Operating Systems
(1DT020 & 1TT802)

Lecture 13

I/O Systems (cont’d)
Protection and Security

May 23, 2008
Léon Mugwaneza

http://www.it.uu.se/edu/course/homepage/os/vt08

Goals for Today

* /O systems
* Protection & Security

Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne,
others from Kubiatowicz - CS162 ©UCB Fall 2007 (University of

California at Berkeley)

5/23/08 Im/os-vt08-113-2

/O Systems

 Thousands of devices, each slightly different
— OS should offer standard interfaces to applications

 Some operational parameters:

— Byte/Block
» Some devices provide single byte at a time (e.g.
keyboard)
» Others provide whole blocks (e.g. disks, networks, etc)
— Also : Sequential/Random
» Some devices must be accessed sequentially (e.g. tape)
» Others can be accessed randomly (e.g. disk, cd, etc.)

 Device Rates vary over many orders of magnitude
— OS should be able to handle this wide range
— Better not have high overhead/byte for fast devices!
— Better not waste time waiting for slow devices

5/23/08 Im/os-vt08-113-3

How Does User Deal with Timing?
* Blocking Interface: “Wait”

— When request data (e.g. read () system call), put process to sleep until
data is ready

— When write data (e.g. write () system call), put process to sleep until
device is ready for data
* Non-blocking Interface: “Don’t Wait”

— Returns quickly from read or write request with count of bytes
successfully transferred

— Read may return nothing, write may write nothing

* Asynchronous Interface: “Tell Me Later”

— When request data, take pointer to user’s buffer, return immediately;
later kernel fills buffer and notifies user

— When send data, take pointer to user’s buffer, return immediately; later
kernel takes data and notifies user

5/23/08 Im/os-vt08-113-4

Main components of Intel Chipset: Pentium 4

* Northbridge: intef Pontium’4

Extreme Edition

— Handles memory

| 6.4 GBYs

— Graphics |
« Southbridge: 1/O0
— PCl bus FOERree
— Disk controllers St
— USB controllers intef* High] v @
. Definition Audio MB/s ATA Ports
— Audio spi | 133 -
— Serial 1/0 ix:_"'” ok _ intel Matrix
— Interrupt controller USB 20 Ports
— Timers

5/23/08 Im/os-vt08-113-5

How does the processor actually talk to the device?

Processor Memory Bus Regular
Memory

' Device ,,;\

S——

Bus
\dapto Address+ Controller

Interrupt or Buses Data I Bus 4 Hardware
ontrolle Interrupt Request 'Cm‘erfac Controller
:,,e.ﬂi Addressable

« CPU interacts with a Controller Coniro "2:;“/00'”'}'

— Contains a set of registers that Registers Queues

can be read and written (port 0x20)

— May contain memory for request
queues or bit-mapped images

Memory Mapped
Region: x8f0p0pSOZq

* Regardless of the complexity of the connections and
buses, processor accesses registers in two ways:

— /O instructions: in/out instructions

» Example from the Intel architecture: out 0x21,AL

— Memory mapped I/O: load/store instructions
» Registers/memory appear in physical address space
» 1/O accomplished with load and store instructions

5/23/08

Im/os-vt08-113-6

Example: Memory-Mapped Display Controller

« Memory-Mapped:
— Hardware maps control registers and
display memory into physical address
space

» Addresses set by hardware jumpers

or programming at boot time
— Simply writing to display memory (also
called the “frame buffer”) changes
image on screen
» Addr: 0x8000F000—0x8000FFFF
— Writing graphics description to
command-queue area
» Say enter a set of triangles that
describe some scene
» Addr: 0x80010000—0x8001FFFF
— Writing to the command register may
cause on-board graphics hardware to
do something
» Say render the above scene
» Addr: 0x0007F004

0x80020000 Gr Gphi C ﬂ

IComman
Queue

0x80010000 [_.
Display
Memory

0x8000F000

0x0007F004 [Command
0x0007F000 | Status

—T

Physical Address
« Can protect with page tables }L\L Space

5/23/08

Im/os-vt08-113-7

Transfering Data To/From Controller

 Programmed |/O:
— Each byte transferred via processor in/out or load/store
— Pro: Simple hardware, easy to program
— Con: Consumes processor cycles proportional to data size

* Direct Memory Access:

— Give controller access to memory bus
— Ask it to transfer data to/from memory directly

« Sample interaction with DMA controller (from book):

1. device driver is told
to transfer disk data CPU
to buffer at address X
5. DMA controller 2. device driver tells
transfers bytes to disk controller to
buffer X, increasing transfer C bytes
memory address from disk to buffer e
and decreasing C at address X
untilC =0 S
us
6. when C = 0, DMA : = X
interrupts CPU to signal mtetrrLlllpt)— CPU memory bus memory | buffer
transfer completion Contorer
i PCI bus
3. disk controller initiates
IDE disk DMA transfer
controller 4. disk controller sends

each byte to DMA

@ @ controller

disk) (disk Im/os-vt08-113-8

5/23/08

A Kernel I/O Structure

software

hardware

kernel

kernel 1/0O subsystem

SCSI keyboard | mouse PCI bus floppy ATAPI
device device device see device device device
driver driver driver driver driver driver
SCSI keyboard mouse PCI bus floppy ATAPI
device device device cee device device device
controller | controller | controller controller | controller | controller
ATAPI
SCS| floppy- | | devices
dee keyboard mouse oo PCI bus d_lsk (disks,
drives tapes,
drives)

Im/os-vt08-113-9

Device Drivers

* Device Driver: Device-specific code in the kernel that
interacts directly with the device hardware
— Supports a standard, internal interface

— Same kernel 1/0 system can interact easily with different device
drivers

— Special device-specific configuration supported with the
ioctl () system call
* Device Drivers typically divided into two pieces:
— Top half: accessed in call path from system calls

» Implements a set of standard, cross-device calls like open (),
close (), read(), write (), ioctl (), strategy ()

» This is the kernel’s interface to the device driver

» Top half will start1/O to device, may put thread to sleep until
finished

— Bottom half: run as interrupt routine
» Gets input or transfers next block of output
» May wake sleeping threads if /0 now complete

5/23/08 Im/os-vt08-113-10

5/23/08

Life Cycle of An I/O Request

User
Program

Kernel I/O
Subsystem

Device Driver
Top Half
Device Driver
Bottom Half

Device
Hardware

can already

user 1/O completed,
request 1/O process input data available, or
output completed
[
system call

return from system call

IIIIIIIIIIIIIIIIIIlllllllllllllrlllllllll

kernel

VO subsystem transfer data

(if appropriate) to process,

satisfy request?

no

yes

return completion
or error code

send request to device
driver, block process if
appropriate

kernel
I/O subsystem

process request, issue

commands to controller,
configure controller to
block until interrupted

determine which /O
completed, indicate state
change to I/0 subsystem

device
driver

device-controller commands

receive interrupt, store
data in device-driver buffer
if input, signal to unblock
device driver

interrupt
handler

T

.......................................‘W’f@l.......

device
monitor device, controller
interrupt when 10 » . gr?ef;;;"fr:fetfrﬂ’pt
completed
time

Im/os-vt08-113-11

I/O Device Notifying the OS

* The OS needs to khnow when:

— The I/O device has completed an operation
— The 1/O operation has encountered an error

* I/O Interrupt:

— Device generates an interrupt whenever it needs service
— Handled in bottom half of device driver
» Often run on special kernel-level stack
— Pro: handles unpredictable events well
— Con: interrupts relatively high overhead

* Polling:
— OS periodically checks a device-specific status register
» /0O device puts completion information in status register
» Could use timer to invoke lower half of drivers occasionally

— Pro: low overhead

— Con: may waste many cycles on polling if infrequent or unpredictable 1/O
operations

» Actual devices combine both polling and interrupts
— For instance: High-bandwidth network device:

» Interrupt for first incoming packet
» Poll for following packets until hardware empty

5/23/08 Im/os-vt08-113-12

Protection vs Security

* Protection: one or more mechanisms for controlling the

access of programs, processes, or users to resources

— Page Table Mechanism
— File Access Mechanism

« Security: use of protection mechanisms to prevent

misuse of resources

— Misuse defined with respect to policy
» E.g.: prevent exposure of certain sensitive information
» E.g.: prevent unauthorized modification/deletion of data
— Requires consideration of the external environment within which the
system operates
» Most well-constructed system cannot protect information if user
accidentally reveals password

<A short to introduction protection and security

5/23/08 Im/os-vt08-113-13

Protection : Dual-Mode Operation

Multiprogramming goals
— Isolate processes and kernel from one another
— Allow flexible translation that allows easy sharing between processes
— User cannot change mode to kernel mode or modify page table mapping
— Limited access to memory: cannot adversely effect other processes
» Side-effect: Limited access to memory-mapped I/O operations
— Limited access to interrupt controller
— What else needs to be protected?

To Assist with Protection, Hardware provides at least two
modes: “Kernel” mode (o “protected”) and “User” mode

— Mode set with bits in control register only accessible in kernel-mode
— Some instructions only available in kernel mode (Privileged instructions)

Intel processor actually has four “rings” of protection:
— PL (Priviledge Level) from 0 — 3 (PLO has full access, PL3 has least)
— Privilege Level set in code segment descriptor (CS)

— Mirrored “IOPL” bits in condition register gives permission to programs
to use the I/O instructions

— Typical OS kernels on Intel only use PLO (“kernel”) and PL3 (“user”)

A couple of issues :
— How to share CPU between kernel and user programs?
— How do programs interact?

50308 HOow does one switch between kernel and user modes? Im/os-vt08-113-14

How to get from Kernel—User

« What does the kernel do to create a new user process?
— Allocate and initialize address-space control block
— Read program off disk and store in memory
— Allocate and initialize translation table
» Point at code in memory so program can execute
» Possibly point at statically initialized data
— Run Program:
» Set machine registers
» Set hardware pointer to translation table
» Set processor status word for user mode
» Jump to start of program

« How does kernel switch between processes?

— Same saving/restoring of registers as before
— Save/restore hardware pointer to translation table

5/23/08 Im/os-vt08-113-15

User—Kernel (System Call)

 How does the user program get back into kernel?

user process
user mode
user process executing = calls system call return from system call (mode bit = 1)
\ 7
LY i
! 7
kernel trap return
i mode bit= 0 mode bit = 1
kernel mode
execute system call (mode bit = 0)

- System call: Voluntary procedure call into kernel
— Hardware for controlled User—Kernel transition
— Can any kernel routine be called?
» No! Only specific ones.
— System call ID encoded into system call instruction
» Index forces well-defined interface with kernel

5/23/08 Im/os-vt08-113-16

System Call Continued

What are some system calls?
— 1/O: open, close, read, write, Iseek
— Files: delete, mkdir, rmdir, truncate, chown, chgrp, ..
— Process: fork, exit, wait
— Network: socket create, set options
— Operations on shared memory segments, semaphores, other IPC

Are system calls constant across operating systems?

— Not entirely, but there are lots of commonalities
— Also some standardization attempts (POSIX)

What happens at beginning of system call?
» On entry to kernel, sets system to kernel mode
» Handler address fetched from table/Handler started

System Call argument passing:
— In registers (not very much can be passed)
— Write into user memory, kernel copies into kernel memory
» User addresses must be translated!
» Kernel has different view of memory than user
— Every argument must be explicitly checked!

5/23/08 Im/os-vt08-113-17

User—Kernel (Exceptions: Traps and Interrupts)

« A system call instruction causes a synchronous
exception (or “trap”)
— In fact, often called a software “trap” instruction

Other sources of Synchronous Exceptions:

— Divide by zero, lllegal instruction, undefined instruction, Bus error (bad
address, e.g. unaligned access)

— Segmentation Fault (address out of range)
— Page Fault (for illusion of infinite-sized memory)

Interrupts are Asynchronous Exceptions
— Examples: timer, disk ready, network, etc....
— Interrupts can be disabled, traps cannot!

On system call, exception, or interrupt:
— Hardware enters kernel mode with interrupts disabled
— Saves PC, then jumps to appropriate handler in kernel

— For some processors (x86), processor also saves registers, changes
stack, etc.

Actual handler typically saves registers, other CPU
state, and switches to kernel stack

5/23/08 Im/os-vt08-113-18

Communication

 Now that we have isolated processes, how
can they communicate?
— Shared memory: common mapping to physical page

» As long as they place objects in shared memory address range,
threads from each process can communicate

» Note that processes A and B can talk to shared memory through
different addresses

» In some sense, this violates the whole notion of protection that we
have been developing

— If address spaces don’t share memory, all inter-address space
communication must go through kernel (via system calls)

» Byte stream producer/consumer (put/get): Example, communicate
through pipes connecting stdin/stdout

» Message passing (send/receive): another kind of process
communication and synchronization tool

* Blocking vs non blocking send
« Blocking vs non blocking receive

 Naming : the other process, a mail box (which can be shared),
a private channel

» File System (read/write): File system is shared state!

5/23/08 Im/os-vt08-113-19

Security: Preventing Misuse

 Types of Misuse:
— Accidental:
» If | delete shell, can’t log in to fix it!
» Could make it more difficult by asking: “do you really
want to delete the shell?”
— Intentional:
» Doesn’t help to ask if user wants perform action

 Three Pieces to Security

— Authentication: who the user actually is

— Authorization: who is allowed to do what

— Enforcement: make sure people do only what they are
supposed to do

 Loopholes in any carefully constructed system:

— Log in as super-user and you’ve circumvented authentication

— Log in as self and can do anything with your resources; for
instance: run program that erases all of your files

— Can you trust software to correctly enforce Authentication
and Authorization?

5/23/08 Im/os-vt08-113-20

 How to identify users to the system?
— Passwords
» Shared secret between two parties

» Since only user knows password, someone types
correct password = must be user typing it

» Very common technique Ceggplanf"
* Encrypt passwords to help hid them
* Force them to be longer/not amenable to dictionary attack

» Use one-time passwords

— Smart Cards

» Electronics embedded in card capable of
providing long passwords or satisfying
challenge — response queries

» May have display to allow reading of password

» Or can be plugged in directly; several
credit cards now in this category

— Biometrics
» Use of one or more intrinsic physical or

behavioral traits to identify someone

» Examples: fingerprint reader,
palm reader, retinal scan

» Becoming quite a bit more common

5/23/08

Authorization: Who Can Do What?

* How do we decide who is authorized to do actions in
the system?

 Access Control Matrix: contains

all permissions in the system e e | s e
— Resources across top S
» Files, Devices, etc... D, read read
— Domains in columns |
» A domain might be a user or a % Ut

group of permissions
» E.g. opposite : User D3 can read F2

Ds read | execute

or execute F3 5 read read
. : write write
— In practice, table would be huge and
sparse!

 Important issues :
— When are access rights checked ?
— How (and when) to revoke authorization ?
» List of revocation attached to objects or processes?
» Expiration dates? Epoch numbers?

5/23/08 Im/os-vt08-113-22

Authorization: Implementation Choices

Access Control Lists: store permissions with object
— Still might be lots of users!
— UNIX limits each file to: r,w,x for owner, group, world

— More recent systems allow definition of groups of users and permissions
for each group

— ACLs allow easy changing of an object’s permissions
» Example: add Users C, D, and F with rw permissions

Capability List: each process tracks which objects has
permission to touch
— Popular in the past, idea out of favor today

— Consider page table: Each process has list of pages it has access to, not
each page has list of processes ...

— Capability lists allow easy changing of a domain’s permissions
» Example: you are promoted to system administrator and should be
given access to all system files
* A combination approach: Users have capabilities (groups
or roles), Objects have ACLs
— ACLs refer to users or groups
— Change object permission by modifying ACL
— Change broader user permission via change in group membership
Im/os-vt08-113-23

5/23/08

Authorization Continued

* Principle of least privilege: programs, users, and
systems should get only enough privileges to perform

their tasks

— Very hard to do in practice
» How do you figure out what the minimum set of privileges is

needed to run your programs?
— People often run at higher privilege then necessary
» Such as the “administrator” privilege under windows

* One solution: Signed Software
— Only use software from sources that you trust, thereby dealing

with the problem by means of authentication
— Fine for big, established firms such as Microsoft, since they can
make their sighing keys well known and people trust them
» Actually, not always fine: recently, one of Microsoft’s
sighing keys was compromised, leading to malicious
software that looked valid
— What about new startups?

» Who “validates” them?
» How easy is it to fool them?

5/23/08 Im/os-vt08-113-24

Summary (l/O systems)

* /0O Devices Types:

— Many different speeds (0.1 bytes/sec to GBytes/sec)

— Different Access Patterns: block, char, net devices

— Different Access Timing: Non-/Blocking, Asynchronous
« /0 Controllers: Hardware that controls actual

device

— CPU accesses through 1/O insts, Id/st to special phy memory
— Report results through interrupts or a status register polling

* Device Driver: Device-specific code in kernel

5/23/08 Im/os-vt08-113-25

Summary (Protection & Security)

* Protection: Prevent unauthorized Sharing of resources

— Address space protected using translation of addresses through
Memory Management Unit (MMU)

» Every Access translated through page table
» Changing of page tables only available to kernel
— Dual-Mode
» Kernel/User distinction: User restricted
» User—Kernel: System calls, Traps, or Interrupts
» Inter-process communication: shared memory, or through kernel

(system calls)
« Security : prevent misuse
— User Identification
» Passwords/Smart Cards/Biometrics
» Encrypt password to help hid them
» Force passwords to be longer/not amenable to dictionary attack
— Authorization
» Access Matrix
» Access lists
« Capabilities

5/23/08 Im/os-vt08-113-26

