from that of a
process?

— Deal with the “thread” part of a process (concurrency) separate
from the “address space” (Protection)

 Heavyweight Process = Process with one thread

4/9/08 Im/os-vt08-13-17

Single and Multithreaded Processes

code

data

files

registers

stack

thread —» ;

code data files
registers ||| registers ||| registers
stack stack stack

single-threaded process

?

%

g_

— thread

multithreaded process

 Threads encapsulate concurrency: “Active” component
 Address spaces encapsulate protection: “Passive” part

— Keeps buggy program from trashing the system

« Why have multiple threads per address space?

4/9/08

Im/os-vt08-13-18

Examples of multithreaded programs

« Embedded systems
— Elevators, Planes, Medical systems, Wristwatches
— Single Program, concurrent operations

* Most modern OS kernels

— Internally concurrent because have to deal with
concurrent requests by multiple users

— But no protection needed within kernel
 Database Servers

— Access to shared data by many concurrent users
— Also background utility processing must be done

4/9/08 Im/os-vt08-13-19

Examples of multithreaded programs (con’t)

* Network Servers
— Concurrent requests from network
— Again, single program, multiple concurrent operations
— File server, Web server, and airline reservation systems

« Parallel Programming (More than one physical CPU)
— Split program into multiple threads for parallelism
— This is called Multiprocessing

« Some multiprocessors are actually uniprogrammed:

— Multiple threads in one address space but one program at a
time

4/9/08 Im/os-vt08-13-20

Thread State

« State shared by all threads in process/addr space
— Contents of memory (global variables, heap)
— 1/O state (file system, network connections, etc)

« State “private” to each thread
— Kept in TCB = Thread Control Block

— CPU registers (including, program counter)
— Execution stack — what is this?

 Execution Stack
— Parameters, local variables, temporary storage
— return PCs are kept while called procedures are executing

4/9/08 Im/os-vt08-13-21

Classification

S v
o 9
.- o M
threads & & ne any
Per AS: #
MS/DOS, early "
One Macintosh Traditional UNIX
Embedded systems Mach, 0S/2, Linux
(Geoworks, VxWorks, Windows 9x???
Many Java0S, etc) Win NT +o XP
Java0s, Pilot(PC) | solaris, HP-UX, OS X

* Real operating systems have either
— One or many address spaces
— One or many threads per address space

* Windows 95/98/ME did not have real memory protection

— Users could overwrite process tables/System DLLs

4/9/08 Im/os-vt08-13-22

Summary

 Processes have two parts
— Threads (Concurrency)
— Address Spaces (Protection)

« Concurrency accomplished by multiplexing CPU Time:
— Unloading current thread (PC, registers)
— Loading new thread (PC, registers)

— Such context switching may be voluntary (yield(), I/O
operations) or involuntary (timer, other interrupts)

* Protection accomplished by restricting access:
— Memory mapping isolates processes from each other
— Dual-mode for isolating I/O, other resources

4/9/08 Im/os-vt08-13-23

