
Operating Systems
(1DT020 & 1TT802)

Lecture 12

File System Implementation (continued)
I/O systems

May 12, 2008

Léon Mugwaneza

 http://www.it.uu.se/edu/course/homepage/os/vt08

lm/os-vt08-l12-2
5/16/08

Review: Disk Management Policies
• Disk Performance:

– Queuing time + Controller + Seek + Rotational + Transfer
– Rotational latency: on average ½ rotation
– Transfer time: spec of disk depends on rotation speed and bit storage

density
• Basic entities on a disk: Files & directories

» Directories represented as files
» File Header tracks which blocks belong to a file at which offsets

within the logical file structure
• Disk accessed using Logical Block Addressing (LBA).

– Every sector has integer address from zero up to max number of
sectors.

– Controller translates from address ⇒ physical position
» OS/BIOS must deal with bad sectors, hardware shields OS from

structure of disk
• Bitmap used to represent free space on disk
• Optimize placement of files’ disk blocks to match access

and usage patterns
– Access patterns: Sequential access or random access

» Databases are built on top of disk access to provide content based
access

Usage patterns

lm/os-vt08-l12-3
5/16/08

Goals for Today

• File System implementation
– How to organize files on a disk
– File system caching
– Durability

• I/O Systems
– Hardware Access
– Device Drivers

Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne,
others from Kubiatowicz - CS162 ©UCB Fall 2007 (University of
California at Berkeley)

lm/os-vt08-l12-4
5/16/08

Designing the File System: Usage Patterns
• Most files are small (for example, .login, .c files)

– A few files are big – core files, etc.; executable are as big as all of linked
object modules and statically linked library functions combined

– However, most files are small – .java, .class’s, .o’s, .c’s, etc.
• Large files use up most of the disk space and bandwidth

to/from disk
– May seem contradictory, but a few enormous files are equivalent to an

immense # of small files
• Although we will use these observations, beware usage

patterns:
– Good idea to look at usage patterns: beat competitors by optimizing for

frequent patterns
– Except: changes in performance or cost can alter usage patterns. Maybe

UNIX has lots of small files because big files are really inefficient?
• Digression, danger of predicting future:

– In 1950’s, marketing study by IBM said total worldwide need for
computers was 7!

lm/os-vt08-l12-5
5/16/08

How to organize files on disk
• Goals:

– Maximize sequential performance
– Easy random access to file
– Easy management of file (growth, truncation, etc)

• First Technique: Continuous Allocation
– Use continuous range of blocks in logical block space

» Analogous to base+bounds in virtual memory
» User says in advance how big file will be (disadvantage)

– Search bit-map for space using best fit/first fit
» What if not enough contiguous space for new file?

– File Header Contains:
» First block/LBA in file
» File size (# of blocks)

– Pros: Fast Sequential Access, Easy Random access
– Cons: External Fragmentation/Hard to grow files

» Free holes get smaller and smaller
» Could compact space, but that would be really expensive

• Continuous Allocation used by IBM 360
– Result of allocation and management cost: People would create a big

file, put their file in the middle

lm/os-vt08-l12-6
5/16/08

Linked List Allocation
• Second Technique: Linked List Approach

– Each block, pointer to next on disk

– Pros: Can grow files dynamically, Free list same as file
– Cons: Bad Sequential Access (seek between each block),

Unreliable (lose block, lose rest of file)
– Serious Con: Bad random access!!!!
– Technique originally from Alto (First PC, built at Xerox)

» No attempt to allocate contiguous blocks

Null

File Header

lm/os-vt08-l12-7
5/16/08

Linked Allocation: File-Allocation Table (FAT)

• MSDOS links blocks together to create a file
– Links not in blocks, but in the File Allocation Table (FAT)

» FAT contains an entry for each block on the disk
» FAT Entries corresponding to blocks of file linked together

– Access properties:
» Sequential access expensive unless FAT cached in memory
» Random access expensive always, but really expensive if

FAT not cached in memory

lm/os-vt08-l12-8
5/16/08

Indexed Allocation

• Third Technique: Indexed Files (VMS)
– System Allocates file header block to hold array of pointers big

enough to point to all blocks
» User pre-declares max file size;

– Pros: Can easily grow up to space allocated for index
Random access is fast

– Cons: Clumsy to grow file bigger than table size
Still lots of seeks: blocks may be spread over disk

lm/os-vt08-l12-9
5/16/08

Multilevel Indexed Files (UNIX 4.1)
• Multilevel Indexed Files:

Like multilevel address
translation
(from UNIX 4.1 BSD)
– Key idea: efficient for small

files, but still allow big files

• File hdr contains 13 pointers
– Fixed size table, pointers not all equivalent
– This header is called an “inode” in UNIX

• File Header format:
– First 10 pointers are to data blocks
– Ptr 11 points to “indirect block” containing 256 block ptrs
– Pointer 12 points to “doubly indirect block” containing 256 indirect block

ptrs for total of 64K blocks
– Pointer 13 points to a triply indirect block (16M blocks)

lm/os-vt08-l12-10
5/16/08

Multilevel Indexed Files (UNIX 4.1): Discussion
• Basic technique places an upper limit on file size that

is approximately 16Gbytes
– Designers thought this was bigger than anything anyone would need.

Much bigger than a disk at the time…
– Fallacy: today, EOS producing 2TB of data per day

• Pointers get filled in dynamically: need to allocate
indirect block only when file grows > 10 blocks
– On small files, no indirection needed

lm/os-vt08-l12-11
5/16/08

Example of Multilevel Indexed Files
• Sample file in multilevel

indexed format:
– How many accesses for

block #23? (assume file
header accessed on open)?
» Two: One for indirect block,

one for data
– How about block #5?

» One: One for data
– Block #340?

» Three: double indirect block,
indirect block, and data

• UNIX 4.1 Pros and cons
– Pros: Simple (more or less)

Files can easily expand (up to a point)
Small files particularly cheap and easy

– Cons: Lots of seeks
Very large files must read many indirect blocks
 (four I/Os per block!)

lm/os-vt08-l12-12
5/16/08

Attack of the Rotational Delay
• Another problem: Missing blocks due to rotational delay

– Issue: Read one block, do processing, and read next block. In
meantime, disk has continued turning: missed next block! Need 1
revolution/block!

– Solution1: Skip sector positioning (“interleaving”)
» Place the blocks from one file on every other block of a track:

give time for processing to overlap rotation
– Solution2: Read ahead: read next block right after first, even if

application hasn’t asked for it yet.
» This can be done either by OS (read ahead)
» By disk itself (track buffers). Many disk controllers have

internal RAM that allows them to read a complete track
• Important Aside: Modern disks+controllers do many

complex things “under the covers”
– Track buffers, elevator algorithms, bad block filtering

Skip Sector

Track Buffer
(Holds complete track)

lm/os-vt08-l12-13
5/16/08

File System Caching
• Key Idea: Exploit locality by caching data in memory

– Name translations: Mapping from paths→inodes
– Disk blocks: Mapping from block address→disk content

• Buffer Cache: Memory used to cache kernel resources,
including disk blocks and name translations
– Can contain “dirty” blocks (blocks yet on disk)

• Replacement policy? LRU
– Can afford overhead of timestamps for each disk block
– Advantages:

» Works very well for name translation
» Works well in general as long as memory is big enough to

accommodate a host’s working set of files.
– Disadvantages:

» Fails when some application scans through file system, thereby
flushing the cache with data used only once

» Example: find . –exec grep foo {} \;
• Other Replacement Policies?

– Some systems allow applications to request other policies
– Example, ‘Use Once’:

» File system can discard blocks as soon as they are used

lm/os-vt08-l12-14
5/16/08

File System Caching (con’t)
• Cache Size: How much memory should the OS allocate to

the buffer cache vs virtual memory?
– Too much memory to the file system cache ⇒ won’t be able to

run many applications at once
– Too little memory to file system cache ⇒ many applications may

run slowly (disk caching not effective)
– Solution: adjust boundary dynamically so that the disk access

rates for paging and file access are balanced
• Read Ahead Prefetching: fetch sequential blocks early

– Key Idea: exploit fact that most common file access is sequential
by prefetching subsequent disk blocks ahead of current read
request (if they are not already in memory)

– Elevator algorithm can efficiently interleave groups of prefetches
from concurrent applications

– How much to prefetch?
» Too many imposes delays on requests by other applications
» Too few causes many seeks (and rotational delays) among

concurrent file requests

lm/os-vt08-l12-15
5/16/08

File System Caching (con’t)
• Delayed Writes: Writes to files not immediately sent out

to disk
– Instead, write() copies data from user space buffer to kernel

buffer (in cache)
» Enabled by presence of buffer cache: can leave written file

blocks in cache for a while
» If some other application tries to read data before written to

disk, file system will read from cache
– Flushed to disk periodically (e.g. in UNIX, every 30 sec)
– Advantages:

» Disk scheduler can efficiently order lots of requests
» Disk allocation algorithm can be run with correct size value

for a file
» Some files need never get written to disk! (e..g temporary

scratch files written /tmp often don’t exist for 30 sec)
– Disadvantages

» What if system crashes before file has been written out?
» Worse yet, what if system crashes before a directory file has

been written out? (lose pointer to inode!)

lm/os-vt08-l12-16
5/16/08

How to make file system durable?
• Disk blocks contain Reed-Solomon error correcting codes

(ECC) to deal with small defects in disk drive
– Can allow recovery of data from small media defects

• Make sure writes survive in short term
– Either abandon delayed writes or
– use special, battery-backed RAM (called non-volatile RAM or NVRAM) for

dirty blocks in buffer cache.
• Make sure that data survives in long term

– Need to replicate! More than one copy of data!
– Important element: independence of failure

» Could put copies on one disk, but if disk head fails…
» Could put copies on different disks, but if server fails…
» Could put copies on different servers, but if building is struck by

lightning….
» Could put copies on servers in different continents…

• RAID: Redundant Arrays of Inexpensive Disks
– Data stored on multiple disks (redundancy)
– Either in software or hardware

» In hardware case, done by disk controller; file system may not even
know that there is more than one disk in use

lm/os-vt08-l12-17
5/16/08

Log Structured and Journaled File Systems
• Better reliability through use of log

– All changes are treated as transactions
» A transaction either happens completely or not at all

– A transaction is committed once it is written to the log
» Data forced to disk for reliability
» Process can be accelerated with NVRAM

– Although File system may not be updated immediately, data
preserved in the log

• Difference between “Log Structured” and
“Journaled”
– Log Structured Filesystem (LFS): data stays in log form
– Journaled Filesystem: Log used for recovery

• For Journaled system:
– Log used to asynchronously update filesystem

» Log entries removed after used
– After crash:

» Remaining transactions in the log performed (“Redo”)
• Examples of Journaled File Systems:

– Ext3 (Linux), XFS (Unix), NTFS (Windows)

lm/os-vt08-l12-18
5/16/08

 I/O Systems

lm/os-vt08-l12-19
5/16/08

Example Device-Transfer Rates (Sun Enterprise 6000)

• Device Rates vary over many orders of magnitude
– System better be able to handle this wide range
– Better not have high overhead/byte for fast devices!
– Better not waste time waiting for slow devices

lm/os-vt08-l12-20
5/16/08

The Goal of the I/O Subsystem

• Provide Uniform Interfaces, Despite Wide Range of
Different Devices
– This code works on many different devices:

FILE fd = fopen(“/dev/something”,”rw”);
for (int i = 0; i < 10; i++) {

fprintf(fd,”Count %d\n”,i);
}
close(fd);

– Why? Because code that controls devices (“device driver”)
implements standard interface.

lm/os-vt08-l12-21
5/16/08

Want Standard Interfaces to Devices
• Block Devices: e.g. disk drives, tape drives, DVD-ROM

– Access blocks of data
– Commands include open(), read(), write(), seek()
– Raw I/O or file-system access
– Memory-mapped file access possible

• Character Devices: e.g. keyboards, mice, serial ports,
some USB devices
– Single characters at a time
– Commands include get(), put()
– Libraries layered on top allow line editing

• Network Devices: e.g. Ethernet, Wireless, Bluetooth
– Different enough from block/character to have own interface
– Unix and Windows include socket interface

» Separates network protocol from network operation
» Includes select() functionality

– Usage: pipes, FIFOs, streams, queues, mailboxes

lm/os-vt08-l12-22
5/16/08

How Does User Deal with Timing?
• Blocking Interface: “Wait”

– When request data (e.g. read() system call), put process to sleep until
data is ready

– When write data (e.g. write() system call), put process to sleep until
device is ready for data

• Non-blocking Interface: “Don’t Wait”
– Returns quickly from read or write request with count of bytes

successfully transferred
– Read may return nothing, write may write nothing

• Asynchronous Interface: “Tell Me Later”
– When request data, take pointer to user’s buffer, return immediately;

later kernel fills buffer and notifies user
– When send data, take pointer to user’s buffer, return immediately; later

kernel takes data and notifies user

lm/os-vt08-l12-23
5/16/08

Main components of Intel Chipset: Pentium 4

• Northbridge:
– Handles memory
– Graphics

• Southbridge: I/O
– PCI bus
– Disk controllers
– USB controllers
– Audio
– Serial I/O
– Interrupt controller
– Timers

lm/os-vt08-l12-24
5/16/08

Device
Controller

read
write
control
status

Addressable
Memory
and/or
QueuesRegisters

(port 0x20)

Hardware
Controller

Memory Mapped
Region: 0x8f008020

Bus
Interface

How does the processor actually talk to the device?

• CPU interacts with a Controller
– Contains a set of registers that

can be read and written
– May contain memory for request

queues or bit-mapped images
• Regardless of the complexity of the connections and

buses, processor accesses registers in two ways:
– I/O instructions: in/out instructions

» Example from the Intel architecture: out 0x21,AL
– Memory mapped I/O: load/store instructions

» Registers/memory appear in physical address space
» I/O accomplished with load and store instructions

Address+
Data

Interrupt Request

Processor Memory Bus

CPU

Regular
Memory

Interrupt
Controller

Bus
Adaptor

Bus
Adaptor

Other Devices
or Buses

lm/os-vt08-l12-25
5/16/08

Example: Memory-Mapped Display Controller
• Memory-Mapped:

– Hardware maps control registers and
display memory into physical address
space
» Addresses set by hardware jumpers

or programming at boot time
– Simply writing to display memory (also

called the “frame buffer”) changes
image on screen
» Addr: 0x8000F000—0x8000FFFF

– Writing graphics description to
command-queue area
» Say enter a set of triangles that

describe some scene
» Addr: 0x80010000—0x8001FFFF

– Writing to the command register may
cause on-board graphics hardware to
do something
» Say render the above scene
» Addr: 0x0007F004

• Can protect with page tables

Display
Memory

0x8000F000

0x80010000

Physical Address
Space

Status0x0007F000
Command0x0007F004

Graphics
Command
Queue

0x80020000

lm/os-vt08-l12-26
5/16/08

Transfering Data To/From Controller
• Programmed I/O:

– Each byte transferred via processor in/out or load/store
– Pro: Simple hardware, easy to program
– Con: Consumes processor cycles proportional to data size

• Direct Memory Access:
– Give controller access to memory bus
– Ask it to transfer data to/from memory directly

• Sample interaction with DMA controller (from book):

lm/os-vt08-l12-27
5/16/08

A Kernel I/O Structure

lm/os-vt08-l12-28
5/16/08

Device Drivers
• Device Driver: Device-specific code in the kernel that

interacts directly with the device hardware
– Supports a standard, internal interface
– Same kernel I/O system can interact easily with different device

drivers
– Special device-specific configuration supported with the
ioctl() system call

• Device Drivers typically divided into two pieces:
– Top half: accessed in call path from system calls

» Implements a set of standard, cross-device calls like open(),
close(), read(), write(), ioctl(), strategy()

» This is the kernel’s interface to the device driver
» Top half will start I/O to device, may put thread to sleep until

finished
– Bottom half: run as interrupt routine

» Gets input or transfers next block of output
» May wake sleeping threads if I/O now complete

lm/os-vt08-l12-29
5/16/08

Life Cycle of An I/O Request

Device Driver
Top Half

Device Driver
Bottom Half

Device
Hardware

Kernel I/O
Subsystem

User
Program

lm/os-vt08-l12-30
5/16/08

I/O Device Notifying the OS

• The OS needs to know when:
– The I/O device has completed an operation
– The I/O operation has encountered an error

• I/O Interrupt:
– Device generates an interrupt whenever it needs service
– Handled in bottom half of device driver
» Often run on special kernel-level stack

– Pro: handles unpredictable events well
– Con: interrupts relatively high overhead

• Polling:
– OS periodically checks a device-specific status register
» I/O device puts completion information in status register
» Could use timer to invoke lower half of drivers occasionally

– Pro: low overhead
– Con: may waste many cycles on polling if infrequent or unpredictable I/O

operations
• Actual devices combine both polling and interrupts
– For instance: High-bandwidth network device:
» Interrupt for first incoming packet
» Poll for following packets until hardware empty

lm/os-vt08-l12-31
5/16/08

Summary
• Multilevel Indexed Scheme

– Inode contains file info, direct pointers to blocks,
– indirect blocks, doubly indirect, etc..

• Buffer cache used to increase performance
– Read Ahead Prefetching and Delayed Writes

• I/O Devices Types:
– Many different speeds (0.1 bytes/sec to GBytes/sec)
– Different Access Patterns: block, char, net devices
– Different Access Timing: Non-/Blocking, Asynchronous

• I/O Controllers: Hardware that controls actual
device
– CPU accesses thru I/O insts, ld/st to special phy memory
– Report results thru interrupts or a status register polling

• Device Driver: Device-specific code in kernel

