Lab 3: The UNIX File System

Magnus Johansson

May 9, 2007

1 The assignment

In this assignment you will study the UNIX file system. In particular, you will learn how the file system
is structured and which system calls you can use to work with the file system in your code.

First you will be given a few tasks designed to make you familiar with the file system, and then you
are to write a program that behaves similar to the shell command 1s -1Ra. As before you are free to
write it in any programming language you wish, as long as you can do POSIX system calls from it.
Make sure you read the supplied documentation before you proceed!

1.1 The tasks

1. 1s has many options for displaying information about files and directories in various formats. Use
1s, with options where appropriate, to determine the following:

In /stud/docs/kurs/os/test-1ab3/alpha/ there are several identical files.
Which of them are in fact separate and unique (and which are not)? Explain your answer.

Create an empty directory in your work directory. Type 1s -1 and look at the entry.

Why is there a “2” after the permissions, what is the meaning of the number 2 in this context?
(i.e. what are the two items?)

Hint: it is not the number of subdirectories.

Copy a file to the new directory, and see what happens to the “2”.
Has it changed? Why or why not?

Create a directory in the new directory (i.e. you should now have a directory containing a file
and an empty directory). Check the number again.
What has happened? Explain.

2. Use 1n to create links and investigate the behaviour of the links in different situations:

Change to the new directory and use 1n -s to create a symbolic link to the file.
Does the original file show any indication of the symbolic link?

Do the same for the directory and see if there is any indication. Try to make a symbolic link
to a file that does not exist, or make a symbolic link and then remove the file.

What happens?

Type 1In -s gurka gurka.
What happens when you try to read the file gurka you just created? Explain.

Now make a hard link to a file (i.e. 1n without -s).
What happens now?

What happens when you change the permissions of the original file with chmod, or update its
modification time with touch?

Apart from the names, how can you tell which was the original file, and which is the link you
just created?



e What happens if you remove the original?

e What happens if you try to make a hard link to a directory? To a non-existent file?

After all this, you should understand the difference between hard and symbolic links.

1.2 Programming assignment

In this part of the assignment you will learn about the stat (2) system call. The stat system call fills
in a structure that contains a number of fields with information from a file’s inode. Read the manual
page for stat(2). Observe that there are several stat functions, use the right one in the right place.
Te. make sure that you report information about the file that holds a symbolic link and not the file (if
any) that the symbolic link points to.

There are some scripts that will help you a bit. First there is build.sh which you should be familiar
with by now. It will compile your code. The second script is create_ls.sh. If you run this, yet another
script, called ls.sh, will be created. This script will in turn run your program as long as you called it
Ls.java. The reason for this extra step is that, as opposed to the other lab assignments, you might want
to run Ls.java from different places in the file system. The scripts in the previous assignments all used
relative paths, which worked fine as long as you stayed in the lab directory. This time you will probably
want to try your program from other places. Then you need an absolute path, and the script create_ls.sh
will create this script for you, tailored to your home directory.

1. Start by implementing the method printInfo(String filename). Given a filename or a directory
name, it should print the following information from the corresponding inode:

e mode (permissions) e size in bytes

e number of links e size in blocks

e owner’s id e last modification time
e group id e name

In addition, the type of the object should be indicated as follows: if the file is a symbolic link, the file
“pointed to” by the link should appear following the name, such as with 1s -1, see read1ink(2). A
character should be added to the end of the filename to indicate if it is a directory or an executable
file; one of >/’ or ’*’ as described for 1s -F.

Since the calls getpwuid(3C) and getgrgid(3C) are not implemented in jtux, you do not have to
convert the user id or the group id to strings. That is, your printout should look like the one for
1n -n rather than 1s -1

There is a given method that will convert mode bits to a string similar to the one output by 1s
-1.

For this part you will need to use the following jtux methods and structures:

UFile.s_stat This is the type of the structure that will be filled in by stat. See the man page
for stat for details. The Java types used in this structure can be found in the documentation
included in the lab package.

UFile.lstat(String filename, UFile.s_stat statinfo) This system call will fill in statinfo
with information about the inode corresponding to filename.

UConstant.S_IFLNK This is a constant that you can use to check if a mode has a the S_IFLNK bit
set (that is, if it is a symbolic link). You use it as follows:
if ((statinfo.stmode & UConstant.S_IFLNK) == UConstant.S_IFLNK)

UFile.readlink(String path, byte[] buf, int bufsize) Read about this system call in the
man pages. This jtux method has a weird interface. You need to give it a byte array which
it will fill in with the contents of the symbolic link. It will return the number of bytes filled
in. You will then need to use the appropriate String constructor to convert it to a string.

In addition you will probably want to use the following Java classes:



Date Use this to create a more useable time representation that the one you get from stat. Note
that the one you get from stat is the number of seconds from the beginning of 1970, while
the Date constructor expects the number of milliseconds from the beginning of 1970. You
need to take this into account when using Date.

SimpleDateFormat Use this class to get something more readable to print to the screen.

2. Next it’s time to implement the method printDir(String directory). Now you will learn how to
read directories and traverse the file system. When you’re done with this part you should have a
program that traverses the file system from a starting point provided on the command line, similar
to 1s -1Ra.

Begin by skimming through some of the appropriate manual pages. The major functions you will
need are opendir (3C), readdir(3C), closedir(3C), chdir(2), getcwd(3C) and rewinddir (3C).

The struct dirent mentioned on the manual page for readdir (3C) is documented in the dirent (4)
manual page. The dirent structure contains a number of fields with information from an entry in
a directory.

In /stud/docs/kurs/os/test-1lab3 there are a number of subdirectories and files of different
types. Change to that directory and run 1s -lagFR to get an idea of the kind of output you
should expect from your program. Please note that this directory is not accessible from all campus
computers. Use e.g. hamberg.

A natural structure for the method is to traverse the list of files in a single directory. When it
reaches a directory in the list, it can call itself recursively. To start, just invoke the method with
the name of the starting directory.

You will need to deal with the possibility that you may not have the proper permissions to search
or enter certain directories. There are also some other error-like situations that need to be handled
properly. In none of these cases should the program need to exit, although it may need to take
some special action. See what 1s does for example. Notice that there is a hidden file that your
program should be able to find without crashing. It is called “you_get_it”.

For this part you will probably need to use the following jtux methods and structures:

UProcess.chdir(String path) This method may throw an UErrorException that you may
want to handle. Check its method getCode() to see what happened. If it happens to be
UConstant . EACCES, then a permission denied error occurred.

UDir.opendir (String path) This method will open a directory for reading. It may throw the
same exception as UProcess.chdir, so you may want to deal with it in a similar way. It will
return a long that is a handle to the directory stream. Initially the stream will be positioned
at the first entry in the directory.

UDir.s_dirent This is a structure that will be returned by UDir.readdir () (see below). Take a
look at the documentation included in the lab package for details of its contents.

UDir.readdir (long dirp) This method will return a structure of type UDir.s_ dirent that
represents the next entry in the directory stream. By making subsequent calls to this method
you will step through the contents of the directory represented by dirp. When there is no
more entries in the directory, null will be returned.

UDir.rewinddir (long dirp) This method will rewind the stream represented by dirp so that
it is positioned at the very first entry in the stream.

UDir.closedir(long dirp) This method will close the directory stream.

In addition to these, you may want to use a few of the methods from the previous step.

2 How to hand in

Send an email to leon.mugwaneza@it.uu.se with answers to the questions
and the source code attached (see submission instructions on the course
homepage).



