
Operating Systems
(1DT020 & 1TT802)

Lecture 11

File system Interface (cont’d),
Disk Management,

File System Implementation

May 12, 2008

Léon Mugwaneza

 http://www.it.uu.se/edu/course/homepage/os/vt08

lm/os-vt08-l11-2
5/12/08

Review : The file concept & File System
File: Collection of related information stored on a

secondary storage
– data files, program files (also, source, object, executable, ...).

• The structure of a file is determined by the user
– sequence of bytes, lines, more complex (eg. object files, ..)

• File attributes: name, size, last update, owner, access rights, …
• File Operations: open, close, create, read, write, delete, ...
File System: Layer of OS that transforms block interface

of disks (or other block devices) into Files, Directories, etc.
• File System Components

–Disk Management: collecting disk blocks into files
–Naming: Interface to find files by name, not by blocks
–Protection: Layers to keep data secure
–Reliability/Durability: Keeping of files durable despite crashes, media
failures, attacks, etc

• All information about a file contained in its file header
– UNIX calls this an “inode”, a global resource identified by index (inumber)
– Once the header structure is loaded, all the other blocks of the file are

locatable
• Naming: The process by which a system translates from user-visible

names to system resources
– User names files by textual names or icons, OS uses inumbers

lm/os-vt08-l11-3
5/12/08

Goals for Today

• File System Interface cont’d
• Disk management
• File System implementation

Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne,
others from Kubiatowicz - CS162 ©UCB Fall 2007 (University of
California at Berkeley)

lm/os-vt08-l11-4
5/12/08

Directories
• Directory: a relation used for naming

– Just a table of (file name, inumber) pairs
• How are directories constructed?

– Directories often stored in files
» Reuse of existing mechanism
» Directory named by inode/inumber like other files

– Needs to be quickly searchable
» Options: Simple list or Hashtable
» Can be cached into memory in easier form to search

• How are directories modified?
– Originally, direct read/write of special file
– System calls for manipulation: mkdir, rmdir
– Ties to file creation/destruction

» On creating a file by name, new inode grabbed and
associated with new file in particular directory

lm/os-vt08-l11-5
5/12/08

Directory Organization

• Directories organized into a hierarchical structure
– Seems standard, but in early 70’s it wasn’t
– Permits much easier organization of data structures

• Entries in directory can be either files or directories

• Files named by ordered set (e.g., /programs/p/list)

lm/os-vt08-l11-6
5/12/08

Directory Structure

• Not really a hierarchy!
– Many systems allow directory structure to be organized as an

acyclic graph or even a (potentially) cyclic graph
– Hard Links: different names for the same file

» Multiple directory entries point at the same file
– Soft Links: “shortcut” pointers to other files

» Implemented by storing the logical name of actual file
• Name Resolution: The process of converting a logical

name into a physical resource (like a file)
– Traverse succession of directories until reach target file
– Global file system: May be spread across the network

lm/os-vt08-l11-7
5/12/08

• Open system call:
– Resolves file name, finds file control block (inode)
– Makes entries in per-process and system-wide tables
– Returns index (called “file handle”) in open-file table

• Read/write system calls:
– Use file handle to locate inode
– Perform appropriate reads or writes

In-Memory File System Data Structures

lm/os-vt08-l11-8
5/12/08

File System is Layered

O.S.

Storage Service … “vector of bytes”

Naming Service

Disk Driver

open read write

name
ufid,
count

ufid,
count,
data

data OK

lm/os-vt08-l11-9
5/12/08

Protection and Concurrency

• Any application can generate names independent of
username
– /etc/password
– /lib/libc.a
– /boot/vmlinuz-2.2.1

• Protection must be applied independently of naming
– File owner should be able to control

» what can be done and by whom.
– Types of access (eg, Unix: owner, group, public)

• Concurrency: how should multiple accesses be
coordinated?
– E.g., allow:

» either one writer
» or many readers

lm/os-vt08-l11-10
5/12/08

Existence Control

• File may have multiple names:
– /etc/sendmail
– /usr/bin/mailq
– /root/bin/newaliases

• Any name may be deleted from directory

• When should file storage space be released?

lm/os-vt08-l11-11
5/12/08

Hard Disk Drives

IBM/Hitachi Microdrive

Western Digital Drive
http://www.storagereview.com/guide/

Read/Write Head
Side View

lm/os-vt08-l11-12
5/12/08

Properties of a Hard Magnetic Disk

• Properties
– Independently addressable element: sector

» OS always transfers groups of sectors together—”blocks”
– A disk can access directly any given block of information it contains

(random access). Can access any file either sequentially or randomly.
– A disk can be rewritten in place: it is possible to read/modify/write a

block from the disk
• Typical numbers (depending on the disk size):

– 500 to more than 20,000 tracks per surface
– 32 to 800 sectors per track

» A sector is the smallest unit that can be read or written
• Zoned bit recording

– Constant bit density: more sectors on outer tracks
– Speed varies with track location

Track

Sector

Platters

lm/os-vt08-l11-13
5/12/08

Disk I/O Performance

Response Time = Queue+Disk Service Time

User
Thread

Queue
[OS Paths]

Controller

Disk

• Performance of disk drive/file system
– Metrics: Response Time, Throughput
– Contributing factors to latency:

» Software paths (can be loosely modeled by a queue)
» Hardware controller
» Physical disk media

• Queuing behavior:
– Can lead to big increases of latency as utilization approaches 100%

100%

Response
Time (ms)

Throughput (Utilization)
(% total BW)

0

100

200

300

0%

lm/os-vt08-l11-14
5/12/08

Magnetic Disk Characteristic
• Cylinder: all the tracks under the

head at a given point on all surfaces
• Read/write data is a three-stage

process:
– Seek time: position the head/arm over the proper track (into proper

cylinder)
– Rotational latency: wait for the desired sector

to rotate under the read/write head
– Transfer time: transfer a block of bits (sector)

under the read-write head
• Disk Latency = Queueing Time + Controller time +
• Seek Time + Rotation Time + Xfer Time

• Highest Bandwidth:
– Transfer large group of blocks sequentially from one track

Sector
Track

Cylinder
Head

Platter

Software
Queue

(Device Driver)
H
ardware

Controller
 Media Time

(Seek+Rot+Xfer)

Request

Result

lm/os-vt08-l11-15
5/12/08

Typical Numbers of a Magnetic Disk

• Average seek time as reported by the industry:
– Typically in the range of 8 ms to 12 ms
– Due to locality of disk reference may only be 25% to 33% of the advertised

number
• Rotational Latency:

– Most disks rotate at 3,600 to 7200 RPM (Up to 15,000RPM or more)
– Approximately 16 ms to 8 ms per revolution, respectively
– An average latency to the desired information is halfway around the disk:

8 ms at 3600 RPM, 4 ms at 7200 RPM
• Transfer Time is a function of:

– Transfer size (usually a sector): 512B – 1KB per sector
– Rotation speed: 3600 RPM to 15000 RPM
– Recording density: bits per inch on a track
– Diameter: ranges from 1 in to 5.25 in
– Typical values: 2 to 50 MB per second

• Controller time depends on controller hardware
• Cost drops by factor of two per year (since 1991)

lm/os-vt08-l11-16
5/12/08

Disk Performance Examples
• Assumptions:

– Ignoring queuing and controller times for now
– Avg seek time of 5ms,
– 7200RPM ⇒ Time for one rotation: ≈8 ms
– Transfer rate of 4MByte/s, sector size of 1 KByte

• Read sector from random place on disk:
– Seek (5ms) + Rot. Delay (4ms) + Transfer (0.25ms)
– Approx 10ms to fetch/put data: 100 KByte/sec

• Read sector from random place in same cylinder:
– Rot. Delay (4ms) + Transfer (0.25ms)
– Approx 5ms to fetch/put data: 200 KByte/sec

• Read next sector on same track:
– Transfer (0.25ms): 4 MByte/sec

• Key to using disk effectively (esp. for filesystems) is
to minimize seek and rotational delays

lm/os-vt08-l11-17
5/12/08

Disk Tradeoffs
• How do manufacturers choose disk sector sizes?

– Need 100-1000 bits between each sector to allow system to
measure how fast disk is spinning and to tolerate small (thermal)
changes in track length

• What if sector was 1 byte?
– Space efficiency – only 1% of disk has useful space
– Time efficiency – each seek takes 10 ms, transfer rate of 50 – 100

Bytes/sec

• What if sector was 1 KByte?
– Space efficiency – only 90% of disk has useful space
– Time efficiency – transfer rate of 100 KByte/sec

• What if sector was 1 MByte?
– Space efficiency – almost all of disk has useful space
– Time efficiency – transfer rate of 4 MByte/sec

lm/os-vt08-l11-18
5/12/08

Disk Scheduling
• Disk can do only one request at a time; What order do you

choose to do queued requests?

• FIFO Order
– Fair among requesters, but order of arrival may be to random spots on the

disk ⇒ Very long seeks
• SSTF: Shortest seek time first

– Pick the request that’s closest on the disk
– Although called SSTF, today must include

rotational delay in calculation, since
rotation can be as long as seek

– Con: SSTF good at reducing seeks, but
may lead to starvation

• SCAN: Implements an Elevator Algorithm: take the closest
request in the direction of travel
– No starvation, but retains flavor of SSTF

• C-SCAN: Circular-Scan: only goes in one direction
– Skips any requests on the way back
– Fairer than SCAN, not biased towards tracks in middle

2,3
2,1
3,10
7,2
5,2
2,2 HeadUser

Requests

1

4

2

D
isk H

ead

3

lm/os-vt08-l11-19
5/12/08

Translating from User to System View

• What happens if user says: give me bytes 2—12?
– Fetch block corresponding to those bytes
– Return just the correct portion of the block

• What about: write bytes 2—12?
– Fetch block
– Modify portion
– Write out Block

• Everything inside File System is in whole size blocks
– For example, getc(), putc() ⇒ buffers something like 4096 bytes,

even if interface is one byte at a time

File
System

lm/os-vt08-l11-20
5/12/08

Disk Management Policies
• Basic entities on a disk:

– File: user-visible group of blocks arranged sequentially in logical space
– Directory: user-visible index mapping names to files

• Access disk as linear array of sectors. Two Options:
– Identify sectors as vectors [cylinder, surface, sector]. Sort in cylinder-

major order. Not used much anymore.
– Logical Block Addressing (LBA). Every sector has integer address from

zero up to max number of sectors.
– Controller translates from address ⇒ physical position

» First case: OS/BIOS must deal with bad sectors
» Second case: hardware shields OS from structure of disk

• Need way to track free disk blocks
– Link free blocks together ⇒ too slow today
– Use bitmap to represent free space on disk

• File Header: a way to structure files
– Track which blocks belong at which offsets within the logical file

structure
– Optimize placement of files’ disk blocks to match access and usage

patterns

lm/os-vt08-l11-21
5/12/08

Designing the File System: Access Patterns
• How do users access files?

– Need to know type of access patterns user is likely to throw at system
• Sequential Access: bytes read in order (“give me the

next X bytes, then give me next, etc”)
– Almost all file access are of this flavor

• Random Access: read/write element out of middle of
array (“give me bytes i—j”)
– Less frequent, but still important. For example, virtual memory backing

file: page of memory stored in file
– Want this to be fast – don’t want to have to read all bytes to get to the

middle of the file
• Content-based Access: (“find me 100 bytes starting with

Alpha”)
– Example: employee records – once you find the bytes, increase my

salary by a factor of 2
– Many systems don’t provide this; instead, databases are built on top of

disk access to index content (requires efficient random access)

lm/os-vt08-l11-22
5/12/08

Designing the File System: Usage Patterns
• Most files are small (for example, .login, .c files)

– A few files are big – core files, etc.; executable are as big as all of linked
object modules and statically linked library functions combined

– However, most files are small – .java, .class’s, .o’s, .c’s, etc.
• Large files use up most of the disk space and bandwidth

to/from disk
– May seem contradictory, but a few enormous files are equivalent to an

immense # of small files
• Although we will use these observations, beware usage

patterns:
– Good idea to look at usage patterns: beat competitors by optimizing for

frequent patterns
– Except: changes in performance or cost can alter usage patterns. Maybe

UNIX has lots of small files because big files are really inefficient?
• Digression, danger of predicting future:

– In 1950’s, marketing study by IBM said total worldwide need for
computers was 7!

lm/os-vt08-l11-23
5/12/08

How to organize files on disk
• Goals:

– Maximize sequential performance
– Easy random access to file
– Easy management of file (growth, truncation, etc)

• First Technique: Continuous Allocation
– Use continuous range of blocks in logical block space

» Analogous to base+bounds in virtual memory
» User says in advance how big file will be (disadvantage)

– Search bit-map for space using best fit/first fit
» What if not enough contiguous space for new file?

– File Header Contains:
» First block/LBA in file
» File size (# of blocks)

– Pros: Fast Sequential Access, Easy Random access
– Cons: External Fragmentation/Hard to grow files

» Free holes get smaller and smaller
» Could compact space, but that would be really expensive

• Continuous Allocation used by IBM 360
– Result of allocation and management cost: People would create a big

file, put their file in the middle

lm/os-vt08-l11-24
5/12/08

Linked List Allocation
• Second Technique: Linked List Approach

– Each block, pointer to next on disk

– Pros: Can grow files dynamically, Free list same as file
– Cons: Bad Sequential Access (seek between each block),

Unreliable (lose block, lose rest of file)
– Serious Con: Bad random access!!!!
– Technique originally from Alto (First PC, built at Xerox)

» No attempt to allocate contiguous blocks

Null

File Header

lm/os-vt08-l11-25
5/12/08

Linked Allocation: File-Allocation Table (FAT)

• MSDOS links blocks together to create a file
– Links not in blocks, but in the File Allocation Table (FAT)

» FAT contains an entry for each block on the disk
» FAT Entries corresponding to blocks of file linked together

– Access properties:
» Sequential access expensive unless FAT cached in memory
» Random access expensive always, but really expensive if

FAT not cached in memory

lm/os-vt08-l11-26
5/12/08

Indexed Allocation

• Third Technique: Indexed Files (VMS)
– System Allocates file header block to hold array of pointers big

enough to point to all blocks
» User pre-declares max file size;

– Pros: Can easily grow up to space allocated for index
Random access is fast

– Cons: Clumsy to grow file bigger than table size
Still lots of seeks: blocks may be spread over disk

lm/os-vt08-l11-27
5/12/08

Multilevel Indexed Files (UNIX 4.1)
• Multilevel Indexed Files:

Like multilevel address
translation
(from UNIX 4.1 BSD)
– Key idea: efficient for small

files, but still allow big files

• File hdr contains 13 pointers
– Fixed size table, pointers not all equivalent
– This header is called an “inode” in UNIX

• File Header format:
– First 10 pointers are to data blocks
– Ptr 11 points to “indirect block” containing 256 block ptrs
– Pointer 12 points to “doubly indirect block” containing 256 indirect block

ptrs for total of 64K blocks
– Pointer 13 points to a triply indirect block (16M blocks)

lm/os-vt08-l11-28
5/12/08

Multilevel Indexed Files (UNIX 4.1): Discussion
• Basic technique places an upper limit on file size that

is approximately 16Gbytes
– Designers thought this was bigger than anything anyone would need.

Much bigger than a disk at the time…
– Fallacy: today, EOS producing 2TB of data per day

• Pointers get filled in dynamically: need to allocate
indirect block only when file grows > 10 blocks
– On small files, no indirection needed

lm/os-vt08-l11-29
5/12/08

Example of Multilevel Indexed Files
• Sample file in multilevel

indexed format:
– How many accesses for

block #23? (assume file
header accessed on open)?
» Two: One for indirect block,

one for data
– How about block #5?

» One: One for data
– Block #340?

» Three: double indirect block,
indirect block, and data

• UNIX 4.1 Pros and cons
– Pros: Simple (more or less)

Files can easily expand (up to a point)
Small files particularly cheap and easy

– Cons: Lots of seeks
Very large files must read many indirect blocks
 (four I/Os per block!)

lm/os-vt08-l11-30
5/12/08

Summary
• naming service (how do users select files?)

– Directories are used for naming
– A file can have several names

• Protection, concurrency control, existence control
– from unauthorised access: all users are not equal!)
– File sharing control
– When is the file storage space released?

• File (and directory) defined by header
– Called “inode” with index called “inumber”

• Disk Performance:
– Queuing time + Controller + Seek + Rotational + Transfer
– Rotational latency: on average ½ rotation
– Transfer time: spec of disk depends on rotation speed and bit storage

density
• File System:

– Transforms blocks into Files and Directories
– Optimize for access and usage patterns
– Maximize sequential access, allow efficient random access

• Multilevel Indexed Scheme
– Inode contains file info, direct pointers to blocks,
– indirect blocks, doubly indirect, etc..

