
Operating Systems
(1DT020 & 1TT802)

Lecture 3
Processes, threads,
process dispatching

(cont’d)

April 9, 2008

Léon Mugwaneza

 http://www.it.uu.se/edu/course/homepage/os/vt08

lm/os-vt08-l3-2
4/9/08

Goals for Today

• Finish goals of last lecture
– How do we provide multiprogramming?
– What are Processes?
– How are they related to Threads and Address Spaces?

Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne,
others from Kubiatowicz - CS162 ©UCB Fall 2007 (University of
California at Berkeley)

lm/os-vt08-l3-3
4/9/08

Concurrency
• Stream (“thread”) of execution

– Independent Fetch/Decode/Execute loop
– Operating in some Address space

• Uniprogramming: one thread at a time
– MS/DOS, early Macintosh, batch processing
– Easier for operating system builder
– Get rid concurrency by defining it away
– Does this make sense for personal computers?

• Multiprogramming: more than one thread at a time
– Multics, UNIX/Linux, OS/2, Windows NT/2000/XP, Mac OS X
– Often called “multitasking”, but multitasking has other meanings

(talk about this later)

lm/os-vt08-l3-4
4/9/08

The Basic Problem of Concurrency
• The basic problem of concurrency involves

resources:
– Hardware: single CPU, single DRAM, single I/O devices
– Multiprogramming API: users think they have exclusive

access to machine
• OS Has to coordinate all activity

– Multiple users, I/O interrupts, …
– How can it keep all these things straight?

• Basic Idea: Use Virtual Machine abstraction
– Decompose hard problem into simpler ones
– Abstract the notion of an executing program
– Then, worry about multiplexing these abstract machines

• Dijkstra did this for the “THE system”
– Few thousand lines vs 1 million lines in OS 360 (1K bugs)

lm/os-vt08-l3-5
4/9/08

Single-Threaded Example

• Imagine the following C program:

main() {
 ComputePI(“pi.txt”);
 PrintClassList(“clist.text”);
}

• What is the behavior here?
– Program would never print out class list
– Why? ComputePI would never finish

lm/os-vt08-l3-6
4/9/08

Use of Threads
• Version of program with Threads:

main() {
 CreateThread(ComputePI(“pi.txt”));
 CreateThread(PrintClassList(“clist.text”));
}

• What does “CreateThread” do?
– Start independent thread running given procedure

• What is the behavior here?
– Now, you would actually see the class list
– This should behave as if there are two separate CPUs

CPU1 CPU2 CPU1 CPU2

Time
CPU1 CPU2

lm/os-vt08-l3-7
4/9/08

Traditional UNIX Process

• Process: Operating system abstraction to represent
what is needed to run a single program
– Often called a “Heavy Weight Process”
– Formally: a single, sequential stream of execution in its own

address space
• Two parts:

– Sequential Program Execution Stream
» Code executed as a single, sequential stream of

execution
» Includes State of CPU registers

– Protected Resources:
» Main Memory State (contents of Address Space)
» I/O state (i.e. file descriptors)

• Important: There is no concurrency in a heavyweight
process

lm/os-vt08-l3-8
4/9/08

How do we multiplex processes?
• The current state of process held in a

process control block (PCB):
– This is a “snapshot” of the execution and

protection environment
– Only one PCB active at a time

• Give out CPU time to different processes
(CPU Scheduling or Process dispatching):
– Only one process “running” at a time
– Give more time to important processes

• Give pieces of resources to different
processes (Protection):
– Controlled access to non-CPU resources
– Sample mechanisms:

» Memory Mapping: Give each process their
own address space

» Kernel/User duality: Arbitrary multiplexing
of I/O through system calls

Process
Control
Block

pointers process
state

process id
program counter

other registers

memory limits

list of open files

...

lm/os-vt08-l3-9
4/9/08

CPU Switch From Process to Process

• This is also called a “context switch”
• How long does it take to switch from one process to another ?
• Code executed in kernel above is overhead

– Overhead sets minimum practical switching time
– Less overhead with SMT/hyperthreading, but… contention for resources

instead

lm/os-vt08-l3-10
4/9/08

Diagram of Process State

• As a process executes, it changes state
– new: The process is being created
– ready: The process is waiting to run
– running: Instructions are being executed
– waiting: Process waiting for some event to occur
– terminated: The process has finished execution

lm/os-vt08-l3-11
4/9/08

Process Scheduling

• PCBs move from queue to queue as they change state
– Decisions about which order to remove from queues are

Scheduling decisions
– Many algorithms possible

lm/os-vt08-l3-12
4/9/08

Ready Queue And Various I/O Device Queues

• Process not running ⇒ PCB is in some scheduler queue
– Separate queue for each device/signal/condition
– Each queue can have a different scheduler policy

Other
State
PCB9

Link
Registers

Other
State
PCB6

Link
Registers

Other
State
PCB16

Link
Registers

Other
State
PCB8

Link
Registers

Other
State
PCB2

Link
Registers

Other
State
PCB3

Link
Registers

Head
Tail

Head
Tail

Head
Tail

Head
Tail

Head
Tail

Ready
Queue

Tape
Unit 0

Disk
Unit 0

Disk
Unit 2

Ether
Netwk 0

lm/os-vt08-l3-13
4/9/08

What does it take to create a process?

• Must construct new PCB
– Inexpensive

• Must set up new translation map for address space
– More expensive

• Copy data from parent process? (Unix fork())
– Semantics of Unix fork() are that the child process gets a

complete copy of the parent memory and I/O state
– Originally very expensive
– Much less expensive with “copy on write”

• Copy I/O state (file handles, etc)
– Medium expense

lm/os-vt08-l3-14
4/9/08

Multiple Processes Collaborate on a Task

• (Relatively) High Context-Switch Overhead
• Separate address spaces isolates processes
• Need Inter-Process Communication mechanism (IPC):

– Shared-Memory Mapping
» Accomplished by mapping addresses to common DRAM
» Read and Write through memory

– Message Passing
» send() and receive() messages
» Works across network

Proc 1 Proc 2 Proc 3

lm/os-vt08-l3-15
4/9/08

Shared Memory Communication

Prog 1
Virtual
Address
Space 1

Prog 2
Virtual
Address
Space 2

Data 2
Stack 1
Heap 1
Code 1
Stack 2
Data 1
Heap 2
Code 2
Shared

• Communication occurs by “simply” reading/writing
to shared address page
– Really low overhead communication
– Introduces complex synchronization problems

Code
Data
Heap
Stack
Shared

Code
Data
Heap
Stack
Shared

lm/os-vt08-l3-16
4/9/08

Message Passing Communication

• Mechanism for processes to communicate and to
synchronize their actions

• Message system – processes communicate with
each other without resorting to shared variables

• Provides two operations:
– send(message) – message size fixed or variable
– receive(message)

• If P and Q wish to communicate, they need to:
– establish a communication link between them
– exchange messages via send/receive

• Implementation of communication link
– physical (e.g., shared memory, hardware bus, system calls/traps)
– logical (software)

lm/os-vt08-l3-17
4/9/08

Modern “Lightweight” Process with Threads
• Thread: a sequential execution stream within process

(Sometimes called a “Lightweight process”)
– Process still contains a single Address Space
– No protection between threads

• Multithreading: a single program made up of a number
of different concurrent activities
– Sometimes called multitasking, as in Ada…

• Why separate the concept of a thread from that of a
process?
– Deal with the “thread” part of a process (concurrency) separate

from the “address space” (Protection)
• Heavyweight Process ≡ Process with one thread

lm/os-vt08-l3-18
4/9/08

Single and Multithreaded Processes

• Threads encapsulate concurrency: “Active” component
• Address spaces encapsulate protection: “Passive” part

– Keeps buggy program from trashing the system
• Why have multiple threads per address space?

lm/os-vt08-l3-19
4/9/08

Examples of multithreaded programs

• Embedded systems
– Elevators, Planes, Medical systems, Wristwatches
– Single Program, concurrent operations

• Most modern OS kernels
– Internally concurrent because have to deal with

concurrent requests by multiple users
– But no protection needed within kernel

• Database Servers
– Access to shared data by many concurrent users
– Also background utility processing must be done

lm/os-vt08-l3-20
4/9/08

Examples of multithreaded programs (con’t)

• Network Servers
– Concurrent requests from network
– Again, single program, multiple concurrent operations
– File server, Web server, and airline reservation systems

• Parallel Programming (More than one physical CPU)
– Split program into multiple threads for parallelism
– This is called Multiprocessing

• Some multiprocessors are actually uniprogrammed:
– Multiple threads in one address space but one program at a

time

lm/os-vt08-l3-21
4/9/08

Thread State
• State shared by all threads in process/addr space

– Contents of memory (global variables, heap)
– I/O state (file system, network connections, etc)

• State “private” to each thread
– Kept in TCB ≡ Thread Control Block
– CPU registers (including, program counter)
– Execution stack – what is this?

• Execution Stack
– Parameters, local variables, temporary storage
– return PCs are kept while called procedures are executing

lm/os-vt08-l3-22
4/9/08

Classification

• Real operating systems have either
– One or many address spaces
– One or many threads per address space

• Windows 95/98/ME did not have real memory protection
– Users could overwrite process tables/System DLLs

Mach, OS/2, Linux
Windows 9x???
Win NT to XP,

Solaris, HP-UX, OS X

Embedded systems
(Geoworks, VxWorks,

JavaOS,etc)
JavaOS, Pilot(PC)

Traditional UNIXMS/DOS, early
Macintosh

Many

One

threads
Per AS:

ManyOne

#
 o

f
ad

dr
sp

ac
es

:

lm/os-vt08-l3-23
4/9/08

Summary

• Processes have two parts
– Threads (Concurrency)
– Address Spaces (Protection)

• Concurrency accomplished by multiplexing CPU Time:
– Unloading current thread (PC, registers)
– Loading new thread (PC, registers)
– Such context switching may be voluntary (yield(), I/O

operations) or involuntary (timer, other interrupts)
• Protection accomplished by restricting access:

– Memory mapping isolates processes from each other
– Dual-mode for isolating I/O, other resources

