Operating Systems
(1DT020 & 1TT802)

Lecture 12

File System Implementation (continued)
/O systems

May 12, 2008
Léon Mugwaneza

http://www.it.uu.se/edu/course/homepage/os/vt08

Review: Disk Management Policies

* Disk Performance:
— Queuing time + Controller + Seek + Rotational + Transfer
— Rotational latency: on average ' rotation

— Transfer time: spec of disk depends on rotation speed and bit storage
density

 Basic entities on a disk: Files & directories
» Directories represented as files

» File Header tracks which blocks belong to a file at which offsets
within the logical file structure
* Disk accessed using Logical Block Addressing (LBA).
— Every sector has integer address from zero up to max number of
sectors.
— Controller translates from address = physical position
» OS/BIOS must deal with bad sectors, hardware shields OS from
structure of disk

* Bitmap used to represent free space on disk
* Optimize placement of files’ disk blocks to match access

and usage patterns
— Access patterns: Sequential access or random access
» Databases are built on top of disk access to provide content based
access

mUsage patterns

5/16/08 Im/os-vt08-112-2

Goals for Today

* File System implementation
— How to organize files on a disk
— File system caching
— Durability

* /0O Systems
— Hardware Access
— Device Drivers

Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne,
others from Kubiatowicz - CS162 ©UCB Fall 2007 (University of

California at Berkeley)

5/16/08 Im/os-vt08-112-3

Designing the File System: Usage Patterns

Most files are small (for example, .login, .c files)

— A few files are big — core files, etc.; executable are as big as all of linked

object modules and statically linked library functions combined

— However, most files are small — .java, .class’s, .0’s, .C’s, etc.

Large files use up most of the disk space and bandwidth

to/from disk
— May seem contradictory, but a few enormous files are equivalent to an

immense # of small files

Although we will use these observations, beware usage

patterns:
— Good idea to look at usage patterns: beat competitors by optimizing for

frequent patterns

— Except: changes in performance or cost can alter usage patterns. Maybe

UNIX has lots of small files because big files are really inefficient?

Digression, danger of predicting future:

— In 1950’s, marketing study by IBM said total worldwide need for

5/16/08

computers was 7!

Im/os-vt08-112-4

How to organize files on disk

« Goals:
— Maximize sequential performance
— Easy random access to file
— Easy management of file (growth, truncation, etc)

* First Technique: Continuous Allocation

— Use continuous range of blocks in logical block space
» Analogous to base+bounds in virtual memory
» User says in advance how big file will be (disadvantage)
— Search bit-map for space using best fit/first fit
» What if not enough contiguous space for new file?
— File Header Contains:
» First block/LBA in file
» File size (# of blocks)
— Pros: Fast Sequential Access, Easy Random access
— Cons: External Fragmentation/Hard to grow files
» Free holes get smaller and smaller
» Could compact space, but that would be really expensive

« Continuous Allocation used by IBM 360

— Result of allocation and management cost: People would create a big
file, put their file in the middle

5/16/08 Im/os-vt08-112-5

Linked List Allocation

« Second Technique: Linked List Approach

— Each block, pointer to next on disk

— Pros: Can grow files dynamically, Free list same as file

File Header

L

#\

. Null

— Cons: Bad Sequential Access (seek between each block),

Unreliable (lose block, lose rest of file)

— Serious Con: Bad random access!!!!

— Technique originally from Alto (First PC, built at Xerox)

5/16/08

» No attempt to allocate contiguous blocks

Im/os-vt08-112-6

Linked Allocation: File-Allocation Table (FAT)

directory entry

test | eee | 217 }—
name start block

— 217 618

339 <

618 339

A

no. of disk blocks -1

FAT

« MSDOS links blocks together to create a file
— Links not in blocks, but in the File Allocation Table (FAT)
» FAT contains an entry for each block on the disk
» FAT Entries corresponding to blocks of file linked together
— Access properties:
» Sequential access expensive unless FAT cached in memory
» Random access expensive always, but really expensive if
FAT not cached in memory

5/16/08 Im/os-vt08-112-7

Indexed Allocation

i directory
—— file index block

o] 11 21 31 el 19
4[] 5[] 7]
s8] o[1ol X111

2425261271

28[129 130 131[]
A4

* Third Technique: Indexed Files (VMS)
— System Allocates file header block to hold array of pointers big
enough to point to all blocks
» User pre-declares max file size;
— Pros: Can easily grow up to space allocated for index
Random access is fast

— Cons: Clumsy to grow file bigger than table size
Still lots of seeks: blocks may be spread over disk

5/16/08 Im/os-vt08-112-8

Multilevel Indexed Files (UNIX 4.1)

 Multilevel Indexed Files: o
Like multilevel address owners (2)
translation imestamps (3)
(from UNIX 4.1 BSD) size block count

— Key idea: efficient for small
files, but still allow big files

data

direct blocks 7

data

bl

1

single indirect —{

double indirect >
triple indirect L’ P

| data
—{ data
* File hdr contains 13 pointers | G

— Fixed size table, pointers not all equivalent
— This header is called an “inode” in UNIX

* File Header format:
— First 10 pointers are to data blocks
— Ptr 11 points to “indirect block” containing 256 block ptrs

— Pointer 12 points to “doubly indirect block” containing 256 indirect block
ptrs for total of 64K blocks

— Pointer 13 points to a triply indirect block (16M blocks)

5/16/08 Im/os-vt08-112-9

Multilevel Indexed Files (UNIX 4.1): Discussion

« Basic technique places an upper limit on file size that
is approximately 16Gbytes

— Designers thought this was bigger than anything anyone would need.
Much bigger than a disk at the time...

— Fallacy: today, EOS producing 2TB of data per day

* Pointers get filled in dynamically: need to allocate
indirect block only when file grows > 10 blocks
— On small files, no indirection needed

5/16/08 Im/os-vt08-112-10

Example of Multilevel Indexed Files

« Sample file in multilevel mode
indexed format: ez
— How many accesses for —
block #237? (assume file Sizeloodoonnt
header accessed on open)? —
» Two: One for indirect block, .
one for data direct blocks - :
— How about block #5? g =
» One: One for data o Nl —{data]
— Block #3407 double indirect >—{ data | >|_: > =—{ data |
» Three: double indirect block, | tipleindirect E >[5 data |
indirect block, and data |2} [data_

* UNIX 4.1 Pros and cons

— Pros: Simple (more or less)
Files can easily expand (up to a point)
Small files particularly cheap and easy
— Cons: Lots of seeks

Very large files must read many indirect blocks
(four I/Os per block!)

5/16/08 Im/os-vt08-112-11

Attack of the Rotational Delay

Another problem: Missing blocks due to rotational delay
— Issue: Read one block, do processing, and read next block. In
meantime, disk has continued turning: missed next block! Need 1
revolution/block!

Skip Sector\A
= | I
Track Buffer
(Holds complete track)

— Solution1: Skip sector positioning (“interleaving”)

» Place the blocks from one file on every other block of a track:
give time for processing to overlap rotation
— Solution2: Read ahead: read next block right after first, even if
application hasn’t asked for it yet.
» This can be done either by OS (read ahead)
» By disk itself (track buffers). Many disk controllers have
internal RAM that allows them to read a complete track

Important Aside: Modern disks+controllers do many

complex things “under the covers”
— Track buffers, elevator algorithms, bad block filtering

5/16/08

Im/os-vt08-112-12

File System Caching
* Key Idea: Exploit locality by caching data in memory

— Name translations: Mapping from paths—inodes
— Disk blocks: Mapping from block address—disk content

- Buffer Cache: Memory used to cache kernel resources,

including disk blocks and name translations
— Can contain “dirty” blocks (blocks yet on disk)

 Replacement policy? LRU
— Can afford overhead of timestamps for each disk block
— Advantages:
» Works very well for name translation

» Works well in general as long as memory is big enough to
accommodate a host’s working set of files.

— Disadvantages:

» Fails when some application scans through file system, thereby
flushing the cache with data used only once
» Example: find . -exec grep foo {} \;

* Other Replacement Policies?
— Some systems allow applications to request other policies
— Example, ‘Use Once’:

» File system can discard blocks as soon as they are used

5/16/08 Im/os-vt08-112-13

File System Caching (con’t)

« Cache Size: How much memory should the OS allocate to
the buffer cache vs virtual memory?

— Too much memory to the file system cache = won’t be able to
run many applications at once

— Too little memory to file system cache = many applications may
run slowly (disk caching not effective)

— Solution: adjust boundary dynamically so that the disk access
rates for paging and file access are balanced
* Read Ahead Prefetching: fetch sequential blocks early

— Key Idea: exploit fact that most common file access is sequential
by prefetching subsequent disk blocks ahead of current read
request (if they are not already in memory)

— Elevator algorithm can efficiently interleave groups of prefetches
from concurrent applications

— How much to prefetch?
» Too many imposes delays on requests by other applications

» Too few causes many seeks (and rotational delays) among
concurrent file requests

5/16/08 Im/os-vt08-112-14

File System Caching (con’t)

- Delayed Writes: Writes to files not immediately sent out
to disk

— Instead, write () copies data from user space buffer to kernel
buffer (in cache)

» Enabled by presence of buffer cache: can leave written file
blocks in cache for a while

» If some other application tries to read data before written to
disk, file system will read from cache

— Flushed to disk periodically (e.g. in UNIX, every 30 sec)
— Advantages:
» Disk scheduler can efficiently order lots of requests

» Disk allocation algorithm can be run with correct size value
for a file

» Some files need never get written to disk! (e..g temporary
scratch files written /tmp often don’t exist for 30 sec)

— Disadvantages
» What if system crashes before file has been written out?

» Worse yet, what if system crashes before a directory file has
been written out? (lose pointer to inode!)

5/16/08 Im/os-vt08-112-15

How to make file system durable?

Disk blocks contain Reed-Solomon error correcting codes
(ECC) to deal with small defects in disk drive

— Can allow recovery of data from small media defects

Make sure writes survive in short term

— Either abandon delayed writes or

— use special, battery-backed RAM (called non-volatile RAM or NVRAM) for
dirty blocks in buffer cache.

Make sure that data survives in long term

— Need to replicate! More than one copy of data!

— Important element: independence of failure
» Could put copies on one disk, but if disk head fails...
» Could put copies on different disks, but if server fails...
» Could put copies on different servers, but if building is struck by

lightning....

» Could put copies on servers in different continents...

RAID: Redundant Arrays of Inexpensive Disks
— Data stored on multiple disks (redundancy)
— Either in software or hardware

» In hardware case, done by disk controller; file system may not even
know that there is more than one disk in use

5/16/08 Im/os-vt08-112-16

Log Structured and Journaled File Systems

Better reliability through use of log
— All changes are treated as fransactions
» A transaction either happens completely or not at all
— A transaction is committed once it is written to the log
» Data forced to disk for reliability
» Process can be accelerated with NVRAM
— Although File system may not be updated immediately, data
preserved in the log
Difference between “Log Structured” and
“Journaled”
— Log Structured Filesystem (LFS): data stays in log form
— Journaled Filesystem: Log used for recovery

For Journaled system:

— Log used to asynchronously update filesystem
» Log entries removed after used
— After crash:
» Remaining transactions in the log performed (“Redo”)

Examples of Journaled File Systems:
— Ext3 (Linux), XFS (Unix), NTFS (Windows)

5/16/08 Im/os-vt08-112-17

/O Systems

) monitor

AN
@
\ \\—'\""&
NI

i ——

cache

dis

graphics
controller

bridge/memory
controller /
iAot £ 4 &

SCSI controller

PO0E

PCI bus

IDE disk controller

expansion bus

interface keyboard
0 expansion bus
parallel serial
port port

5/16/08

Im/os-vt08-112-18

Example Device-Transfer Rates (Sun Enterprise 6000)

gigaplane
bus

e
-

SCSI bus

fast
ethernet

hard disk

ethernet

laser
printer

modem —
.
L

mouse

keyboard

0 0.01 01 1 10 100

* Device Rates vary over many orders of magnitude
— System better be able to handle this wide range
— Better not have high overhead/byte for fast devices!

— Better not waste time waiting for slow devices

5/16/08 Im/os-vt08-112-19

The Goal of the I/0O Subsystem

* Provide Uniform Interfaces, Despite Wide Range of
Different Devices

— This code works on many different devices:

FILE fd = fopen(“/dev/something”,”rw”) ;
for (int i = 0; i < 10; i++) {
fprintf (£d,”Count %d\n”,i) ;
}
close(£fd) ;

— Why? Because code that controls devices (“device driver”)
implements standard interface.

5/16/08 Im/os-vt08-112-20

Want Standard Interfaces to Devices
* Block Devices: e.g. disk drives, tape drives, DVD-ROM

— Access blocks of data

— Commands include open (), read(), write(), seek()
— Raw I/O or file-system access

— Memory-mapped file access possible

- Character Devices: e.g. keyboards, mice, serial ports,

some USB devices
— Single characters at a time
— Commands include get (), put()
— Libraries layered on top allow line editing

* Network Devices: e.g. Ethernet, Wireless, Bluetooth
— Different enough from block/character to have own interface
— Unix and Windows include socket interface
» Separates network protocol from network operation
» Includes select () functionality
— Usage: pipes, FIFOs, streams, queues, mailboxes

5/16/08 Im/os-vt08-112-21

How Does User Deal with Timing?
* Blocking Interface: “Wait”

— When request data (e.g. read () system call), put process to sleep until
data is ready

— When write data (e.g. write () system call), put process to sleep until
device is ready for data
* Non-blocking Interface: “Don’t Wait”

— Returns quickly from read or write request with count of bytes
successfully transferred

— Read may return nothing, write may write nothing

* Asynchronous Interface: “Tell Me Later”

— When request data, take pointer to user’s buffer, return immediately;
later kernel fills buffer and notifies user

— When send data, take pointer to user’s buffer, return immediately; later
kernel takes data and notifies user

5/16/08 Im/os-vt08-112-22

Main components of Intel Chipset: Pentium 4

* Northbridge: intef Pontium’4

Extreme Edition

— Handles memory

| 6.4 GBYs

— Graphics |
« Southbridge: 1/O0
— PCl bus FOERree
— Disk controllers St
— USB controllers intef* High] v @
. Definition Audio MB/s ATA Ports
— Audio spi | 133 -
— Serial 1/0 ix:_"'” ok _ intel Matrix
— Interrupt controller USB 20 Ports
— Timers

5/16/08 Im/os-vt08-112-23

How does the processor actually talk to the device?

Processor Memory Bus Regular
Memory

' Device ,,;\

S——

Bus
\dapto Address+ Controller

Interrupt or Buses Data I Bus 4 Hardware
ontrolle Interrupt Request 'Cm‘erfac Controller
:,,e.ﬂi Addressable

« CPU interacts with a Controller Coniro "2:;“/00'”'}'

— Contains a set of registers that Registers Queues

can be read and written (port 0x20)

— May contain memory for request
queues or bit-mapped images

Memory Mapped
Region: x8f0p0pSOZq

* Regardless of the complexity of the connections and
buses, processor accesses registers in two ways:

— /O instructions: in/out instructions

» Example from the Intel architecture: out 0x21,AL

— Memory mapped I/O: load/store instructions
» Registers/memory appear in physical address space
» 1/O accomplished with load and store instructions

5/16/08

Im/os-vt08-112-24

Example: Memory-Mapped Display Controller

« Memory-Mapped:
— Hardware maps control registers and
display memory into physical address
space

» Addresses set by hardware jumpers

or programming at boot time
— Simply writing to display memory (also
called the “frame buffer”) changes
image on screen
» Addr: 0x8000F000—0x8000FFFF
— Writing graphics description to
command-queue area
» Say enter a set of triangles that
describe some scene
» Addr: 0x80010000—0x8001FFFF
— Writing to the command register may
cause on-board graphics hardware to
do something
» Say render the above scene
» Addr: 0x0007F004

0x80020000 Gr Gphi C ﬂ

IComman
Queue

0x80010000 [_.
Display
Memory

0x8000F000

0x0007F004 [Command
0x0007F000 | Status

—T

Physical Address
« Can protect with page tables }L\L Space

5/16/08

Im/os-vt08-112-25

Transfering Data To/From Controller

 Programmed |/O:
— Each byte transferred via processor in/out or load/store
— Pro: Simple hardware, easy to program
— Con: Consumes processor cycles proportional to data size

* Direct Memory Access:

— Give controller access to memory bus
— Ask it to transfer data to/from memory directly

« Sample interaction with DMA controller (from book):

1. device driver is told
to transfer disk data CPU
to buffer at address X
5. DMA controller 2. device driver tells
transfers bytes to disk controller to
buffer X, increasing transfer C bytes
memory address from disk to buffer e
and decreasing C at address X
untilC =0 S
us
6. when C = 0, DMA : = X
interrupts CPU to signal mtetrrLlllpt)— CPU memory bus memory | buffer
transfer completion Contorer
i PCI bus
3. disk controller initiates
IDE disk DMA transfer
controller 4. disk controller sends

each byte to DMA

@ @ controller

disk) (disk Im/os-vt08-112-26

5/16/08

A Kernel I/O Structure

software

hardware

kernel

kernel 1/0O subsystem

SCSI keyboard | mouse PCI bus floppy ATAPI
device device device see device device device
driver driver driver driver driver driver
SCSI keyboard mouse PCI bus floppy ATAPI
device device device cee device device device
controller | controller | controller controller | controller | controller
ATAPI
SCS| floppy- | | devices
dee keyboard mouse oo PCI bus d_lsk (disks,
drives tapes,
drives)

Im/os-vt08-112-27

Device Drivers

* Device Driver: Device-specific code in the kernel that
interacts directly with the device hardware
— Supports a standard, internal interface

— Same kernel 1/0 system can interact easily with different device
drivers

— Special device-specific configuration supported with the
ioctl () system call
* Device Drivers typically divided into two pieces:
— Top half: accessed in call path from system calls

» Implements a set of standard, cross-device calls like open (),
close (), read(), write (), ioctl (), strategy ()

» This is the kernel’s interface to the device driver

» Top half will start1/O to device, may put thread to sleep until
finished

— Bottom half: run as interrupt routine
» Gets input or transfers next block of output
» May wake sleeping threads if /0 now complete

5/16/08 Im/os-vt08-112-28

5/16/08

Life Cycle of An I/O Request

User
Program

Kernel I/O
Subsystem

Device Driver
Top Half
Device Driver
Bottom Half

Device
Hardware

can already

user 1/O completed,
request 1/O process input data available, or
output completed
[
system call

return from system call

IIIIIIIIIIIIIIIIIIlllllllllllllrlllllllll

kernel

VO subsystem transfer data

(if appropriate) to process,

satisfy request?

no

yes

return completion
or error code

send request to device
driver, block process if
appropriate

kernel
I/O subsystem

process request, issue

commands to controller,
configure controller to
block until interrupted

determine which /O
completed, indicate state
change to I/0 subsystem

device
driver

device-controller commands

receive interrupt, store
data in device-driver buffer
if input, signal to unblock
device driver

interrupt
handler

T

.......................................‘W’f@l.......

device
monitor device, controller
interrupt when 10 » . gr?ef;;;"fr:fetfrﬂ’pt
completed
time

Im/os-vt08-112-29

I/O Device Notifying the OS

* The OS needs to khnow when:

— The I/O device has completed an operation
— The 1/O operation has encountered an error

* I/O Interrupt:

— Device generates an interrupt whenever it needs service
— Handled in bottom half of device driver
» Often run on special kernel-level stack
— Pro: handles unpredictable events well
— Con: interrupts relatively high overhead

* Polling:
— OS periodically checks a device-specific status register
» /0O device puts completion information in status register
» Could use timer to invoke lower half of drivers occasionally

— Pro: low overhead

— Con: may waste many cycles on polling if infrequent or unpredictable 1/O
operations

» Actual devices combine both polling and interrupts
— For instance: High-bandwidth network device:

» Interrupt for first incoming packet
» Poll for following packets until hardware empty

5/16/08 Im/os-vt08-112-30

5/16/08

Summary

Multilevel Indexed Scheme
— Inode contains file info, direct pointers to blocks,
— indirect blocks, doubly indirect, etc..

Buffer cache used to increase performance
— Read Ahead Prefetching and Delayed Writes

I/O Devices Types:
— Many different speeds (0.1 bytes/sec to GBytes/sec)
— Different Access Patterns: block, char, net devices
— Different Access Timing: Non-/Blocking, Asynchronous

/O Controllers: Hardware that controls actual

device

— CPU accesses thru I/O insts, Id/st to special phy memory
— Report results thru interrupts or a status register polling

Device Driver: Device-specific code in kernel

Im/os-vt08-112-31

