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Abstract—This contribution studies the problem of learning
sparse, nonparametric models from observations drawn from
an arbitrary, unknown distribution. This specific problem leads
us to an algorithm extending techniques for Multiple Kernel
Learning (MKL), functional ANOVA models and the Component
Selection and Smoothing Operator (COSSO). The key element
is to use a data-dependent regularization scheme adapting to
the specific distribution underlying the data. We then present
empirical evidence supporting the proposed learning algorithm.

I. INTRODUCTION

Recent research in machine learning and statistics witnessed
a growing interest in learning models that are both achieving
good generalization performance, as well as resulting in insight
into the model structure. Among other, this task has been
tackled via non-parametric extensions of the LASSO [1]. In
the context of machine learning this type of problems has been
studied in the Multiple Kernel Learning (MKL) framework,
both from a functional view-point ([2]; [3]) and from the
point of view of optimization ([4]; [5]). The subject was also
addressed in the context of functional ANOVA models under
the name of COmponent Selection and Smoothing Operator
(COSSO) [6].

When the input data are dependent, theoretical insights as
well as empirical evidence show that the estimated models
are more likely to include irrelevant components. On a more
general track, namely for general penalized empirical risk
minimization problems, results have been shown to depend on
how well the underlying structure is captured by the penalty
function [7]. This suggests to convey structural assumptions
on the problem by suitably crafting the penalty, which is the
approach underlying recent works on parametric modeling
such as [8] and [9]. In this contribution we illustrate a novel
type of data-dependent penalty that improves sparse recovery
by adapting to the observed dependence structure. The idea
is translated into an algorithm based on COSSO, which is
termed ADACOSSO. Full details and analysis on the proposed
approach are provided in the manuscript [10]. Here we report
the main ideas and present new empirical evidence supporting

ADACOSSO.
The structure of the paper is as follows. We begin by

presenting our notation and some preliminaries in Section II.
In Section III we introduce the formulation for nonparametric
sparse recovery and discuss recent theoretical insight in the
problem of interest, namely structure detection in the presence
of associated input data. We then propose to replace the orig-
inal block-wise penalties with data-dependent norms adapted
to the in-sample dependence (Section IV). Successively, we
elaborate on an algorithm that exploits the adaptation to learn
a sparse nonparametric model (Section V). In Section VI we
present experimental results on synthetic examples and on
sparse reconstruction of images. We end the paper in Section
VII with some concluding remarks.

II. NOTATION AND PRELIMINARIES

For any p ∈ N we use the convention of denoting
the set {1, . . . , p} by Np. We indicate an arbitrary vector
(xj : j ∈ Nd) ∈ Rd by x and we write e.g. xij to denote
the j−th component of xi ∈ Rd. It is assumed that the input
space X is a compact subset in Rd and that the output space
Y is a subset of R. We further denote by ρ the underlying
probability measure on X × Y and by ξ the corresponding
marginal probability measure on X . These measures are both
unknown but a finite set of input-output pairs

Dn =
{(
xi, yi

)
: i ∈ Nn

}
⊂ X × Y

drawn i.i.d. according to ρ is available. Associated to the
latter we have the empirical measure ρn = 1

n

∑
(x,y)∈Dn δ(x,y)

where δ(x,y) denotes the Dirac measure at (x, y). For a loss
function l : R×Y → [0,+∞] the empirical risk of a function
h : X → R is defined upon Dn as

Cn(h) =∫
X×Y

l (h (x) , y) dρn(x, y) =
1
n

∑
(x,y)∈Dn

l (h (x) , y) . (1)



It is the discrete version of its theoretical counterpart, the
expected risk measured upon the underlying probability:
C(h) =

∫
X×Y l (h(x), y) dρ(x, y). In the following we deal

with spaces of real-valued functions defined on X . We write
(H, 〈·, ·〉) to indicate that the space of functions H is a
Hilbert space defined according to the inner product 〈·, ·〉. In
particular, we shall consider the space of square integrable
functions L2(X , ξ) 〈f, g〉L2(X ,ξ) =

∫
X f(x)g(x)dξ(x) and

having associated norm ‖f‖L2(X ,ξ) =
√
〈f, f〉L2(X ,ξ). Let

now
{(
Hj , 〈·, ·〉j

)
: j ∈ Nm

}
be a set of reproducing kernel

Hilbert spaces of functions defined on X [11], [12]. For any
j ∈ Nm denote the reproducing kernel (r.k. in the following)
of Hj by kj : X ×X → R. It is assumed that for any j ∈ Nm,
the component space Hj is a subspace of L2(X , ξ). This is
the case under mild conditions on the kernel function and/or
X , see [10] and reference therein.

For an index set A ⊆ Nm we define the space of (possibly
non uniquely defined) additive functions

HA :=

h : X → R s.t. h =
∑
j∈A

hj , hj ∈ Hj , j ∈ A


and use H to indicate the model space HNm . Denote by Rm+
the positive orthant in Rm. The space H can be endowed with
the inner product parametrized in the weight vector θ ∈ Rm+

〈h, g〉θ = inf

∑
j∈Nm

1
θj

〈
hj , gj

〉
j

: h, g ∈ H

 (2)

where the infimum is intended over all the possible decom-
positions giving rise to h, g ∈ H. The associated norm is
‖f‖θ =

√
〈f, f〉θ. It follows from the arguments in [11] that,

when endowed with such an inner product, H admits a r.k.

kθ(x, y) =
∑
j∈Nm

θjk
j(x, y) , (3)

see also [12]. In the following we simply write 〈·, ·〉, ‖·‖ and k
when θ has all the entries equal to 1. We say that an arbitrary
function h ∈ H is known via its additive representation, if
a specific decomposition h =

∑
j∈Nm h

j is considered. We
denote by Ah its sparsity pattern, i.e., we define

Ah :=
{
j ∈ Nm : hj 6= 0

}
(4)

and we further denote by Ach its complementary set. To
conclude with the notation used in the following, we introduce
the penalty functional

J(h) = inf

∑
j∈Nm

‖hj‖j : h ∈ H

 . (5)

III. SPARSE RECOVERY AND CONCURVITY IN FUNCTION
SPACES

Recent works have been devoted to extend the standard
LASSO to a non-parametric setting. With the notation in-
troduced above, this can be formulated as the empirical risk

minimization problem defined, for τ > 0, as

ĥτ = arg inf {Cn(h) + τJ(h) : h ∈ H} (6)

where again the infimum is taken with respect to the additive
decompositions and can be shown to be attained. The objective
functional trades off the empirical error Cn, with the com-
plexity penalty J encouraging sparsity of the solution with
respect to the component functions. Specific instances of the
former problem have been considered to accomplish different
tasks. One of these, for example, corresponds to selecting the
optimal convex combination of kernel functions arising from
different parameter values. Here we are especially interested
in revealing the structure underlying the input-output data.
We shall assume that every kernel in the ensemble encodes
a specific feature from the input domain. A particular case
that fits into this general idea is found in functional ANOVA
models [13]. In this case component functions refer either to
main effects or to higher order interactions among subsets of
variables.

Traditionally, the study of the properties of estimators like
ĥτ has been carried out by comparing them with some ideal
representation of the process under study: the oracle function
f , assumed known via its additive representation. This is the
approach followed in [14], where, as a main result, a prob-
abilistic bound relating ĥτ with f is derived. An interesting
oracle to target is the best d−sparse additive representation,
when it exists, i.e., given an integer 0 < d < m,

fd = arg inf {C(h) : h ∈ HA, A ⊂ Nm, card(A) = d} .

One interesting question is under what conditions ĥτ is close
to the oracle, where different specifications of “close” might
be of interest. In particular it is relevant to know when we can
correctly identify via ĥτ the relevant components indexed by
the sparsity pattern Af , i.e., when it does hold that Aĥτ = Af .
This practically amounts to correctly detect the structure
behind the data, thus achieving a better insight in the process
under study. Existing oracle inequalities [14],[10] support the
empirical evidence that the estimator is more likely to include
irrelevant terms — where being irrelevant here is dictated by
the oracle — as soon as the components in the model space
are dependent. As in the analogous conditions for parametric
sparse recovery (see e.g. [15]), here the statistical associations
play a role via the intra-dependence (within the relevant
components) and the inter-dependence (between functions in
HAf and HAc

f
). For the latter, a crucial measure of association

introduced in [14], is the supremum of the cosine of the angle
between functions in HAf and HAc

f
respectively:

δ(Af ) =

sup
{ 〈h, g〉L2(X ,ξ)

‖h‖L2(X ,ξ)‖g‖L2(X ,ξ)
: h ∈ HAf , g ∈ HAcf

}
.

(7)

We call this the mutual coherence in the model space, as
it is similar to the ordinary notion of mutual coherence of
a predefined finite dictionary of functions. This index can



be seen as a partial characterization of concurvity, namely
the (approximate) collinearity of the transforms of the input
random variables contained in the model space [16].

IV. DATA MATCHED PENALTIES

To prevent the inclusion of spurious terms, one might
constrain the set of feasible functions in the model space, so
that the value of concurvity indices, such as (7), are kept under
control. However this is unpractical as we do not have access
neither to Af nor to ξ defining the inner product in the formula
of the mutual coherence. Instead, in this Section we propose
a data-dependent approach to improve the sparse recovery
according to the in-sample dependence. The framework that
we are about to discuss is in a similar spirit as the data-
dependent geometric regularization, introduced in the context
of semi-supervised learning in [17]. The aim is to incorporate
in the learning task the geometry of the underlying probability
distribution of the input data. We begin by introducing a class
of norms for the component spaces, which is instrumental for
our approach.

A. Data-Dependent Adaptive Norms

Denote by ξn the empirical marginal measure on X . Con-
sider the space L2(X , ξn), isomorphic to Rn, and endow it
with the inner product

〈f, g〉L2(X ,ξn) =
1
n

∑
x : (x,y)∈Dn

f(x)g(x)

and associated norm ‖f‖L2(X ,ξn) =
√
〈f, f〉L2(X ,ξn).

Our starting point is the set of component spaces{(
Hj , 〈·, ·〉j

)
: j ∈ Nm

}
introduced above. It is assumed

that m ≤ n. That is, we have at most as many components as
points in the sample. For j ∈ Nm denote by Aj both a linear
operator Aj : L2(X , ξn) → L2(X , ξn), the nature of which
will be clear later, and the associated n× n matrix represen-
tation. Further let Sj : Hj → L2(X , ξn) be Sj := Aj • IDn
where IDn

(
hj
)

=
(
hj (x) : (x, y) ∈ Dn

)
is the vector of

evaluations of hj according to the input points in Dn and •
is used to indicate function composition. We now modify the
norm of the component spaces by incorporating a new term
depending upon the sample. Namely for hj ∈ Hj and µ > 0
we define the new norm∥∥hj∥∥2

Dn,j
:=
∥∥hj∥∥2

j
+ µn

∥∥Sj(hj)∥∥2

L2(X ,ξn)
. (8)

When endowed with this norm, Hj can be shown to be a
RKHS with the r.k. kjDn : X × X → R defined by:

kjDn(x, y) = kj(x, y)−
(
k̄j(x)

)>( 1
µ
I +M jKj

)−1

M j k̄j(y)

(9)
where k̄j(x) is the vector

(
kj(z, x) : (z, y) ∈ Dn

)
, M j =

Aj
>
Aj and Kj is the kernel matrix arising from the kernel

function kj and the points in the given sample. A proof is
essentially based on simple orthogonality arguments and can
be found in [18]. Notice that we have not yet specified the

nature of Aj ; a specific choice will play a central role in our
derivation, as it will be clear in a moment.

Based on the set of norms corresponding to (8) we define
the new norm for the space of additive models H by setting
for a weight vector θ ∈ Rm+

‖h‖2θ,Dn = inf

∑
j∈Nm

1
θj

∥∥hj∥∥2

Dn,j
: h ∈ H

 . (10)

Correspondingly, the associated reproducing kernel is now

kθ,Dn(x, y) =
∑
j∈Nm

θjk
j
Dn(x, y) . (11)

We again drop the subscript θ in the case of unitary weights.
Let now {Rj : j ∈ Nm} be a set of one-dimensional
mutually orthogonal subspaces of L2(X , ξn). Denote by P j⊥
the projector operator mapping an element of L2(X , ξn) onto
the orthogonal complement of Rj . We address the adaptation
in a supervised way by formulating the following data-
dependent norm adaptation problem. For λ0 > 0, consider
finding

{
P j⊥ : j ∈ Nm

}
and h =

∑
j∈Nm h

j ∈ H that
minimize:

Q
(
h,
{
P j⊥ : j ∈ Nm

})
=

Cn(h)+λ0

∑
j∈Nm

(
‖hj‖2j + µn

∥∥∥P j⊥ • IDn (hj)∥∥∥2

L2(X ,ξn)

)
.

(12)

By minimizing (12) we fit an additive model to the data
meanwhile penalizing the coherence with respect to the em-
pirical measure. This is achieved by driving the vectors in{
IDn

(
hj
)

: j ∈ Nm
}

to live in orthogonal subspaces. The
empirical measure is used as a proxy for the underlying
measure and the approach is readily motivated in the spirit
of the oracle inequalities. Notice however that while the
analysis in the latter is based on a worst-case scenario, the
“decorrelation” of the components we aim at is data-driven.
When µ is set to zero the problem corresponds to a standard
penalized empirical risk minimization. As µ is increased, the
smoothness of the solution is traded for the geometric property
of having less inter-dependence with respect to the empirical
measure.

B. An Algorithm for the Data-Dependent Norm Adaptation
Problem

For a fixed set of projectors
{
P j⊥ : j ∈ Nm

}
, (12) can be

restated as
Q(h) = Cn(h) + λ0‖h‖2Dn , (13)

which is a regularized empirical risk functional with data-
dependent squared norm penalty. It is well known that a mini-
mizer of the latter admits a representation as

∑
i αikDn

(
xi, ·

)
where α ∈ Rn and kDn is given by (11) in terms of the
modified kernel functions (9) with M j = P j⊥ and µ fixed
at a predefined value. Such a minimizer can be computed



by solving an optimization problem which depends on the
choice of the loss function. In the case of quadratic loss a
solution is available in closed form and can be computed
solving a system of linear equations ([12]; [19]). On the other
hand, if we fix h ∈ H, the minimization of (12) amounts
to find projection matrices {P j : j ∈ Nd} that minimize∑
j∈Nm

∥∥(IDn − P j • IDn) (hj)∥∥2

L2(X ,ξn)
where for any j ∈

Nm, P j is the projection onto Rj . Denote now by H the
n ×m matrix with j−th column IDn

(
hj
)

and let ‖ · ‖F be
the Frobenius norm. Further, for a positive integer s, denote by
Is the s× s identity matrix and by diag(x) a diagonal matrix
with diagonal x ∈ Rs. The latter problem can be equivalently
formulated as

min
{
‖H −Qdiag(λ)‖F :

Q>Q = Im, Q ∈ Rn×m, λ ∈ Rm
}
. (14)

Once an approximation Qdiag(λ) is found, we simply set
P j⊥ = In−qj(qj)> where qj is the j−th column of Q. In turn
(14) can be solved efficiently, see [10, Section 5.3] for details.
The pseudocode for a solution strategy exploiting the facts
above is reported on Table I. By applying a limited number

Input: Data Dn; reproducing kernels kj : X × X → R, j ∈ Nm
Output: data-dependent kernels kjDn : X × X → R, j ∈ Nm.

(kjDn , ‖ · ‖Dn,j) ← (kj , ‖ · ‖j) ∀ j ∈ Nm
repeat
ĥ← arg min

{
Cn(h) + λ0‖f‖2Dn : h ∈ H

}
Ĥ ← (IDn

(
ĥ1
)
, . . . , IDn

(
ĥm
)
)

(Q̂, λ̂)← arg min
Q>Q=Im, λ∈Rm

{
‖Ĥ −Qdiag(λ)‖F

}
for Q̂ = (q̂1, . . . , q̂m), P j⊥ ← In − q̂j q̂j> ∀ j ∈ Nm
set data-dependent kernels via (9) with Mj = P j⊥

until stopping criterion met

TABLE I
PSEUDOCODE FOR THE DATA-DEPENDENT NORM ADAPTATION

of iterations of our algorithm, we obtain what can be seen as
an iterative data-dependent improvement on the original set of
norms and corresponding kernels. Thus our stopping criterion
is simply determined by a predefined number of iterations (10
in our experiments).

V. SPARSE FUNCTIONAL ANOVA MODELS WITH THE
ADAPTIVE COSSO

In this section we elaborate on the use of data matched
penalties for learning sparse models. We thus go back to the
estimator (6) where J is substituted by its data-dependent
version JDn , obtained by replacing the norms with the data
dependent ones. Correspondingly, this amounts to replacing
the original set of kernels with the one introduced in Sub-
section IV-B. We consider the case of quadratic loss so that
Cn(h) =

∑
(x,y)∈Dn (h (x)− y)2. This problem has been

studied in [6] for the standard penalty J . The authors also
consider an unpenalized bias term. Including the bias in the
present setting involves minor changes and it has not been

reported above for simplicity of presentation. The analysis in
[6] is done explicitly in terms of smoothing spline ANOVA
models. For this case, the mathematical background as well
as the closed form for the ensemble of kernel functions
can be found e.g. in [12]. Although there is no need to
stick to this setting, the former is a solid formalism to deal
with multivariate data. Moreover, the original kernels in the
ensemble have the advantage of being parameter-free.

Recall that for θ ∈ Rm+ , ‖ · ‖θ,Dn is the weighted data-
dependent norm (10). For fixed τ , finding a solution for
the data-dependent version of (6) with an unpenalized bias
amounts to finding in a predefined model space H⊕ {1} the
solution of :

min
{
Cn(h) + λ0‖h‖2θ,Dn + λ

∑
j∈Nm

θj :

h ∈ H ⊕ {1}, θ ∈ Rm+
}
. (15)

Here {1} is the space of unpenalized constant functions, the
pair (λ0, λ) ∈ R2

+ has a known relation with τ , and λ0 can
be fixed at any value. Proofs and details can be found in [6].
In the following we compare the performance of the estimator
corresponding to J (COSSO) with the one corresponding to
JDn (ADACOSSO). In [6] a solution for the standard COSSO
is found by first setting as an initial value θj = 1 for all j ∈
Nm. At this point we perform the data-dependent adaptation as
detailed in Subsection IV-B. Once the set of modified kernels
has been obtained, we estimate the model

f̂(x) =
∑

xi : (xi,yi)∈Dn

α̂ikθ̂,Dn(xi, x) + b̂ (16)

via the same alternating approach as in [6]. In the optimization
some θj are shrunk to zero, thus ensuring sparsity in the
component functions.

VI. EXPERIMENTAL RESULTS

A. Synthetic Datasets

We tested the performance of the two procedures on a
number of synthetic examples. As building blocks for our gen-
erating models we employed the same collection of univariate
functions used in [6]:

g1(z) = z , g2(z) = (2z − 1)2 , g3(z) =
sin(2πz)

2− sin(2πz)
,

g4(z) = 0.1 sin(2πz) + 0.2 cos(2πz)

+ 0.3 sin2(2πz) + 0.4 cos3(2πz) + 0.5 sin3(2πz) .

We considered 4 blocks of input covariates of equal size v.
Within each block, we simulated input data according to the
Compound Symmetry scheme of [6]. That is, denoting by Bl =
{bl1, . . . , blv} the index set of the l−th block, we generated
xj = (wj + tul)/(t+ 1) for j ∈ Bl, l ∈ N4, where wj and ul
were both i.i.d. following a uniform distribution in [0, 1]. In
this way the parameter t can be used to induce a certain degree



of concurvity between the functions of variable belonging to
the same block. The generating function was taken to be

f(x) = 6g1(xb11) + 6g2(xb21) + 3g3(xb31) + 3g4(xb41) (17)

and therefore 4(v − 1) covariates were not used in the gener-
ating process. For i ∈ Nn, we drew xi from the distribution
detailed above. The corresponding output observation was
set to yi = f(xi) + εi where the variance of the zero-
mean gaussian variable ε was fixed so that the signal-to-
noise ratio SNR = var[f(x)]/var[ε] was at a pre-specified
value. The comparison was done in terms of both selec-
tion and prediction accuracy. The selection accuracy was
assessed by means of two popular measures in information
retrieval: Precision Pr = card

(
Aĥ ∩ Af

)
/card

(
Aĥ
)
, and

Recall Re = card
(
Aĥ ∩ Af

)
/card (Af ). The prediction

accuracy was estimated via RSS = 1
nt
‖yt − ŷt‖2Rnt , where

yt is the target vector associated to an i.i.d. test sample, ŷt
is the corresponding prediction and nt = 1000. For both the
COSSO and the initial kernel functions in ADACOSSO we
considered smoothing spline ANOVA kernels and took the
whole set of main effects associated to the input covariates.
Following [6] we set λ at a convenient value in association
with the original kernel functions. We then tuned both the
shrinkage parameter of the COSSO and the pair (λ, µ) in
the ADACOSSO via 5−fold CV. In Table II we report the
results averaged over 100 simulations for different values of
v, n, t and SNR. In [10] a different dependence structure was
used in the simulations and the BIC was considered instead of
CV as a model selection criterion. As shown by Pr and Re,
ADACOSSO improved the detection of the structure of the
oracle, here identified with the generating function (17). Also,
better prediction performances (RSS) were obtained. This is
because in the non-adaptive procedure relevant and irrelevant
components are equally penalized and thus in the final model
relevant terms tend to be overly shrunk. Thanks to the adaptive
approach in the ADACOSSO, relevant components (according
to Cn in (12)) tend to be less penalized in the final estimate.

B. Non-parametric Sparse Reconstruction of Natural Images

In [20] sparse coding of natural images was investigated
with the purpose of understanding the response properties of
visual neurons. The authors proposed a learning algorithm
to derive a dictionary of codewords. The coding strategy
was designed to ensure that image patches are likely to be
represented by a sparse linear superposition of basis ele-
ments. We applied their approach and as training data we
used patches extracted from the set of monochrome images
available at the authors’ website. In this way, we found 64
codewords of 8× 8 pixels each (Figure 1(a)). We then aimed
at reconstructing one of the images in the set (Figure 1(c))
based upon the dictionary elements. We divided the picture
in 4096 patches of the same dimensions as the codewords.
Each patch is represented as a vector yl ∈ R64 for l ∈ N4096.
The reconstruction amounts at approximating each i−th entry
of the l−th patch yli by ŷl =

∑
j∈N64

hj(xij) where xij
is the i−th pixel in the vector representation for the j−th

TABLE II
SELECTION AND PREDICTION ACCURACY AT DIFFERENT REGIMES.

n = 40, v = 5, SNR = 6.
t = 1.5 t = 3 t = 4.5

Pr COSSO 0.38(0.26) 0.21(0.19) 0.18(0.12)
ADACOSSO 0.63(0.26) 0.54(0.21) 0.49(0.20)

Re COSSO 0.51(0.24) 0.51(0.30) 0.51(0.30)
ADACOSSO 0.64(0.24) 0.66(0.25) 0.67(0.24)

RSS COSSO 6.23(0.98) 5.43(0.81) 4.75(0.74)
ADACOSSO 5.24(0.82) 4.53(0.86) 3.93(0.71)

n = 100, v = 10, SNR = 3.
t = 1.5 t = 3 t = 4.5

Pr COSSO 0.54(0.24) 0.30(0.14) 0.25(0.12)
ADACOSSO 0.77(0.17) 0.62(0.19) 0.56(0.16)

Re COSSO 0.85(0.15) 0.75(0.22) 0.71(0.20)
ADACOSSO 0.89(0.15) 0.81(0.20) 0.78(0.18)

RSS COSSO 5.75(0.73) 5.35(0.53) 5.03(0.40)
ADACOSSO 5.21(0.47) 5.03(0.48) 4.72(0.44)

n = 100, v = 20, SNR = 10.
t = 1.5 t = 3 t = 4.5

Pr COSSO 0.54(0.21) 0.29(0.12) 0.23(0.10)
ADACOSSO 0.81(0.15) 0.65(0.16) 0.6(0.15)

Re COSSO 0.86(0.18) 0.81(0.17) 0.68(0.21)
ADACOSSO 0.97(0.09) 0.91(0.13) 0.87(0.17)

RSS COSSO 3.86(0.62) 3.03(0.41) 2.68(0.30)
ADACOSSO 3.20(0.44) 2.70(0.35) 2.40(0.31)

n = 200, v = 25, SNR = 6.
t = 1.5 t = 3 t = 4.5

Pr COSSO 0.77(0.13) 0.43(0.16) 0.32(0.14)
ADACOSSO 0.88(0.19) 0.73(0.14) 0.64(0.14)

Re COSSO 1(0) 0.92(0.09) 0.80(0.13)
ADACOSSO 1(0) 0.96(0.12) 0.91(0.17)

RSS COSSO 3.09(0.39) 2.98(0.27) 2.80(0.23)
ADACOSSO 3.03(0.32) 2.87(0.24) 2.62(0.23)

codeword. Each function hj is either a linear function of its
argument (linear sparse coding) or a non-parametric function
with some vanishing components. The idea of relaxing the
linearity assumption was proposed under the name of func-
tional sparse coding in [?]. Here we applied the standard
LASSO to find a sparse linear fit and determined sparse non-
parametric fits via both COSSO and ADACOSSO. For each
patch we trained models for different values of the parameters
with the whole set of 64 input-output pairs. To assess the
quality of an approximation we computed the peak signal-to-
noise ratio PSNR = 20 log10

(
255/

√
1/64‖yl − ŷl‖2

)
. The

whole set of solutions corresponding to different parameters
was considered. For each patch we looked for the model that
minimized the total numbers of codewords used, subject to
an average value of PSNR over the population of patches
greater than 60 dB. This was approximatively the value of
PSNR obtained on average by the LASSO in a previous
experiment. This type of search over the set of models is
an integer problem that can be relaxed into a standard linear
programming problem. Figure 1(b) reports the distribution of
codewords/patch obtained with this model selection approach.
A considerable gain in sparseness was achieved with the non-
parametric procedures, especially when the norm adaptation
step was performed.

VII. CONCLUSION

In this paper we have proposed a novel data-dependent
approach that improves the sparse recovery in the presence
of associated input covariates. The idea has been employed in
combination with the algorithmical strategy used in COSSO.
However, we conclude by stressing that the norm adaptation



(a) A subset of the codewords extracted using the learning algo-
rithm in [20].
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(b) The distribution of codewords/patch for the second experi-
ment. The mean of the distributions are 10.08, 4.51 and 3.64
respectively for LASSO, COSSO and ADACOSSO.

(c) The image reconstructed via ADACOSSO indistinguishable
from original.

Fig. 1. Sparse reconstruction of a natural image.

problem can be specialized to other loss functions and used
in combination with other MKL algorithms. Indeed, it copes
with a problem that is not attached to the specific algorithmical
implementation. Rather, it deals with the intrinsic nature of
sparse recovery in function spaces.
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