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Gaussian Quadrature Formulae for f -1n ( x )f ( x )  dx 
0 

By Donald G. Anderson 

1. Introduction. The table of Gaussian quadrature formulae for integrals of 
the form 

contained in [I]is reproduced in [2], presumably as the best available. In connection 
with the solution of certain nonlinear integral equations [3], I had occasion to 
extend this table. Presented below are a few comments on the computer program 
used to generate the extended table and the results obtained a t  that time. 

2. Gaussian Quadrature Formula and Orthogonal Polynomial Generating 
Program. We consider quadrature formulae of the form 

for. W(z) 2 0 on a < x < b. Many tables of Gaussian quadrature weights HA(") and 
abscissae zk("), for various kernel functions W(z)  and intervals a < x < b, have 
appeared in the literature [4, 5, 6 and many others; see 2, 7 and references therein]. 
Such Gaussian formulae possess two principal advantages in the context of the 
numerical solution of nonlinear integral equations: first, they provide a "near-
optimum" utilization of a fixed number of samples of the integrand, and second, one 
can treat in this fashion problems with integrably singular kernels and/or infinite 
intervals of integration. The difficulties inherent in generating high-order, high- 
precision weights and abscissae, for a given kernel and interval, inhibit one from 
adapting the quadrature scheme to the problem a t  hand unless the required tables 
happen to be available. Consequently, a computer program capable of generating 
simply and cheaply low-order (n - 10) Gaussian formulae, or composites of such 
formulae, is of great assistance in producing problem-oriented quadrature schemes. 
Such a program can be based on the algorithm summarized below-an adaption 
of those considered in [I, 81. 

Define an inner product by 

( f ,Q)  = J b  W(X)((X)Q(X)dz. 

There exists a set of polynomials 

pn(2) = Anxn+ B,x~-' + . . . (An # 0 )  

which are nlutually orthogonal with respect to this inner product, that is, 

( p i ,  pi) = 0 ,  for i # j. 

These orthogonality conditions define the polynomials up to a multiplicative con- 
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stant which may be chosen to normalize the p, in any convenient manner. For a 
binary conlput,er, a convenient normalization is 

A ,  = 2"", 

where the integer nz can be chosen empirically, to keep ( p ,  , p , )  of order unity for 
moderate n. This normalization is easier to apply than one involving ( p ,  , p , )  
directly, since A, enters naturally in the recurrence relation for the p ,  described 
below. 

The quadrature sample points xk'"' are the roots of p , ( x ) ;  we define 

xJn)  E a and ,+I - b.2'"' = 

The following properties of p, are derived inr[l, 81: The roots xk'^)are real and inter- 
laced such that 

for k = 0, 1, are given by . . ,n. The quadrature weights ~ k ( " )  

We define 

PO = A0 = 1 and p1 = A l ( x  - r l ) .  

The polynomials p, satisfy a three-term recurrence relation 

for 9z = 2, 3, . - . .The recurrence coefficients are given by 

for n = 1, 2, ,and 

for n = 2, 3, . . . ,where 

The particular class of quadrature formulae of interest can be defined by a sub- 
program which evaluates the moments of the kernel 

M I = (x', I ) ,  

for 1 = 0, 1, . .. , 2n - 1. In simple cases, the MI can be evaluated directly as 
elementary functions of 1; in inore complicated cases, it may be necessary to approxi- 
mate A l l  i~umerically,and the program will operate with an "effective" kernel differ- 
ing solnewhat from the original kernel. The pn can conveniently be represented by 



(n + 1)-vectors of their coefficients; a recurrence relation for the con~ponents of the 
(p,) vector car1 easily be written down from that for the pn polynomial above. If 
we define the ith colnponent of the vector as (pn ) i ,  with (pn)i  = 0 for i < 0 and 
i > n, and use the norlnalization condition above, we obtain 

for = 1,2,  . . . ; ( p o ) ~was defined above as unity. The inner products tn and un are 
then given by 

n - l  

Un = 2 (pn-l)i(pn-l)jMi+j+l -
i , j = O  

1t is convenient to generate the formulae successively for n = 1,2, . . - , since 
the root interlacing property provides bounds for the xk'"' a t  each stage. Since pn' is 
required for the evaluation of H ~ ( ~ ) ,a Newton-Raphson iteration can be used to 
find the roots, and the ~ k ( , )  follow immediately. In the critical recurrence calcula- 
tions, where errors can accumulate, double precision arithmetic is desirable, even to 
obtain only single precision results. I t  is somewhat more accurate to use the recur- 
rence relation and its derivative with respect to x to evaluate p, and pn', rather than 
using the coefficients ( p , ) ,  and synthetic division. In the recurrence calculation, 
there is a tendency for a loss of significant figures in the subtraction of numbers 
which are approxin~ately equal; hence, the algorithm has rather adverse roundoff 
error properties. 

A useful byproduct of the calculation is the set of recurrence coefficients rn , s, , 
and t , . The polynomials p, are orthogonal under sunmation over the roots z'k'with 
metric HI'"', since the Gaussian quadrature formula is exact for f (x )  a polyr~ornial of 
degree 2n - 1 or less- 

for i, j = 0, 1, . . . , 71 - 1,where 6 , j  is the Kronecker delta symbol. Consequently, 
the p, are often useful for generating least-squares approximations [7]. As a check 
on the calculation, one can compute, for each n, the maximun~ modulus of the differ- 
ence between the orthogonality sums arid their nominal values. When the program is 
performing properly, these test residuals contain only a few bits of roundoff error. 

The basic algorithm above can be extended to facilitate the developnler~t of 
composite quadrature formulae made up by applying the algorithm to a set of sub- 
intervals. Perhaps the most useful extension is the inclusion of the Radau and 
Lobatto cases, where one or both endpoints of the interval of integration are as- 
signed as quadrature sample points-the procedure is described in [I, 81. Since a 
quadrature formula can be regarded as approximation of the kernel by a weighted 
sun1 of Dirac delta functions, one can assign quadrature weights and abscissae 
simultarleously. Convenient caricellations can thereby be arranged a t  the interfaces 
between sub-intervals. 

As an exan~ple of the results available from such a program, consider the class of 
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integrals of the form 

For this particular kernel and interval, we obtain 

M I  = ( 1  + I ) -~ ,  

and the quadrature weights and abscissae of Table I. A number of other classes of 
integrals have been considered, but the results are not recorded here since they are 
not of sufficiently general interest and are easily regenerated. 

There is a maximum n for which the proFram is useful; typically, the algorithm 
fails because the xk'") drift off the real axis. Even before this maximum order is 
reached, the results obtained will deviate from the exact quadrature weights and 
abscissae due to roundoff error. Nevertheless, the test residuals may still be accept,- 
ably small, and the corresponding "near-optimum" quadrature formulae acceptably 
accurate [9]. 

3. Conclusion. While a program of the class described above cannot generate 
high-order quadrature formulae with high precision, it can very simply and cheaply 
generate low-order composite formulae. Such a program is useful precisely because 
it is relatively inexpensive to generate quadrature schemes adapted to a particular 

Note: Numbers are to  be multiplied by the power of ten in parentheses. 
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problem. Furthermore, the programming involved is simple enough to be assigned 
as a laboratory exercise in a numerical analysis course. As an  example, quadrature 
formulae adapted to a logarithmically singular kernel are given. 
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Quadrature Formulas Using Derivatives 
By Lawrence F. Shampine 

For Ic odd, we shall derive a new quadrature formula of the type 

which is exact for all polynon~ials of degree up to 4m + k - 2. A similar formula 
holds for k even. The formulas closely resemble those of Hammer and Wicke [I]: 
for k odd, 

and a similar formula for k even. Their formulas require the use of nonclassical 
orthogonal polynomials. The formulas stated above are derived very simply with 
the use of Jacobi polynomials and would, presumably, be useful in situations similar 
to those envisioned by Hammer and Wicke. 

f(x) can be split into even and odd parts. The form of the formula is such as to 
integrate the odd part exactly. Let us write f(x) in the form 
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