
Operating Systems
(1DT020 & 1TT802)

Lecture 2
Processes, threads,
process dispatching

April 7, 2008

Léon Mugwaneza

 http://www.it.uu.se/edu/course/homepage/os/vt08

lm/os-vt08-l2-2
4/7/08

What is an Operating System ?

An OS is responsible of 2 main tasks:
– Provide a virtual machine abstraction

» Turn hardware/software peculiarities into what programmers
want/need

application program view: an OS extends the processor’s
instruction set with new (complex) instructions accessible
via system calls.

– Resources (Hardware and Software) management, sharing and
protection
» Optimize for convenience, utilization, security, reliability, etc.

The 2 tasks are not separate

• No universally accepted definition
– “Everything a vendor ships when you order an operating

system” is good approximation
– “The one program running at all times on the computer” is the

kernel.

lm/os-vt08-l2-3
4/7/08

Example: Protecting Programs from Each Other

• Problem: Run multiple applications in such a way
that they are protected from one another

• Goal:
– Keep User Programs from Crashing OS
– Keep User Programs from Crashing each other
– [Keep Parts of OS from crashing other parts?]

• (Some of the required) Mechanisms:
– Address Translation
– Dual Mode Operation

• Simple Policy:
– Programs are not allowed to read/write memory of other

Programs or of Operating System

lm/os-vt08-l2-4
4/7/08

CPU MMU

Virtual
Addresses

Physical
Addresses

Address Translation

• Address Space
– A group of memory addresses usable by something
– Each program and kernel has potentially different address

spaces.

• Address Translation:
– Translate from Virtual Addresses (emitted by CPU) into Physical

Addresses (of memory)
– Mapping often performed in Hardware by Memory Management

Unit (MMU)

lm/os-vt08-l2-5
4/7/08

Example of Address Translation

Prog 1
Virtual
Address
Space 1

Prog 2
Virtual
Address
Space 2

Code
Data
Heap
Stack

Code
Data
Heap
Stack

Data 2
Stack 1
Heap 1

OS heap &
Stacks

Code 1
Stack 2
Data 1
Heap 2
Code 2
OS code
OS dataTranslation Map 1 Translation Map 2

Physical Address Space
• Translation helps protection:

– Control translations, control access
– Users Should not be able to change Translation map

lm/os-vt08-l2-6
4/7/08

Goals for Today

• Finish goals of last lecture
• How do we provide multiprogramming?
• What are Processes?
• How are they related to Threads and Address

Spaces?

Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne,
others from Kubiatowicz - CS162 ©UCB Fall 2007 (University of
California at Berkeley)

lm/os-vt08-l2-7
4/7/08

Dual Mode Operation
• Hardware provides at least two modes:

– “Kernel” mode (or “supervisor” or “protected”)
– “User” mode: Normal programs executed

• Some instructions/ops prohibited in user mode:
– Example: cannot modify page tables in user mode

» Attempt to modify ⇒ Exception generated

• Transitions from user mode to kernel mode:
– System Calls, Interrupts, Other exceptions

lm/os-vt08-l2-8
4/7/08

UNIX System Structure

User Mode

Kernel Mode

Hardware

Applications

Standard Libs

lm/os-vt08-l2-9
4/7/08

OS Systems Principles

• OS as illusionist:
– Make hardware limitations go away
– Provide illusion of dedicated machine with infinite memory and

infinite processors
• OS as government:

– Protect users from each other
– Allocate resources efficiently and fairly

• OS as complex system:
– Constant tension between simplicity and functionality or

performance
• OS as history teacher

– Learn from past
– Adapt as hardware tradeoffs change

lm/os-vt08-l2-10
4/7/08

Why Study Operating Systems?

• OS are complex systems:
– How can you manage complexity for future projects?

• Buying and using a personal computer:
– Why different PCs with same CPU behave differently
– How to choose a processor (Opteron, Itanium, Celeron,

Pentium, Hexium)? [Ok, made last one up]
– Should you get Windows XP, Vista, Linux, Mac OS …?

• Security, viruses, and worms
– What exposure do you have to worry about?

• Discover what is in the black box !

lm/os-vt08-l2-11
4/7/08

Concurrency
• Stream (“thread”) of execution

– Independent Fetch/Decode/Execute loop
– Operating in some Address space

• Uniprogramming: one thread at a time
– MS/DOS, early Macintosh, batch processing
– Easier for operating system builder
– Get rid concurrency by defining it away
– Does this make sense for personal computers?

• Multiprogramming: more than one thread at a time
– Multics, UNIX/Linux, OS/2, Windows NT/2000/XP, Mac OS X
– Often called “multitasking”, but multitasking has other meanings

(talk about this later)

lm/os-vt08-l2-12
4/7/08

The Basic Problem of Concurrency
• The basic problem of concurrency involves

resources:
– Hardware: single CPU, single DRAM, single I/O devices
– Multiprogramming API: users think they have exclusive

access to machine
• OS Has to coordinate all activity

– Multiple users, I/O interrupts, …
– How can it keep all these things straight?

• Basic Idea: Use Virtual Machine abstraction
– Decompose hard problem into simpler ones
– Abstract the notion of an executing program
– Then, worry about multiplexing these abstract machines

• Dijkstra did this for the “THE system”
– Few thousand lines vs 1 million lines in OS 360 (1K bugs)

lm/os-vt08-l2-13
4/7/08

Fetch
Exec

R0
…

R31
F0
…

F30
PC

…
Data1
Data0

Inst237
Inst236

…
Inst5
Inst4
Inst3
Inst2
Inst1
Inst0

…

Addr 0

Addr 232-1

Recall (Computer Architecture):
What happens during execution?

• Execution sequence:
– Fetch Instruction at PC
– Decode
– Execute (possibly using registers)
– Write results to registers or memory
– PC = Next Instruction(PC)
– Repeat

PC
PC
PC
PC

lm/os-vt08-l2-14
4/7/08

How can we give the illusion of multiple processors?

CPU3CPU2CPU1

Shared Memory

• How do we provide the illusion of multiple processors?
– Multiplex in time!

• Each virtual “CPU” needs a structure to hold:
– Program Counter (PC), Stack Pointer (SP)
– Registers (Integer, Floating point, others…?)

• How do we switch from one CPU to the next?
– Save PC, SP, and registers in current state block
– Load PC, SP, and registers from new state block

• What triggers switch?
– Timer, voluntary yield, I/O, other things

CPU1 CPU2 CPU3 CPU1 CPU2

Time

lm/os-vt08-l2-15
4/7/08

Properties of this simple multiprogramming
technique

• All virtual CPUs share same non-CPU resources
– I/O devices the same
– Memory the same

• Consequence of sharing:
– Each thread can access the data of every other thread

(good for sharing, bad for protection)
– Threads can share instructions

(good for sharing, bad for protection)
– Can threads overwrite OS functions?

• This (unprotected) model common in:
– Embedded applications
– Windows 3.1/Machintosh (switch only with yield)
– Windows 95—ME? (switch with both yield and timer)

lm/os-vt08-l2-16
4/7/08

How to protect threads from one another?

• Need three important things:
1. Protection of memory

» Every task does not have access to all memory
2. Protection of I/O devices

» Every task does not have access to every device
3. Preemptive switching from task to task

» Use of timer
» Must not be possible to disable timer from user code

lm/os-vt08-l2-17
4/7/08

Recall: Program’s Address Space
• Address space ⇒ the set of

accessible addresses + state
associated with them:
– For a 32-bit processor there are 232 = 4

billion addresses
– Divided in user program address space

and kernel address space
• What happens when you read or

write to an address?
– Perhaps Nothing
– Perhaps acts like regular memory
– Perhaps ignores writes
– Perhaps causes I/O operation

» (Memory-mapped I/O)
– Perhaps causes exception (fault)

Kernel addr space
(code, data, …)

Program
 A

ddress Space
Kernel

lm/os-vt08-l2-18
4/7/08

Providing Illusion of Separate Address Space:
Load new Translation Map on Switch

Prog 1
Virtual
Address
Space 1

Prog 2
Virtual
Address
Space 2

Code
Data
Heap
Stack

Code
Data
Heap
Stack

Data 2

Stack 1

Heap 1

OS heap &
Stacks

Code 1

Stack 2

Data 1

Heap 2

Code 2

OS code

OS dataTranslation Map 1 Translation Map 2

Physical Address Space

lm/os-vt08-l2-19
4/7/08

Traditional UNIX Process

• Process: Operating system abstraction to represent
what is needed to run a single program
– Often called a “Heavy Weight Process”
– Formally: a single, sequential stream of execution in its own

address space
• Two parts:

– Sequential Program Execution Stream
» Code executed as a single, sequential stream of

execution
» Includes State of CPU registers

– Protected Resources:
» Main Memory State (contents of Address Space)
» I/O state (i.e. file descriptors)

• Important: There is no concurrency in a heavyweight
process

lm/os-vt08-l2-20
4/7/08

How do we multiplex processes?
• The current state of process held in a

process control block (PCB):
– This is a “snapshot” of the execution and

protection environment
– Only one PCB active at a time

• Give out CPU time to different processes
(CPU Scheduling or Process dispatching):
– Only one process “running” at a time
– Give more time to important processes

• Give pieces of resources to different
processes (Protection):
– Controlled access to non-CPU resources
– Sample mechanisms:

» Memory Mapping: Give each process their
own address space

» Kernel/User duality: Arbitrary multiplexing
of I/O through system calls

Process
Control
Block

pointers process
state

process id
program counter

other registers

memory limits

list of open files

...

lm/os-vt08-l2-21
4/7/08

CPU Switch From Process to Process

• This is also called a “context switch”
• How long does it take to switch from one process to another ?
• Code executed in kernel above is overhead

– Overhead sets minimum practical switching time
– Less overhead with SMT/hyperthreading, but… contention for resources

instead

lm/os-vt08-l2-22
4/7/08

Diagram of Process State

• As a process executes, it changes state
– new: The process is being created
– ready: The process is waiting to run
– running: Instructions are being executed
– waiting: Process waiting for some event to occur
– terminated: The process has finished execution

lm/os-vt08-l2-23
4/7/08

Process Scheduling

• PCBs move from queue to queue as they change state
– Decisions about which order to remove from queues are

Scheduling decisions
– Many algorithms possible

lm/os-vt08-l2-24
4/7/08

What does it take to create a process?

• Must construct new PCB
– Inexpensive

• Must set up new translation map for address space
– More expensive

• Copy data from parent process? (Unix fork())
– Semantics of Unix fork() are that the child process gets a

complete copy of the parent memory and I/O state
– Originally very expensive
– Much less expensive with “copy on write”

• Copy I/O state (file handles, etc)
– Medium expense

lm/os-vt08-l2-25
4/7/08

Multiple Processes Collaborate on a Task

• (Relatively) High Context-Switch Overhead
• Separate address spaces isolates processes
• Need Inter-Process Communication mechanism (IPC):

– Shared-Memory Mapping
» Accomplished by mapping addresses to common DRAM
» Read and Write through memory

– Message Passing
» send() and receive() messages
» Works across network

Proc 1 Proc 2 Proc 3

lm/os-vt08-l2-26
4/7/08

Shared Memory Communication

Prog 1
Virtual
Address
Space 1

Prog 2
Virtual
Address
Space 2

Data 2
Stack 1
Heap 1
Code 1
Stack 2
Data 1
Heap 2
Code 2
Shared

• Communication occurs by “simply” reading/writing
to shared address page
– Really low overhead communication
– Introduces complex synchronization problems

Code
Data
Heap
Stack
Shared

Code
Data
Heap
Stack
Shared

lm/os-vt08-l2-27
4/7/08

Message Passing Communication

• Mechanism for processes to communicate and to
synchronize their actions

• Message system – processes communicate with
each other without resorting to shared variables

• Provides two operations:
– send(message) – message size fixed or variable
– receive(message)

• If P and Q wish to communicate, they need to:
– establish a communication link between them
– exchange messages via send/receive

• Implementation of communication link
– physical (e.g., shared memory, hardware bus, system calls/traps)
– logical (software)

lm/os-vt08-l2-28
4/7/08

Modern “Lightweight” Process with Threads
• Thread: a sequential execution stream within process

(Sometimes called a “Lightweight process”)
– Process still contains a single Address Space
– No protection between threads

• Multithreading: a single program made up of a number
of different concurrent activities
– Sometimes called multitasking, as in Ada…

• Why separate the concept of a thread from that of a
process?
– Deal with the “thread” part of a process (concurrency) separate

from the “address space” (Protection)
• Heavyweight Process ≡ Process with one thread

lm/os-vt08-l2-29
4/7/08

Single and Multithreaded Processes

• Threads encapsulate concurrency: “Active” component
• Address spaces encapsulate protection: “Passive” part

– Keeps buggy program from trashing the system
• Why have multiple threads per address space?

lm/os-vt08-l2-30
4/7/08

Examples of multithreaded programs

• Embedded systems
– Elevators, Planes, Medical systems, Wristwatches
– Single Program, concurrent operations

• Most modern OS kernels
– Internally concurrent because have to deal with

concurrent requests by multiple users
– But no protection needed within kernel

• Database Servers
– Access to shared data by many concurrent users
– Also background utility processing must be done

lm/os-vt08-l2-31
4/7/08

Examples of multithreaded programs (con’t)

• Network Servers
– Concurrent requests from network
– Again, single program, multiple concurrent operations
– File server, Web server, and airline reservation systems

• Parallel Programming (More than one physical CPU)
– Split program into multiple threads for parallelism
– This is called Multiprocessing

• Some multiprocessors are actually uniprogrammed:
– Multiple threads in one address space but one program at a

time

lm/os-vt08-l2-32
4/7/08

Thread State
• State shared by all threads in process/addr space

– Contents of memory (global variables, heap)
– I/O state (file system, network connections, etc)

• State “private” to each thread
– Kept in TCB ≡ Thread Control Block
– CPU registers (including, program counter)
– Execution stack – what is this?

• Execution Stack
– Parameters, local variables, temporary storage
– return PCs are kept while called procedures are executing

lm/os-vt08-l2-33
4/7/08

Classification

• Real operating systems have either
– One or many address spaces
– One or many threads per address space

• Windows 95/98/ME did not have real memory protection
– Users could overwrite process tables/System DLLs

Mach, OS/2, Linux
Windows 9x???
Win NT to XP,

Solaris, HP-UX, OS X

Embedded systems
(Geoworks, VxWorks,

JavaOS,etc)
JavaOS, Pilot(PC)

Traditional UNIXMS/DOS, early
Macintosh

Many

One

threads
Per AS:

ManyOne

#
 o

f
ad

dr
sp

ac
es

:

lm/os-vt08-l2-34
4/7/08

Summary

• Processes have two parts
– Threads (Concurrency)
– Address Spaces (Protection)

• Concurrency accomplished by multiplexing CPU Time:
– Unloading current thread (PC, registers)
– Loading new thread (PC, registers)
– Such context switching may be voluntary (yield(), I/O

operations) or involuntary (timer, other interrupts)
• Protection accomplished restricting access:

– Memory mapping isolates processes from each other
– Dual-mode for isolating I/O, other resources

