Building SSA Form

Slides mostly based on Keith Cooper's set of slides (COMP 512 class at Rice University, Fall 2002). Used with kind permission.

Why have SSA? SSA-form • Each name is defined exactly once, thus • Each use refers to exactly one name What's hard? • Straight-line code is trivial • Splits in the CFG are trivial • Joins in the CFG are hard Building SSA Form • Insert Φ-functions at birth points • Rename all values for uniqueness *2

SSA Construction Algorithm (High-level sketch) 1. Insert Φ-functions 2. Rename values ... that's all of course, there is some bookkeeping to be done ... * 7

Aside on Terminology: Dominators

Definitions

- x dominates y if and only if every path from the entry of the control-flow graph to the node for y includes x
- By definition, $x \underline{\text{dominates}} x$
- We associate a Dom set with each node
- $|\mathsf{Dom}(x)| \ge 1$

Immediate dominators

- For any node x, there must be a y in Dom(x) such that y is closest
- We call this y the immediate dominator of x
- As a matter of notation, we write this as ${\tt IDom}(x)$
- By convention, $IDom(x_0)$ is not defined for the entry node x_0

13

SSA Construction Algorithm (Low-level detail)

Computing Dominance

- * First step in $\Phi\text{-function}$ insertion computes dominance.
- A node n dominates m iff n is on every path from n_0 to m.
 - > Every node dominates itself
 - > n's immediate dominator is its closest dominator, IDOM(n)[†]

${\it C}{\it omputing}~{\it DOM}$

- These equations form a <u>rapid</u> data-flow framework.
- Iterative algorithm will solve them in d(G) + 3 passes
 - Each pass does ${\it N}$ unions & ${\it E}$ intersections,
- \rightarrow E is $O(N^2) \Rightarrow O(N^2)$ work

 † IDom(n) ≠ n, unless n is n_0 , by convention.

SSA Construction Algorithm (Pruned SSA)

What's this "pruned SSA" stuff?

- Minimal SSA still contains extraneous Φ -functions
- ${}^{\bullet}$ Inserts some $\Phi\text{-functions}$ where they are dead
- · Would like to avoid inserting them

Two ideas

- Semi-pruned SSA: discard names used in only one block
 - $\,>\,$ Significant reduction in total number of $\Phi\text{-functions}$
 - > Needs only local liveness information (cheap to compute)
- *Pruned SSA*: only insert Φ -functions where their value is live
- > Inserts even fewer Φ -functions, but costs more to do > Requires global live variable analysis (more e.

In practice, both are simple modifications to step 1.

KT2

SSA Construction Algorithm

We can improve the stack management

- Push at most one name per stack per block (save push & pop)
- Thread names together by block
- To pop names for block b, use b's thread

This is another good use for a scoped hash table

- Significant reductions in pops and pushes
- · Makes a minor difference in SSA construction time
- · Scoped table is a clean, clear way to handle the problem

38

SSA Deconstruction

At some point, we need executable code

- * Real machines do not implement Φ functions
- · Need to fix up the flow of values

$X_{17} \leftarrow \Phi(X_{10}, X_{11})$ $\dots \leftarrow X_{17}$

Basic idea

- Insert copies Φ -function pred's
- Simple algorithm
- > Works in most cases
- · Adds lots of copies
 - > Most of them coalesce away

KT2

* 39

37