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ABSTRACT
This paper considers the task of learning to make a prognosis of

a patient based on its micro-array expression levels. The method
is an application of the aggregation method as recently proposed
in the literature on theoretical machine learning, and excels by
its computational convenience and capability to deal with high-
dimensional data. This paper gives a formal analysis of the method,
yielding rates of convergence similar to what traditional techniques
obtain, while it is shown to cope well with an exponentially large set
of features. Those results are supported by numerical simulations
on a range of publicly available datasets. It is empirically found
that the proposed technique combined with a recently proposed
preprocessing technique gives excellent performances. All employed
software and datasets are available on .

1 INTRODUCTION
Learning how to make a prognosis of a patient is an important
ingredient to the task of building an automatic system for
personalised medical treatment. A prognosis here is understood as
a useful characterisation of the (future) time of an event of interest.
In cancer research, a typical event is the relapse of a patient after
receiving treatment. The traditional approach to process observed
event times is addressed in the analysis of survival data, see e.g. (1)
for an excellent review of this mature field in statistics. Most of those
techniques are based on parametric or semi-parametric assumptions
on how the data was generated.

Probably the most prevalent technique is Cox’ Proportional
Hazard (PH) approach, where inference is made by maximising a
suitable partial likelihood function. This approach has proven to be
very powerful in many applications of survival analysis, but it is not
clear that the basic assumption underlying this technique holds in
the analysis of the microarray datasets. Specifically, the proportional
hazard assumption is hard to verify and might not even be valid. This
in turn jeopardises the interpretation of the results. This is especially
so since the data has typically a high dimensionality while typically
a few (complete) cases are available, incurring problems of ill-
conditioning. Many authors suggested fixes to this problem. Some
of such work proposed in the early 2000, was studied numerically
and compared in (2). In applied work, one ore resorts to a proper
form of preprocessing in order to use Cox’ PH model, see e.g. (3).

∗to whom correspondence should be addressed

Since prognosis involves essentially a form of prediction, it is
naturally to phrase this problem in a context of modern machine
learning. This insight allowed a few authors to come up with
algorithms which are deviating from likelihood-based analysis. We
mention here (4) and references therein.

This work takes this route even further. It studies the question how
can new insights in machine learning help to build a more powerful
algorithm? As dictated by the application, we are especially
interested to deal with high-dimensional data. That is, cases where
many (O(104)) covariates might potentially be relevant, while only
relatively few cases (O(102)) are available. Furthermore, we are
not so much interested in recovering the mechanisms underlying the
data since that is probably too ambitious a goal. Instead, we merely
aim at making a good prognosis. It is this rationale that makes
the present technique essentially different from likelihood-based,
or penalised likelihood-based approaches as e.g. the PH-L1 (5) or
Danzig Selector (6) for survival analysis, and points us resolutely at
methods of machine learning and empirical risk minimisation.

The contribution of this work is threefold. Firstly, discussion
of the application of prognosis leads us to formulate a criterion
which does not resort to a standard approach of classification,
function approximation or maximum (partial) likelihood inference.
Secondly, we point to the use of aggregation methods in a context of
bio-informatics, give a subsequent algorithm (APTER) and derive a
competitive performance guarantee. Thirdly, we present extensive
empirical evidence which supports the theoretical insights, and
affirms its use for the analysis of microarray data for survival
analysis. The experiments can be reproduced using the software
made public at http://.

1.1 Organization and Notation
This paper is organized as follows. The next section discusses the
setting of survival analyses and the aim of prognosis. Section 3
describes and analyses the proposed algorithm. Section 4 gives
empirical results of this algorithms on artificial and microarray
datasets. Section 4 concludes with a number of open questions.

This paper follows the notational convention to represent
deterministic single quantities as lower-case letters, vectors are
denoted in bold-face, and random quantities are represented
as upper-case letters. In this paper, the following notational
conventions are used: random variable are denoted as capital
letters X,Y, Z, . . . . Vectors are denoted in boldface x,y, . . . .
Deterministic quantities are represented as lowercase letters
i, n, f, . . . . Expectation with respect to any random variable in the
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expression is denoted as E. The shorthand notation En[·] denotes
expectation with respect to all n samples seen thus far, while
En−1[·] denotes expectation with respect to the first n− 1 samples.
En[·] denotes expectation with respect to the nth sample only, such
that the rules of probability imply that En[·] = En−1En[·].

The data is represented as a set of size n of tuples

{(xi, Yi, δi)}ni=1, (1)

Let 0 < Y1 ≤ Y2 ≤ · · · ≤ Yn be an ordered sequence of
observed event times associated to n subjects. An event can be either
a failure with time Ti, or a left censoring Ci, expressed as the time
elapse from t0. In this paper we assume that all n subjects share
the same time of origin t0. It will be convenient to assume that
each subject has a failure and left censoring time with values Ti
and Ci respectively. Then only the minimum time can be observed,
or Yi = min(Ti, Ci). It will be convenient to define the past event
set P (t) ⊂ {1, . . . , n} at time t. That is, P (t) denotes the set of all
subjects which have experienced an event strictly before time t. Let
for i = 1, . . . , n the indicator δi ∈ {0, 1} denote wether a failure
is observed (δi = 1), or if the subject i is censored (δi = 0), or
δi = I(Yi < Ci). Then

P (t) = {i : Yi < t, δi = 1} . (2)

Furthermore, associate to each subject i = 1, . . . , n a covariate xi ∈
Rd of dimension d. In the present setting, d = O(1000), while
n = O(100) at best.

2 PROGNOSIS IN SURVIVAL ANALYSIS
In this section we formalize the task of learning how to make a
prognosis, based on observed cases. The general task of prognosis
in survival analysis can then be phrased as follows:

DEFINITION 1 (Prognosis). Given a subject with covariate x∗ ∈
Rd, what can we say about the value of its associated T∗?

Motivated by the popular essay by S.J. Gould1, we like to make
statements as ’my covariates indicate that with high probability I
will outlive 50% of the subjects suffering the same disease’, or
stated more humanely as ’my covariates indicate that I belong to
the good half of the people having this disease’. The rationale is
that this problem statement appears easier to infer than estimating
the full conditional hazard or survival functions, while it is more
informative than single median survival rates.

Now, we look for an expert f : Rd → R which can decide for
any 2 different subjects 0 < i, j ≤ n which one of them will fail
first. In other words, we look for a f such that for as many couples
(i, j) as possible, one has

(Ti − Tj) (f(xi)− f(xj)) ≥ 0. (3)

Since Tk is not observed in general due to censoring, the following
(rescaled) proxy is used instead

n∑
i=1

1

|P (Yi)|
∑

j∈P (Yi)

I (f(xi) < f(xj)) , (4)

1 ’The Median Isn’t the Message ’ as in http://www.prognosis.
org/what_does_it_mean.php

where I(z) = 1 if z holds true, and zero otherwise. In case
|P (Yi)| = 0, the ith summand in the sum is omitted. This is
standard practice in all subsequent formulae. Note that this quantity
is similar to the so called Concordance Index (Cn) as proposed by
Harell (7). The purpose of this paper is to propose and analyze
an algorithm for finding such f from a large set {f} based on
observations, under the requirements imposed by the specific setup.

If given one expert f : Rd → R, its ’loss’ of a prognosis of a
subject with covariate x∗ ∈ Rd, and time of event Y∗ would be

`∗(f) =
1

|P (Y∗)|
∑

k∈P (Y∗)

I (f(x∗) ≤ f(xk)) . (5)

That is, `∗(f) is the fraction of samples which experience an event
before the time Y∗ associated to the subject with the covariate x∗,
although they were prognosed with a higher score by expert f .
Now we consider having m such experts {fi}mi=1, and we will
learn which of them performs best. We represent this using a vector
p ∈ Rm with pi ≥ 0 for all i = 1, . . . ,m, and with 1Tmp = 1.
Then, we will use this weighting of the experts to make an informed
prognosis of the event at T∗ of a subject with covariate x∗ ∈ Rd. Its
associated loss is given as

`∗(p) =

m∑
i=1

pi

 1

|P (T∗)|
∑

k∈P (T∗)

I (fi(x∗) ≤ fi(xk))

 . (6)

This represents basically which expert is assigned most value to for
making a prognosis. For example, in lung-cancer we may expect
that an expert based on smoking behaviour of a patient has a higher
weight than an expert based of the psychology of the subject. Note
that we include the ′ =′ case in (6) in order to avoid the trivial cases
where f is constant. So, we have formalised the setting as learning
such p in a way that the smallest possible loss `∗(p) will be (or can
be expected to be) made.

3 THE APTER ALGORITHM
When using a fixed vector p̂, we are interested in the expected loss of
the rule given by p̂. Assume that p̂ is independent from the sample
with index n, then the expected loss of a new sample (xn, Tn)
becomes L(p̂) = En`n(p̂) =

En
 m∑
i=1

p̂i
1

|P (Tn)|
∑

k∈P (Tn)

I (fi(xn) ≤ fi(xk))

 . (7)

Note that bounds will be given for this quantity which are valid
for any xn ∈ Rd which may be provided. In order to device a
method which guarantees properties of this quantity, we use the
mirror averaging algorithm as studied in A. Tsybakov, P. Rigollet,
A. Juditsky in (8). This algorithm is based on ideas set out in (9). It is
a highly interesting result of those authors that the resulting estimate
has better properties in terms of oracle inequalities compared to
techniques based on sample averages. Presently, this fast rates are
not obtained since the involved loss functions are not exponentially
concave as in (8), Definition 4.1. Instead of this property, we resort
to use of Hoeffding’s inequality which gives us a result with rate

O(
√

lnm
n

).
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Algorithm 1 APTER: Aggregate Prognosis Through Exponential
Reweighting

(0) Let p0
i =

1
m

for i = 1, . . . ,m.
for all k = 1, . . . , n do

(1) The prognosis associated to the m experts {fi}mi=1 are
scored whenever any new event (censored or not) is recorded
for a subject k ∈ {1, . . . , n} at time Yk as

`k(fi) =
1

|P (Yk)|
∑

l∈P (Yk)

I (fi(xk) ≤ fi(xl)) (8)

and the cumulative loss is Lk(fi) =
∑k
s=1 `k(fi).

(2) The vector pk is computed for i = 1, . . . ,m as follows

pki =
exp(−νLk(fi))∑m
j=1 exp(−νLk(fj))

. (9)

end for
(3) Aggregate the hypothesis {pk}k into p̂ as follows:

p̂ =
1

n

n−1∑
k=0

pk. (10)

This algorithm comes with the following guarantee. We need the
following property

DEFINITION 2. For any t = 1, . . . , n and i = 1, . . . ,m we have
that

En
[
g

(
Ln(fi)

n

)]
= En[g(`t(fi))]. (11)

for any regular function g : R → R. Equivalently, we have that
Eng(·) denotes any distributional property of the random variable
at hand.

This essentially means that we do not expect the loss to be
different when it is measured at different points in time. Thus:

THEOREM 1 (APTER). Given m experts {fi}mi=1, and the loss
function ` as defined in eq. (6). Then run the APTER algorithm with

ν =
√

2 lnm
n

resulting in p̂. Then

En−1

[
L(p̂)− min

i=1,...,m
L(fi)

]
≤
√

2 lnm

n
. (12)

This result is in some way surprising. It says that we can get
competitive performance guarantees without a need for optimizing
the performance over a set of hypothesis. Note that an optimization
formulation lies on the basis of a maximum (partial) likelihood
method or a risk minimization technique as commonly employed
in a machine learning setting. There is an implicit link with
optimization and aggregation through the method of mirror descent,
see e.g. (10) and (11). The lack of an explicit optimization stage
results in the considerable computational speedups.

Note that the performance guarantee degrades only as
√

log(m)
in terms of the number of experts m.

3.1 Choice of Experts and APTERp

The following experts are used in the application in microarray case
studies. Here, we use simple univariate rules. That is, the experts are
based on individual features (gene expression levels) of the dataset.
The rationale is that a single gene expression might be responsible
for the observed behaviours.

Let ei be the ith unit vector, and let ± denote both the positive as
well as the negated version. Then, the experts {fi} are computed as

fi(x) = ±eTi x,

so that m = 2d, and every gene expression level can both be used
for over-expression or under-expression.

In practice however, evidence is found that the following features
work even better:

fi(x) = sie
T
i x,

where the sign si ∈ {−1, 1} is given by wether the ith expression
has a concordance index with the observed outcome larger or equal
to 0.5, as estimated on the set used for training. This means that
m = d. This technique is referred to as APTERp.

Note that this task is also addresses the application of Boosting
methods. There, a popular choice is the use of random trees as in
(12).

3.2 Preprocessing using SIS and ISIS
It is found empirically that preprocessing using ISIS as described
in (13) improves the numerical results. However, the rational for
this technique comes from a different angle. That is, it is conceived
as a screening technique for PH-L1-type of algorithms. Let m =
(m1, ...md)

T ∈ Rd be defined as

m =

n∑
i=1

Yixi. (13)

For any given γ ∈ (0, 1). Here, [γn] denotes the integer part of γn.
We define the set Mγ as (13):

Mγ = {1 ≤ i ≤ d : |mi| is among the first [γn] largest entries of m} .
(14)

This set then gives the indices of the features which are retained in
the further analysis. It is referred to as Sure Independence Screening
(SIS) (13). In the second step, APTER is applied using only the
retained features. Note that in the paper (13), one suggests the use
of a SCAD penalty for Cox partial Likelihood approach.

An extension of SIS is an Iterative SIS (ISIS), see (13). The idea is
to pick up important features, missed by SIS. This goes as follows,
rather than having a single preprocessing (SIS) step, the procedure
is repeated as follows. At the end of a SIS-APTER step, a new
response Y ′ can be computed by application of the found regression
coefficients. This new response variables can then be reused in a SIS
step, resulting in fresh [γn] features. This procedure is repeated until
one has enough distinct features.

Since [γn] features are then given as input to the actual training
procedure, we will refer to this value as m in the experiments,
making this connection between screening and training more
explicit.
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4 EMPIRICAL RESULTS
This section present empirical results supporting the claim of
efficiency. First, we describe the setup of the experiments. The
description of the real-world datasets is delayed to the Appendix.

4.1 Setup
The following measure of quality (the Concordance index orCn, see
e.g (14)) of a prognostic index scored by the function f : Rd → R
is used. Let the data be denoted as {(xi, Yi, δi)}ni=1, where xi are
the covariates, Yi contains the survival time and δi is the censoring
indicator as before. Consider any f : Rd → R, then the Cn is
defined as

Cn(f) =

∑
i:δi=0

∑
Yj>Yi

I(f(xi) < f(xj))

|ε| . (15)

Here |ε| denotes the number of the pairs which have Yi < Yj when
Yi is not censored. The indicator function I(π) = 1 if π holds, and
0 otherwise. That is, if Cn(f) = 1, one has that f scores a higher
prognostic index to the subject with will experience the event later
(’good’). A Cn(f) = 0.5 says that the prognostic index given by
f is arbitrary with respect to event times (’bad’). Observe that this
measure is not quite the same as `n(f) and Ln(f) as used in the
design of the APTER algorithm. Note that this function goes along
the lines of the Area under the ROC curve or the Mann-Whitney
statistic, adapted to handling censored data.

The data is assigned randomly to training data of size nt =
b2n/3c and test data of size n − nt. The training data is used to
follow the training procedures, resulting in f̂ . The test data is used
to compute the performance expressed as Cn(f̂). The results are
randomised 50 times (i.e. a random assignments to training and test
set), and we report the median value as well as ± the variance.

All datasets are observational, implying that there is no need for
the application of the online version, so will be concerned here only
with the APTER algorithm. The parameter ν > 0 is tuned in the
experiments using cross-validation on the dataset which is used for
training. It was found that proper tuning of this parameter is crucial
for achieving good performance.

The following ten algorithms are run on each of these datasets:

(a) APTER: The approach as given in Alg. 1 where experts
{fi, f ′i} are taken as fi(x) = eTi x and f ′i(x) = −eTi x. In this
way we can incorporate positive effects due to over-expression
and under-expression of a gene. This means that m = 2d.

(b) APTERp: The approach as given in 1 where experts {fi} are
given as fi(x) = sie

T
i x where the sign si ∈ {−1, 1} is

given by the Cn of the ith expression with the observed effect,
estimated on the set used for training. This means that m = d.

(c) MINLIPp: The approach based on ERM and si as discussed in
(15).

(d) MODEL2: Another approach based on ERM as discussed in
(15).

(g) PLS: An approach based on preprocessing the data using PLS
and application of Cox regression, as described in (2).

(f) PH-L1: An approach based on a L1 penalized version of Cox
regression, as described in (5).

(g) PH-L2: An approach based on a L2 penalized version of Cox
regression, as described in (16).

(h) ISIS-APTERp: An approach which uses ISIS as preprocessing,
and applies APTERp on the resulting features (13).

(i) ISIS-SCAD: An approach which uses ISIS as preprocessing,
and applies SCAD on the resulting features (13).

(j) Rankboost: An approach based on boosting the c-index (17).

Those algorithms are applied to an artificial dataset (as described
below) as well as on a host of real-world datasets (as described in
Appendix 2).

4.2 Artificial Data
The technique is tested on artificial data which was generated as
follows. A disjunct training set and test set, both of n = 100
’patients’ was generated. For each ’patient’, d = m features are
sampled randomly from a standard distribution, so that xi ∈ Rd.

We say that we have only k informative features. Then, a time Ti
of a corresponding event is computed for i = 1, . . . , n as

Ti =
− logZi

10 exp
(∑k

j=1 xi,j
) (16)

where Zi is a random value generated from a uniform distribution
on the unit interval ]0, 1[, and xi,j is the j-th covariate for the ith
patient. The the right-censoring time is randomly generated from
the exponential distribution with rate 0.10. After application of the
censoring rule to the event time Ti, we arrive at the survival time Yi.

In a first experiment, d = m is fixed as 100, but only the first
k ≤ d features have an effect on the outcome. Figure (1.a) shows
the evolution of the performance (Cn(f̂)) for increasing values
of k. In a second experiment we fix k = 10, and record the
performance for increasing values of d = m, investigating the effect
of a growing number of ambient dimension on the performance of
APTER. Results are displayed in Figure (1.b).

Thirdly, we investigate how well the numerical results align with
the result of Theorem 1. The results are given in Figure (2). The
”c-index error” (Cerr) is given for different values ofm and n. Cerr
is computed as the difference between the Cn obtained by APTER -
denoted as f̂ - and the Cn of the single ”best” expert fj(xi) = xi,j :

Cerr = max
j
Cn(fj)− Cn

(
f̂
)
. (17)

This formula is similar to equation (12). This figure indicates that
Cerr increases logarithmically in m, and in terms of 1√

n
. This

supports the result of Theorem 1.

4.3 Real Datasets
In order to benchmark APTER and its variations against state-
of-the-art approaches, we run the algorithms as well on a wide
range of large-dimensional real datasets. Those datasets are
publicly available, and all experiments can be reproduced using
the code available at 2. The dataset are collected in a context of
bioinformatics, and a full description of this data can be found in
Appendix 2. The experiments are divided in three categories:

2 http://...
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NSBCD DBCD DLBCD Veer Vijver Beer AML
(115× 549) (295× 4919) (240× 7399) (78× 4751) (295× 70) (86× 7129) (116× 6283)

APTER 0.73±0.10 0.69±0.06 0.58±0.04 0.65±0.10 0.44±0.06 0.60±0.13 0.58±0.05
APTERp 0.77±0.05 0.74±0.04 0.59±0.03 0.68±0.08 0.62±0.04 0.73±0.08 0.60±0.05
MINLIPp 0.74±0.05 0.71±0.04 0.59±0.04 0.65±0.10 0.61±0.06 0.69±0.09 0.55±0.07
MODEL2 0.75±0.04 0.74±0.04 0.62±0.03 0.67±0.09 0.61±0.06 0.74±0.08 0.56±0.06

PLS 0.78±0.05 0.74±0.03 0.53±0.05 0.58±0.10 0.62±0.07 0.66±0.12 0.57±0.06
PH-L2 0.69±0.07 0.73±0.04 0.65±0.04 0.64±0.08 0.61±0.08 0.73±0.08 0.54±0.06
PH-L1 0.69±0.06 0.74±0.04 0.60±0.04 0.60±0.06 0.65±0.06 0.69±0.02 0.61±0.06

Rankboost 0.75±0.04 0.72±0.03 0.62±0.02 0.62±0.02 0.65±0.02 0.71±0.02 0.53±0.01
ISIS-SCAD 0.69±0.04 0.72±0.04 0.65±0.07 0.68±0.04 0.62±0.02 0.72±0.04 0.63±0.02

ISIS-APTERp 0.78±0.06 0.76±0.08 0.62±0.07 0.66±0.05 0.62±0.06 0.75±0.09 0.59±0.05
Table 1. Numerical results of the experiments of 10 different methods on 7 microarray datasets.

• The algorithms are run on seven microarray datasets, in order to
asses performance on typical sizes for those datasets. Here we
see that there is no clear overall winner amongst the algorithms,
but the proposed algorithm (ISIS-APTERp) does do repeatedly
very well, and performs best on most (3) datasets. Results are
given in Table (1).

In order to see wether the positive performance is not
due to irregularities of the data, we consider the following
null experiment. Consider the AML dataset, but lets shuffle
the observed phenotypes (the observed Y ) between different
subjects. So any relation between the expression level and
the random phenotype must be due to plain chance (by
construction). We see in graph h that indeed the distribution
of the methods based on this shuffled data nears a neutral Cn
on the test set of 0.50. This means that the 10% improvement
as found in the real experiment (graph g) is substantial with
respect to the randomizations, and not due to chance alone.

• The results of the algorithm is compared on the micro-array
dataset as reported in (18), and analysed further in (19). Here
we found that the obtained performance is significantly larger
than what was reported earlier, while we do not have to resort
to the clustering preprocessing as advocated in (18; 19). This
data has a very high dimensionality (d = 44.928) and has only
a few cases (n = 191). Results are given in Table (2) and the
box plots of the performances due to the 50 randomisations, are
given in Figure (3).

Finally, we discuss the application of the method on the same
high-dimensional (d = 44.928) dataset as before, but we study
the impact of the parameter m given to ISIS, which returns in
turn the data to be processed by APTER. The performances
for different values of m are given in Fig. (4.a). The best
performance is achieved for m = 800, which is the value
which was used in the earlier experiment reported in Fig. (3).
Here we compare only to a few other approaches, namely the
PH-L1, MINLIPp and MODEL2 approach which are either
optimisation-based. Panel (4.b) reports the time needed to
perform training/ tuning and randomisation corresponding to
a fixed value of m. Panel (4.c) reports the size of the memory
used up for the same procedure. Here it is clearly seen that
APTERp results in surprisingly good performance, given that
it uses up less computations and memory. It is even so that
the optimisation-based techniques cannot finish for large m

Dataset Method Cn(f̂)

FL APTER 0.70±0.05
(191× 44.928) APTERp 0.73±0.04

MINLIPp 0.70±0.03
MODEL2 0.72±0.04

PLS 0.66±0.03
PH-L2 0.69±0.07
PH-L1 0.67±0.05

RankBoost 0.67±0.03
ISIS-SCAD 0.71±0.03

ISIS-APTERp 0.74±0.05
Dave’s Method (see (19)) 0.71±0.02

Table 2. Numerical results of the experiments of 10 different methods on
the Follicular Lymphoma dataset.

in reasonable time or without the problems of the memory
management, despite the fact that a very efficient optimisation
solver (Yalmip) was used to implement those.

4.4 Discussion of the Results
This results uncover some interesting properties of the application
of the proposed algorithms in this bio-informatics setting.

First of all, the APTER and APTERp method is orders
of magnitudes faster (computationally) compared to the bulk
of methods based on optimization formulations (either using
Maximum (penalized) Partial Likelihood, Empirical Risk Minimization
or multivariate preprocessing techniques). This does not affect the
performance in any way, contrary to what intuition would suggest.
In fact, the performance on typical micro-array data of the vanilla
APTER or APTERp (without ISIS) is among the best ones.

Secondly, inclusion of preprocessing with ISIS - also very
attractive from a computational perspective - is boosting up
significantly the performance of APTER. We have no theoretical
explanation for this, since ISIS was designed to complement L1 or
Danzig-selector approaches. While the authors of ISIS advocate the
used of a SCAD norm, we find that APTERp is overall a better
choice for the mentioned datasets.

Furthermore, the empirical results indicate that the statistical
performance is preserved by using APTERp combined with ISIS,
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Fig. 1. Comparison of the numerical results obtained on the artificial data
sets (a) when keeping d = 100 fixed, and (b) when keeping k = 10 fixed.

and may even improve over performances obtained using existing
approaches. This is remarkable since the computational power is
orders of magnitude smaller than most existing approaches based
on (penalised) PL of ERM. We find also that empirical results
align quite closely the theoretical findings as illustrated with an
experiment on artificial data.
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Fig. 2. The evolution of the ’C-index error’ Cerr obtained by APTERp for
different values of (n,m).
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Fig. 3. Boxplots of the numerical results obtained on the FL dataset. Results
are expressed in terms of the Cn(f) on a test set, where f is trained
and tuned on a disjunct training set. The boxplots are obtained using 50
randomizations of the split training-testset.

5 CONCLUSIONS
This paper presents statistically and computationally compelling
results that a method based on online learning and aggregation can
be used for analysis of survival data in high dimensions. Theoretical
findings are complemented with empirical results on micro-array
dataset. We feel that this result is surprising not only that it
outperforms methods in ERM or (penalised) PL, but provides as
well a tool with much lower computational complexity as the former
ones since no direct optimization is involved. The wide host of
empirical, reproducible results support the claim of efficiency. This
analysis presents many new opportunities, both applied (towards
GWAs) as theoretical (can we improve the rates of convergence by
choosing other loss functions?).
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Fig. 4. results of the choice of m in ISIS, based on the Follicular Lymphoma
dataset(18; 19). (a) Performance expressed as Cn(f̂) on the test sets
(medium of 50 randomizations). (b) Computation time for running tuning,
training and randomisation for a fixed value of m. (c) Usage of memory of
the same procedure.
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1 PROOF OF THEOREM 1
The following results will be used.

LEMMA 1 (Hoeffding). Let λ ∈ R, and let X be a random
variable taking values in [a, b] ⊂ R, then

lnE [exp(λX)] ≤ λE[X] +
λ2(b− a)2

8
. (18)

With assumption of eq. (11) in hand, the following result holds:

LEMMA 2. Given m experts {fi : Rd → R}mi=1, a loss function
` : R → R satisfying eq. (11), and let {(xk, Yk, δk)}nk=1 take
values in Rd × R0 × {0, 1}. Let the APTER algorithm (1) be run
with ν > 0, then

En−1

[
L(p̂)− min

i=1,...,m
L(fi)

]
≤ lnm

νn
+

1

ν
En[Rn], (19)

with

Rn =
1

ν

n∑
t=1

ln Ê exp−ν
(
`n(f)− Ê`n(f)

)
. (20)

and Êg(f) =
∑m
i=1 p̂ig(fi) for any g.

PROOF. Consider the evolution of the normalization terms Wt

where

Wt =

m∑
i=1

exp−νLt(fi), (21)

is characterized. Specifically, we see that

ln
Wn

W0
= ln

m∑
i=1

exp(−νLn(fi))− lnm

≥ −ν min
i=1,...,m

Ln(fi)− lnm, (22)

as before. Hence

1

nν
En
[
ln
Wn

W0

]
≥ − min

i=1,...,m
En
[
1

n
Ln(fi)

]
− lnm

nν

≥ − min
i=1,...,m

En [`n(fi)]−
lnm

nν

≥ − min
i=1,...,m

En−1L(fi)−
lnm

nν
. (23)

On the other hand we have that

ln
Wt

Wt−1
= ln

∑m
i=1 exp(−νLt(fi))∑m

j=1 exp(−νLt−1(fj))

= ln

m∑
i=1

pt−1
i (exp−ν`t(fi)) . (24)

Taking expectation over the n samples (denoted as En[·]) seen thus
far, and summarizing over t = 1, . . . , n gives

1

nν

n∑
t=1

En [lnWt − lnWt−1]

=
1

nν

n∑
t=1

En

[
ln

m∑
i=1

pt−1
i exp−ν`t(fi)

]

=
1

nν

n∑
t=1

En

[
ln

m∑
i=1

pt−1
i exp−ν Ln(fi)

n

]

=
1

nν

n∑
t=1

En

[
ln

m∑
i=1

pt−1
i exp−ν`n(fi)

]

≤ 1

ν
En

[
ln

m∑
i=1

p̂i exp−ν`n(fi)

]
, (25)

where the last inequality follows from Jenssen’s inequality, and from
the formula of aggregation as in eq. (10). Now, this gives

1

ν
En
[
ln Ê exp−ν`n(f)

]
=

1

ν
En
[
ln Ê exp−νÊ`n(f)

]
+

1

ν
En
[
ln Ê exp−ν

(
`n(f)− Ê`n(f)

)]
= −En−1En[Ê`n(f)]

+
1

ν
En
[
ln Ê exp−ν

(
`n(f)− Ê`n(f)

)]
, (26)

where we defined for notational convenience Êx =
∑m
i=1 p̂ixi

for all x ∈ Rm, and Ê`n(f) =
∑m
i=1 p̂i`n(fi). Combining

inequalities (23) and (26) gives

En−1

[
L(p̂)− min

i=1,...,m
L(fi)

]
≤ lnm

νn
+

1

ν
En[Rn], (27)

as desired. �

So we are left to proof that the term En[Rn] is bounded in our
case. The proof of Theorem 1 is then given as follows.

PROOF. This follows by application of Hoeffding’s inequality as
in eq. (18) since

Rn = ln Ê exp−ν
(
`n(f)− Ê`n(f)

)
≤ ν2

2
, (28)

where we use that 0 ≤ `n ≤ 1. Then combining with eq. (19) gives
the result. �

2 BENCHMARK DATASETS
This appendix describes the real-world datasets. The datasets
range from large-dimensional (d = O(100)) to huge-dimensional
(O(10, 000)) and record n = O(100) subjects. We report the
performance of different methods on:
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• 7 public datasets containing micro-array expression levels and
events (occurrence of disease) of the associated subjects as
used in (2).

• The micro-array survival dataset as presented in (18) and
analysed in the report (19).

Details are given below.
The 7 publicly available microarray datasets as used for

benchmarking in (2), have the following properties.

(NSBCD): The Norway/Stanford Breast Cancer Data set is given in (21).
In this database there are survival data of n = 115 women who
have breast cancer, and d = 549 intrinsic genes introduced
in (21) were measured. In the 115 patients, 33% (38) have
experienced an event during the study. Missing values were
imputed by the 10-nearest neighbour method.

(Veer): The survival data of sporadic lymph-node-negative patients
with their gene expression profiles is given in (3). It has n =
78 patients with d = 4751 gene expressions selected from
the 25,000 genes recorded with the microarray. 44 patients
remained free of disease after their diagnosis for an interval of
at least 5 years. The average follow-up time for these patients
was 8.7 years. 34 patients had developed distant metastases
within 5 years, and the mean time to metastases was 2.5 years.

(Vijver): The data set of n = 295 consecutive patients with primary
breast carcinomas is from (3) All patients had stage I or
II breast cancer and were younger than 53 years old. They
gave the previously determined d = 70 marker genes that
are associated with the risk of early distant metastases in
young patients with lymph-node-negative breast cancer. The
median follow-up among all 295 patients was 6.7 years (range,
0.05 to 18.3). There were no missing data. 88 patients have
experienced an event during the study.

(DBCD): The Dutch Breast Cancer Data set is described in (22), and is a
subset of the data from (3). There are survival data of n = 295

women who have breast cancer. The measures of d = 4919
gene expression were taken from the fresh-frozen-tissue bank
of the Netherlands Cancer Institute. All the ages of the patients
are smaller than or equal to 52 years. The diagnosis was made
between 1984 and 1995 without previous history of cancer. The
median of follow-up time was 6.7 years (range 0.05-18.3). In
the 295 patients, 26.78% (79) have experienced an event during
the study.

(DLBCL): The diffuse large-B-cell lymphoma data set is described in
(23). This contains survival data of n = 240 patients who
have diffuse large-B-cell lymphoma. d = 7399 different gene
expression measurements are given. The median of follow-
up time was 2.8 years. From the 240 patients, 58% have
experienced an event during the study.

(Beer): The survival data of n = 86 patients with primary lung
adenocarcinomas is from (24) There are d = 7129 expressed
genes selected from Affymetrix hu6800 microarrays. 76
patients have experienced an event during the study.

(AML): The survival data of acute myeloid leukemia patients is
described in (25). It contains n = 116 patients with acute
myeloid leukemia and the expression levels of d = 6283 genes.
71 patients have experienced an event during the study.

The same datasets were used in (2) and (4) to benchmark a state-
of-art methods, results that are reproduced here as well. The high-
dimensional FL dataset has the following description.

(FL): Additionally, we use the micro-array dataset which was used in
(18), and analysed in (19). This data set included the survival
data of n = 191 patients with follicular lymphoma after
diagnosis. The median age at diagnosis was 51 years (range,
23 to 81), and the median follow-up time was 6.6 years (range,
less than 1.0 to 28.2); the median followup time among patients
alive at last follow-up was 8.1 years. It contains d = 44928
gene expression levels selected from Affymetrix U133A and
U133B microarrays.
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