
Operating Systems
(1DT020 & 1TT802)

Lecture 13

I/O Systems (cont’d)
Protection and Security

May 23, 2008

Léon Mugwaneza

 http://www.it.uu.se/edu/course/homepage/os/vt08

lm/os-vt08-l13-2
5/23/08

Goals for Today

• I/O systems
• Protection & Security

Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne,
others from Kubiatowicz - CS162 ©UCB Fall 2007 (University of
California at Berkeley)

lm/os-vt08-l13-3
5/23/08

 I/O Systems

• Thousands of devices, each slightly different
– OS should offer standard interfaces to applications

• Some operational parameters:
– Byte/Block

» Some devices provide single byte at a time (e.g.
keyboard)

» Others provide whole blocks (e.g. disks, networks, etc)
– Also : Sequential/Random

» Some devices must be accessed sequentially (e.g. tape)
» Others can be accessed randomly (e.g. disk, cd, etc.)

• Device Rates vary over many orders of magnitude
– OS should be able to handle this wide range
– Better not have high overhead/byte for fast devices!
– Better not waste time waiting for slow devices

lm/os-vt08-l13-4
5/23/08

How Does User Deal with Timing?
• Blocking Interface: “Wait”

– When request data (e.g. read() system call), put process to sleep until
data is ready

– When write data (e.g. write() system call), put process to sleep until
device is ready for data

• Non-blocking Interface: “Don’t Wait”
– Returns quickly from read or write request with count of bytes

successfully transferred
– Read may return nothing, write may write nothing

• Asynchronous Interface: “Tell Me Later”
– When request data, take pointer to user’s buffer, return immediately;

later kernel fills buffer and notifies user
– When send data, take pointer to user’s buffer, return immediately; later

kernel takes data and notifies user

lm/os-vt08-l13-5
5/23/08

Main components of Intel Chipset: Pentium 4

• Northbridge:
– Handles memory
– Graphics

• Southbridge: I/O
– PCI bus
– Disk controllers
– USB controllers
– Audio
– Serial I/O
– Interrupt controller
– Timers

lm/os-vt08-l13-6
5/23/08

Device
Controller

read
write
control
status

Addressable
Memory
and/or
QueuesRegisters

(port 0x20)

Hardware
Controller

Memory Mapped
Region: 0x8f008020

Bus
Interface

How does the processor actually talk to the device?

• CPU interacts with a Controller
– Contains a set of registers that

can be read and written
– May contain memory for request

queues or bit-mapped images
• Regardless of the complexity of the connections and

buses, processor accesses registers in two ways:
– I/O instructions: in/out instructions

» Example from the Intel architecture: out 0x21,AL
– Memory mapped I/O: load/store instructions

» Registers/memory appear in physical address space
» I/O accomplished with load and store instructions

Address+
Data

Interrupt Request

Processor Memory Bus

CPU

Regular
Memory

Interrupt
Controller

Bus
Adaptor

Bus
Adaptor

Other Devices
or Buses

lm/os-vt08-l13-7
5/23/08

Example: Memory-Mapped Display Controller
• Memory-Mapped:

– Hardware maps control registers and
display memory into physical address
space
» Addresses set by hardware jumpers

or programming at boot time
– Simply writing to display memory (also

called the “frame buffer”) changes
image on screen
» Addr: 0x8000F000—0x8000FFFF

– Writing graphics description to
command-queue area
» Say enter a set of triangles that

describe some scene
» Addr: 0x80010000—0x8001FFFF

– Writing to the command register may
cause on-board graphics hardware to
do something
» Say render the above scene
» Addr: 0x0007F004

• Can protect with page tables

Display
Memory

0x8000F000

0x80010000

Physical Address
Space

Status0x0007F000
Command0x0007F004

Graphics
Command
Queue

0x80020000

lm/os-vt08-l13-8
5/23/08

Transfering Data To/From Controller
• Programmed I/O:

– Each byte transferred via processor in/out or load/store
– Pro: Simple hardware, easy to program
– Con: Consumes processor cycles proportional to data size

• Direct Memory Access:
– Give controller access to memory bus
– Ask it to transfer data to/from memory directly

• Sample interaction with DMA controller (from book):

lm/os-vt08-l13-9
5/23/08

A Kernel I/O Structure

lm/os-vt08-l13-10
5/23/08

Device Drivers
• Device Driver: Device-specific code in the kernel that

interacts directly with the device hardware
– Supports a standard, internal interface
– Same kernel I/O system can interact easily with different device

drivers
– Special device-specific configuration supported with the
ioctl() system call

• Device Drivers typically divided into two pieces:
– Top half: accessed in call path from system calls

» Implements a set of standard, cross-device calls like open(),
close(), read(), write(), ioctl(), strategy()

» This is the kernel’s interface to the device driver
» Top half will start I/O to device, may put thread to sleep until

finished
– Bottom half: run as interrupt routine

» Gets input or transfers next block of output
» May wake sleeping threads if I/O now complete

lm/os-vt08-l13-11
5/23/08

Life Cycle of An I/O Request

Device Driver
Top Half

Device Driver
Bottom Half

Device
Hardware

Kernel I/O
Subsystem

User
Program

lm/os-vt08-l13-12
5/23/08

I/O Device Notifying the OS

• The OS needs to know when:
– The I/O device has completed an operation
– The I/O operation has encountered an error

• I/O Interrupt:
– Device generates an interrupt whenever it needs service
– Handled in bottom half of device driver
» Often run on special kernel-level stack

– Pro: handles unpredictable events well
– Con: interrupts relatively high overhead

• Polling:
– OS periodically checks a device-specific status register
» I/O device puts completion information in status register
» Could use timer to invoke lower half of drivers occasionally

– Pro: low overhead
– Con: may waste many cycles on polling if infrequent or unpredictable I/O

operations
• Actual devices combine both polling and interrupts
– For instance: High-bandwidth network device:
» Interrupt for first incoming packet
» Poll for following packets until hardware empty

lm/os-vt08-l13-13
5/23/08

Protection vs Security
• Protection: one or more mechanisms for controlling the

access of programs, processes, or users to resources
– Page Table Mechanism
– File Access Mechanism

• Security: use of protection mechanisms to prevent
misuse of resources
– Misuse defined with respect to policy

» E.g.: prevent exposure of certain sensitive information
» E.g.: prevent unauthorized modification/deletion of data

– Requires consideration of the external environment within which the
system operates
» Most well-constructed system cannot protect information if user

accidentally reveals password
A short to introduction protection and security

lm/os-vt08-l13-14
5/23/08

Protection : Dual-Mode Operation
• Multiprogramming goals

– Isolate processes and kernel from one another
– Allow flexible translation that allows easy sharing between processes
– User cannot change mode to kernel mode or modify page table mapping
– Limited access to memory: cannot adversely effect other processes

» Side-effect: Limited access to memory-mapped I/O operations
– Limited access to interrupt controller
– What else needs to be protected?

• To Assist with Protection, Hardware provides at least two
modes: “Kernel” mode (o “protected”) and “User” mode
– Mode set with bits in control register only accessible in kernel-mode
– Some instructions only available in kernel mode (Privileged instructions)

• Intel processor actually has four “rings” of protection:
– PL (Priviledge Level) from 0 – 3 (PL0 has full access, PL3 has least)
– Privilege Level set in code segment descriptor (CS)
– Mirrored “IOPL” bits in condition register gives permission to programs

to use the I/O instructions
– Typical OS kernels on Intel only use PL0 (“kernel”) and PL3 (“user”)

• A couple of issues :
– How to share CPU between kernel and user programs?
– How do programs interact?
– How does one switch between kernel and user modes?

lm/os-vt08-l13-15
5/23/08

How to get from Kernel→User
• What does the kernel do to create a new user process?

– Allocate and initialize address-space control block
– Read program off disk and store in memory
– Allocate and initialize translation table

» Point at code in memory so program can execute
» Possibly point at statically initialized data

– Run Program:
» Set machine registers
» Set hardware pointer to translation table
» Set processor status word for user mode
» Jump to start of program

• How does kernel switch between processes?
– Same saving/restoring of registers as before
– Save/restore hardware pointer to translation table

lm/os-vt08-l13-16
5/23/08

User→Kernel (System Call)
• How does the user program get back into kernel?

• System call: Voluntary procedure call into kernel
– Hardware for controlled User→Kernel transition
– Can any kernel routine be called?

» No! Only specific ones.
– System call ID encoded into system call instruction

» Index forces well-defined interface with kernel

lm/os-vt08-l13-17
5/23/08

System Call Continued
• What are some system calls?

– I/O: open, close, read, write, lseek
– Files: delete, mkdir, rmdir, truncate, chown, chgrp, ..
– Process: fork, exit, wait
– Network: socket create, set options
– Operations on shared memory segments, semaphores, other IPC

• Are system calls constant across operating systems?
– Not entirely, but there are lots of commonalities
– Also some standardization attempts (POSIX)

• What happens at beginning of system call?
» On entry to kernel, sets system to kernel mode
» Handler address fetched from table/Handler started

• System Call argument passing:
– In registers (not very much can be passed)
– Write into user memory, kernel copies into kernel memory

» User addresses must be translated!
» Kernel has different view of memory than user

– Every argument must be explicitly checked!

lm/os-vt08-l13-18
5/23/08

User→Kernel (Exceptions: Traps and Interrupts)
• A system call instruction causes a synchronous

exception (or “trap”)
– In fact, often called a software “trap” instruction

• Other sources of Synchronous Exceptions:
– Divide by zero, Illegal instruction, undefined instruction, Bus error (bad

address, e.g. unaligned access)
– Segmentation Fault (address out of range)
– Page Fault (for illusion of infinite-sized memory)

• Interrupts are Asynchronous Exceptions
– Examples: timer, disk ready, network, etc….
– Interrupts can be disabled, traps cannot!

• On system call, exception, or interrupt:
– Hardware enters kernel mode with interrupts disabled
– Saves PC, then jumps to appropriate handler in kernel
– For some processors (x86), processor also saves registers, changes

stack, etc.
• Actual handler typically saves registers, other CPU

state, and switches to kernel stack

lm/os-vt08-l13-19
5/23/08

Communication
• Now that we have isolated processes, how

can they communicate?
– Shared memory: common mapping to physical page

» As long as they place objects in shared memory address range,
threads from each process can communicate

» Note that processes A and B can talk to shared memory through
different addresses

» In some sense, this violates the whole notion of protection that we
have been developing

– If address spaces don’t share memory, all inter-address space
communication must go through kernel (via system calls)
» Byte stream producer/consumer (put/get): Example, communicate

through pipes connecting stdin/stdout
» Message passing (send/receive): another kind of process

communication and synchronization tool
• Blocking vs non blocking send
• Blocking vs non blocking receive
• Naming : the other process, a mail box (which can be shared),

a private channel
» File System (read/write): File system is shared state!

lm/os-vt08-l13-20
5/23/08

Security: Preventing Misuse
• Types of Misuse:

– Accidental:
» If I delete shell, can’t log in to fix it!
» Could make it more difficult by asking: “do you really

want to delete the shell?”
– Intentional:

» Doesn’t help to ask if user wants perform action
• Three Pieces to Security

– Authentication: who the user actually is
– Authorization: who is allowed to do what
– Enforcement: make sure people do only what they are

supposed to do
• Loopholes in any carefully constructed system:

– Log in as super-user and you’ve circumvented authentication
– Log in as self and can do anything with your resources; for

instance: run program that erases all of your files
– Can you trust software to correctly enforce Authentication

and Authorization?

lm/os-vt08-l13-21
5/23/08

Authentication: Identifying Users
• How to identify users to the system?

– Passwords
» Shared secret between two parties
» Since only user knows password, someone types

correct password ⇒ must be user typing it
» Very common technique

• Encrypt passwords to help hid them
• Force them to be longer/not amenable to dictionary attack
• Use one-time passwords

– Smart Cards
» Electronics embedded in card capable of

providing long passwords or satisfying
challenge → response queries

» May have display to allow reading of password
» Or can be plugged in directly; several

credit cards now in this category
– Biometrics

» Use of one or more intrinsic physical or
behavioral traits to identify someone

» Examples: fingerprint reader,
palm reader, retinal scan

» Becoming quite a bit more common

“eggplant”

lm/os-vt08-l13-22
5/23/08

Authorization: Who Can Do What?

• Access Control Matrix: contains
all permissions in the system
– Resources across top

» Files, Devices, etc…
– Domains in columns

» A domain might be a user or a
group of permissions

» E.g. opposite : User D3 can read F2
or execute F3

– In practice, table would be huge and
sparse!

• Important issues :
– When are access rights checked ?
– How (and when) to revoke authorization ?

» List of revocation attached to objects or processes?
» Expiration dates? Epoch numbers?

• How do we decide who is authorized to do actions in
the system?

lm/os-vt08-l13-23
5/23/08

Authorization: Implementation Choices
• Access Control Lists: store permissions with object

– Still might be lots of users!
– UNIX limits each file to: r,w,x for owner, group, world
– More recent systems allow definition of groups of users and permissions

for each group
– ACLs allow easy changing of an object’s permissions

» Example: add Users C, D, and F with rw permissions
• Capability List: each process tracks which objects has

permission to touch
– Popular in the past, idea out of favor today
– Consider page table: Each process has list of pages it has access to, not

each page has list of processes …
– Capability lists allow easy changing of a domain’s permissions

» Example: you are promoted to system administrator and should be
given access to all system files

• A combination approach: Users have capabilities (groups
or roles), Objects have ACLs
– ACLs refer to users or groups
– Change object permission by modifying ACL
– Change broader user permission via change in group membership

lm/os-vt08-l13-24
5/23/08

Authorization Continued
• Principle of least privilege: programs, users, and

systems should get only enough privileges to perform
their tasks
– Very hard to do in practice

» How do you figure out what the minimum set of privileges is
needed to run your programs?

– People often run at higher privilege then necessary
» Such as the “administrator” privilege under windows

• One solution: Signed Software
– Only use software from sources that you trust, thereby dealing

with the problem by means of authentication
– Fine for big, established firms such as Microsoft, since they can

make their signing keys well known and people trust them
» Actually, not always fine: recently, one of Microsoft’s

signing keys was compromised, leading to malicious
software that looked valid

– What about new startups?
» Who “validates” them?
» How easy is it to fool them?

lm/os-vt08-l13-25
5/23/08

Summary (I/O systems)

• I/O Devices Types:
– Many different speeds (0.1 bytes/sec to GBytes/sec)
– Different Access Patterns: block, char, net devices
– Different Access Timing: Non-/Blocking, Asynchronous

• I/O Controllers: Hardware that controls actual
device
– CPU accesses through I/O insts, ld/st to special phy memory
– Report results through interrupts or a status register polling

• Device Driver: Device-specific code in kernel

lm/os-vt08-l13-26
5/23/08

Summary (Protection & Security)
• Protection: Prevent unauthorized Sharing of resources

– Address space protected using translation of addresses through
Memory Management Unit (MMU)
» Every Access translated through page table
» Changing of page tables only available to kernel

– Dual-Mode
» Kernel/User distinction: User restricted
» User→Kernel: System calls, Traps, or Interrupts
» Inter-process communication: shared memory, or through kernel

(system calls)
• Security : prevent misuse

– User Identification
» Passwords/Smart Cards/Biometrics
» Encrypt password to help hid them
» Force passwords to be longer/not amenable to dictionary attack

– Authorization
» Access Matrix

• Access lists
• Capabilities

