
Operating Systems
(1DT020 & 1TT802)

Lecture 10
Memory Management:

Demand paging & page replacement

File system: Interface

May 07, 2008

Léon Mugwaneza

 http://www.it.uu.se/edu/course/homepage/os/vt08

lm/os-vt08-l10-2
5/7/08

Goals for Today

• Page replacement policies
• Page frame allocation
• File system interface

Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne,
others from Kubiatowicz - CS162 ©UCB Fall 2007 (University of
California at Berkeley)

lm/os-vt08-l10-3
5/7/08

Page
Table

TLB

Review: Demand paging and Illusion of
“Infinite Memory”

• Disk is larger than physical memory ⇒
– In-use virtual memory can be bigger than physical memory
– Combined memory of running processes much larger than physical

memory
» More programs fit into memory, allowing more concurrency

• Principle: Transparent Level of Indirection (page table)
– Supports flexible placement of physical data

» Data could be on disk or somewhere across network
– Variable location of data transparent to user program

» Performance issue, not correctness issue

Physical
Memory
512 MB

Disk
500GB

∞

Virtual
Memory
4 GB

lm/os-vt08-l10-4
5/7/08

• PTE helps us implement demand paging
– Valid ⇒ Page in memory, PTE points at physical page
– Not Valid ⇒ Page not in memory; use info in PTE to find it on disk when

necessary
• Suppose user references page with invalid PTE?

– Memory Management Unit (MMU) traps to OS
» Resulting trap is a “Page Fault”

– What does OS do on a Page Fault?:
» Choose an old page to replace
» If old page modified (“D=1”), write contents back to disk
» Change its PTE and any cached TLB to be invalid
» Load new page into memory from disk
» Update page table entry, invalidate TLB for new entry
» Continue thread from original faulting location

– TLB for new page will be loaded when thread continued!
– While pulling pages off disk for one process, OS runs another process

from ready queue
» Suspended process sits on wait queue

• What if an instruction has side-effects?
– Unwind side-effects (easy to restart) or Finish off side-effects (messy!)
– Example 1: mov (sp)+,10.

» What if page fault occurs when write to stack pointer?
» Did sp get incremented before or after the page fault?

Review: Demand Paging Mechanisms

lm/os-vt08-l10-5
5/7/08

Demand Paging Example
• Since Demand Paging like caching, can compute

average access time! (“Effective Access Time”)
– EAT = Hit Rate x Hit Time + Miss Rate x Miss Time

• Example:
– Memory access time = 200 nanoseconds
– Average page-fault service time = 8 milliseconds
– Suppose p = Probability of miss, 1-p = Probably of hit
– Then, we can compute EAT as follows:

EAT = (1 – p) x 200ns + p x 8 ms
 = (1 – p) x 200ns + p x 8,000,000ns

 = 200ns + p x 7,999,800ns
• If one access out of 1,000 causes a page fault, then EAT

= 8.2 μs:
– This is a slowdown by a factor of 40!

• What if want slowdown by less than 10%?
– 200ns x 1.1 > EAT ⇒ p < 2.5 x 10-6

– This is about 1 page fault in 400000!

lm/os-vt08-l10-6
5/7/08

Page Replacement Policies
• Why do we care about Replacement Policy?

– Replacement is an issue with any cache
– Particularly important with pages

» The cost of being wrong is high: must go to disk
» Must keep important pages in memory, not toss them out

• FIFO (First In, First Out)
– Throw out oldest page. Be fair – let every page live in memory for same

amount of time.
– Bad, because throws out heavily used pages instead of infrequently

used pages
• MIN (Minimum):

– Replace page that won’t be used for the longest time
– Great, but can’t really know future…
– Makes good comparison case, however

• RANDOM:
– Pick random page for every replacement
– Typical solution for TLB’s. Simple hardware
– Pretty unpredictable – makes it hard to make real-time guarantees

lm/os-vt08-l10-7
5/7/08

Replacement Policies (Con’t)
• LRU (Least Recently Used):

– Replace page that hasn’t been used for the longest time
– Programs have locality, so if something not used for a while, unlikely to

be used in the near future.
– Seems like LRU should be a good approximation to MIN.

• How to implement LRU? Use a list!

– On each use, remove page from list and place at head
– LRU page is at tail

• Problems with this scheme for paging?
– Need to know immediately when each page used so that can change

position in list…
– Many instructions for each hardware access

• In practice, people approximate LRU (more later)

Page 6 Page 7 Page 1 Page 2Head

Tail (LRU)

lm/os-vt08-l10-8
5/7/08

Graph of Page Faults Versus The Number of Frames

• One desirable property: When you add memory the miss
rate goes down

– Does this always happen?
– Seems like it should, right?

• No: BeLady’s anomaly
– Certain replacement algorithms (FIFO) don’t have this obvious property!

lm/os-vt08-l10-9
5/7/08

Adding Memory Doesn’t Always Help Fault Rate
• Does adding memory reduce number of page faults?

– Yes for LRU and MIN
– Not necessarily for FIFO! (Called Belady’s anomaly)

• After adding memory:
– With FIFO, number of fault increased (10 for 4 frames vs 9 for 3 frames)
– In contrast, with LRU or MIN, set of pages in memory with X frames is a

subset of set of pages in memory with X+1 frames

D
C

E

B
A

D

C
B

A

DCBAEBADCBA E

3
2
1

Ref:
Page:

CD4

E
D

B
A

E

C
B

A

DCBAEBADCBA E

3
2
1

Ref:
Page:

lm/os-vt08-l10-10
5/7/08

Implementing LRU
• Perfect:

– Timestamp page on each reference
– Keep list of pages ordered by time of reference
– Too expensive to implement in reality for many reasons

• Clock Algorithm: Arrange physical pages in circle with
single clock hand

– Approximate LRU (approx to approx to MIN)
– Replace an old page, not the oldest page

• Details:
– Hardware “use” bit per physical page:

» Hardware sets use bit on each reference
» If use bit isn’t set, means not referenced in a long time
» hardware sets use bit in the TLB; use bit copied back to page table

when TLB entry gets replaced
– On page fault:

» Advance clock hand (not real time)
» Check use bit: 1→used recently; clear and leave alone

0→selected candidate for replacement
– Will always find a page or loop forever?

» Even if all use bits set, will eventually loop around⇒FIFO
• One way to view clock algorithm:

– Crude partitioning of pages into two groups: young and old
– Why not partition into more than 2 groups?

Set of all pages
in Memory

lm/os-vt08-l10-11
5/7/08

Nth Chance version of Clock Algorithm
• Nth chance algorithm: Give page N chances

– OS keeps counter per page: # sweeps
– On page fault, OS checks use bit:

» 1⇒clear use and also clear counter (used in last sweep)
» 0⇒increment counter; if count=N, replace page

– Means that clock hand has to sweep by N times without page being
used before page is replaced

• How do we pick N?
– Why pick large N? Better approx to LRU

» If N ~ 1K, really good approximation
– Why pick small N? More efficient

» Otherwise might have to look a long way to find free page
• What about dirty pages?

– Takes extra overhead to replace a dirty page, so give dirty pages an
extra chance before replacing?

– Common approach:
» Clean pages, use N=1
» Dirty pages, use N=2 (and write back to disk when N=1)

lm/os-vt08-l10-12
5/7/08

Free List

• Keep set of free pages ready for use in demand paging
– Free list filled in background by Clock algorithm or other

technique (“Pageout demon”)
– Dirty pages start copying back to disk when enter list
– If page needed before reused, just return to active set

• Advantage: Faster for page fault
– Can always use page (or pages) immediately on fault

Set of all pages
in Memory

Single Clock Hand:
Advances as needed to keep
freelist full (“background”)

D

D

Free Pages
For Processes

lm/os-vt08-l10-13
5/7/08

Allocation of Page Frames (Memory Pages)
• How do we allocate memory among different

processes?
– Does every process get the same fraction of memory? Different

fractions?
– Should we completely swap some processes out of memory?

• Each process needs minimum number of pages
– Want to make sure that all processes that are loaded into

memory can make forward progress
– Example: IBM 370 – 6 pages to handle SS MOVE instruction:

» instruction is 6 bytes, might span 2 pages
» 2 pages to handle from
» 2 pages to handle to

• Possible Replacement Scopes:
– Global replacement – process selects replacement frame from

set of all frames; one process can take a frame from another
– Local replacement – each process selects from only its own set

of allocated frames

lm/os-vt08-l10-14
5/7/08

Fixed/Priority Allocation
• Equal allocation (Fixed Scheme):

– Every process gets same amount of memory
– Example: 100 frames, 5 processes⇒process gets 20 frames

• Proportional allocation (Fixed Scheme)
– Allocate according to the size of process
– Computation proceeds as follows:

si = size of process pi and S = Σsi
m = total number of frames

ai = allocation for pi =

• Priority Allocation:
– Proportional scheme using priorities rather than size

» Same type of computation as previous scheme
– Possible behavior: If process pi generates a page fault, select

for replacement a frame from a process with lower priority
number

• Perhaps we should use an adaptive scheme instead???
– What if some application just needs more memory?

m
S

s
i !

lm/os-vt08-l10-15
5/7/08

Page-Fault Frequency Allocation
• Can we reduce Capacity misses by dynamically

changing the number of pages/application?

• Establish “acceptable” page-fault rate
– If actual rate too low, process loses frame
– If actual rate too high, process gains frame

• Question: What if we just don’t have enough memory?

lm/os-vt08-l10-16
5/7/08

Thrashing

• If a process does not have “enough” pages, the page-
fault rate is very high. This leads to:

– low CPU utilization
– operating system spends most of its time swapping to disk

• Thrashing ≡ a process is busy swapping pages in and out
• Questions:

– How do we detect Thrashing?
– What is best response to Thrashing?

lm/os-vt08-l10-17
5/7/08

• Program Memory Access
Patterns have temporal
and spatial locality

– Group of Pages accessed
along a given time slice
called the “Working Set”

– Working Set defines
minimum number of pages
needed for process to
behave well

• Not enough memory for
Working Set⇒Thrashing

– Better to swap out process?

Locality In A Memory-Reference Pattern

lm/os-vt08-l10-18
5/7/08

Working-Set Model

• Δ ≡ working-set window ≡ fixed number of page
references

– Example: 10,000 instructions
• WSi (working set of Process Pi) = total set of pages

referenced in the most recent Δ (varies in time)
– if Δ too small will not encompass entire locality
– if Δ too large will encompass several localities
– if Δ = ∞ ⇒ will encompass entire program

• D = Σ|WSi| ≡ total demand frames
• if m is total number of frames, D > m ⇒ Thrashing

– Policy: if D > m, then suspend/swap out processes
– This can improve overall system behavior by a lot!

lm/os-vt08-l10-19
5/7/08

Reducing Compulsory page faults by prepaging

• Compulsory page faults are faults that occur
the first time that a page is see

– Pages that are touched for the first time
– Pages that are touched after process is swapped

out/swapped back in
• Clustering:

– On a page-fault, bring in multiple pages “around” the
faulting page

– Since efficiency of disk reads increases with
sequential reads, makes sense to read several
sequential pages

• Working Set Tracking:
– Use algorithm to try to track working set of

application
– When swapping process back in, swap in working set

lm/os-vt08-l10-20
5/7/08

Paging Summary
• Replacement policies

– FIFO: Place pages on queue, replace page at end
– MIN: Replace page that will be used farthest in future
– LRU: Replace page used farthest in past

• Clock Algorithm: Approximation to LRU
– Arrange all pages in circular list
– Sweep through them, marking as not “in use”
– If page not “in use” for one pass, than can replace

• Nth-chance clock algorithm: Another approx LRU
– Give pages multiple passes of clock hand before replacing

• List of free page frames makes page fault handling
faster

– Filled in background by pageout demon
• Working Set:

– Set of pages touched by a process recently
• Thrashing: a process is busy swapping pages in and out

– Process will thrash if working set doesn’t fit in memory
– Need to swap out a process

lm/os-vt08-l10-21
5/7/08

The file concept

• Collection of related information stored on a
secondary storage (cf. logical secondary storage)

– data files, program files (also, source, object, executable, ...).
• File Structure:

– none (sequence of bytes), lines, more complex...
• Attributes:

– name, size, last update, owner, … (try ls -la)
• File Operations:

– open, close, create, read, write, delete, ...

lm/os-vt08-l10-22
5/7/08

Building a File System
• File System: Layer of OS that transforms block interface

of disks (or other block devices) into Files, Directories,
etc.

• File System Components
– Disk Management: collecting disk blocks into files
– Naming: Interface to find files by name, not by blocks
– Protection: Layers to keep data secure
– Reliability/Durability: Keeping of files durable despite crashes, media

failures, attacks, etc
• User vs. System View of a File

– User’s view:
» Durable Data Structures

– System’s view (system call interface):
» Collection of Bytes (UNIX)
» Doesn’t matter to system what kind of data structures you want to

store on disk!
– System’s view (inside OS):

» Collection of blocks (a block is a logical transfer unit, while a sector
is the physical transfer unit)

» Block size ≥ sector size; in UNIX, block size is 4KB

lm/os-vt08-l10-23
5/7/08

How do we actually access files?
• All information about a file contained in its file header

– UNIX calls this an “inode”
» Inodes are global resources identified by index (“inumber”)

– Once you load the header structure, all the other blocks of the file
are locatable

• Question: how does the user ask for a particular file?
– One option: user specifies an inode by a number (index).

» Imagine: open(“14553344”)
– Better option: specify by textual name

» Have to map name→inumber
– Another option: Icon

» This is how Apple made its money. Graphical user interfaces.
Point to a file and click.

• Naming: The process by which a system translates from
user-visible names to system resources

– In the case of files, need to translate from strings (textual names)
or icons to inumbers/inodes

– For global file systems, data may be spread over globe⇒need to
translate from strings or icons to some combination of physical
server location and inumber

lm/os-vt08-l10-24
5/7/08

Directories
• Directory: a relation used for naming

– Just a table of (file name, inumber) pairs

• How are directories constructed?
– Directories often stored in files

» Reuse of existing mechanism
» Directory named by inode/inumber like other files

– Needs to be quickly searchable
» Options: Simple list or Hashtable
» Can be cached into memory in easier form to search

• How are directories modified?
– Originally, direct read/write of special file
– System calls for manipulation: mkdir, rmdir
– Ties to file creation/destruction

» On creating a file by name, new inode grabbed and associated
with new file in particular directory

lm/os-vt08-l10-25
5/7/08

Directory Organization

• Directories organized into a hierarchical structure
– Seems standard, but in early 70’s it wasn’t
– Permits much easier organization of data structures

• Entries in directory can be either files or directories

• Files named by ordered set (e.g., /programs/p/list)

lm/os-vt08-l10-26
5/7/08

Directory Structure

• Not really a hierarchy!
– Many systems allow directory structure to be organized as an

acyclic graph or even a (potentially) cyclic graph
– Hard Links: different names for the same file

» Multiple directory entries point at the same file
– Soft Links: “shortcut” pointers to other files

» Implemented by storing the logical name of actual file
• Name Resolution: The process of converting a logical

name into a physical resource (like a file)
– Traverse succession of directories until reach target file
– Global file system: May be spread across the network

lm/os-vt08-l10-27
5/7/08

• Open system call:
– Resolves file name, finds file control block (inode)
– Makes entries in per-process and system-wide tables
– Returns index (called “file handle”) in open-file table

• Read/write system calls:
– Use file handle to locate inode
– Perform appropriate reads or writes

In-Memory File System Data Structures

lm/os-vt08-l10-28
5/7/08

File System is Layered

O.S.

Storage Service … “vector of bytes”

Naming Service

Disk Driver

open read write

name
ufid,
count

ufid,
count,
data

data OK

lm/os-vt08-l10-29
5/7/08

Protection and Concurrency

• Any application can generate names independent of
username
– /etc/password
– /lib/libc.a
– /boot/vmlinuz-2.2.1

• Protection must be applied independently of naming
– File owner should be able to control

» what can be done and by whom.
– Types of access (eg, Unix: owner, group, public)

• Concurrency : how should multiple accesses be
coordinated?
– E.g., allow:

» either one writer
» or many readers

lm/os-vt08-l10-30
5/7/08

Existence Control

• File may have multiple names:
– /etc/sendmail
– /usr/bin/mailq
– /root/bin/newaliases

• Any name may be deleted from directory

• When should file storage space be released?

lm/os-vt08-l10-31
5/7/08

File system interface summary

• A file is a collection of related information stored on a
secondary storage (cf. logical secondary storage)

– Attributes (name, size, last update, owner, …)
– File Operations (open, close, create, read, write, delete, …)

• naming service (how do users select files?)
– Directories are used for naming
– A file can have several names

• Protection, concurrency control
– from unauthorised access: all users are not equal!)
– File sharing control

• existence control
– When is the file storage space released?

