Building SSA Form

Slides mostly based on Keith Cooper's set of slides
(COMP 512 class at Rice University, Fall 2002).
Used with kind permission.

Why have SSA?

SSA-form

* Each name is defined exactly once, thus

* Each use refers to exactly one name

What's hard? x
* Straight-line code is trivial
* Splits in the CFG are trivial
* Joins in the CFG are hard

Building SSA Form
* Insert d-functions at birth points ?

zZex*q

* Rename all values for uniqueness S W= x

Birth Points (a notion due to Tarjan)

Consider the flow of values in this example

X « 17 - 4

The value x appears everywhere
It takes on several values.
re Here, x can be 13, y-z, or 17-4
T* Here, it can also be a+b
If each value has its own name ...

* Need a way o merge these
distinct values

* Values are "born” at merge points

Birth Points (cont)

Consider the flow of values in this example

X « 17 - 4

New value for x here
X< a+hb 17-4ory-z

X <y -

X« 13 New value for x here
= |'s or (17 -4ory-2)

Sew-x New value for x here
a+b or (13 or (17-4 or y-z))

Birth Points (cont)

Consider the flow of values in this example

¢ All birth points are join points
* Not all join points are birth points
* Birth points are value-specific ...

These are all birth points for values

KT2 5

Static Single Assignment Form

SSA-form

* Each name is defined exactly once

A ®-function is a special
kind of a move instruction
that selects one of its
parameters.

* Each use refers to exactly one name

What's hard
Straight-line code is trivial
Splits in the CFG are trivial
Joins in the CFG are hard

The choice of parameter is
governed by the CFG edge
along which control
reached the current block.
Ve Vo e

N

Ys < OG1.Y2)
Building SSA Form

Insert ®-functions at birth points However, real machines do
not implement a ®-function

Rename all values for uniqueness in hardware.




SSA Construction Algorithm (High-level sketch)

1. Insert ®-functions

2. Rename values

.. thatsall ...

.. of course, there is some bookkeeping to be dore ...

SSA Construction Algorithm (Less high-level)

1. Insert ®-functions at every join for every name
2. Solve reaching definitions

3. Rename each use to the def that reaches it (will be unigue)

Domain is |DEFINITIONS|, same

Reaching Defin“.ions as number ofopere?ﬁo{s

The equations

REACHES(n1,) = @
REACHES(11) = U, pespn) DEFOUT(p ) U (REACHES(p ) N SURVIVED(/y

* REACHES(#) is the set of definitions that reach block 7 » p
* DEFOUT(n) is the set of definitions in /7 that reach the end of V

*  SURVIVED(#) is the set of defs not obscured by a new def in n
Computing REACHES(#)
* Use any data-flow method (i.e., the iterative method)

*  This particular problem has a very-fast solution (Zadeck)

F.K. Zadeck, “Incremental data-flow analysis in a structured
program editor,” Proceedings of the SIGPLAN 84 Conf. on .
KT2 Compiler Construction, June, 1984, pages 132-143. 9

SSA Construction Algorithm (Less high-level)

1. Insert ®-functions at every join for every name
2. Solve reaching definitions
3. Rename each use to the def that reaches it (will be unigue)

¥ Builds maximal SSA

What's wrong with this approach

*  Too many ®-functions (precision)
* Too many ®-functions (space)
* Too many ®-functions (time)

* Need to relate edges to ®-functions parameters (bookkeeping)

To do better, we need a more complex approach

SSA Construction Algorithm (Less high-level)

1. Insert ®-functions

a.) calculate dominance frontiers

Moderately complex
b.) find global names

for each name, build a list of blocks that define it

c.) insert ®-functions Compute list of blocks where each name

is assigned. Use this list as the worklist.
v global name 7

V block b in which nis defined
V¥ block din &s dominance frontier
Creates the iterated insert a ®-function for nin d
dominance frontier { add d'to #s list of defining blocks

Use a checklist to avoid putting blocks on the worklist twice;
keep another checklist to avoid inserting the same ®-function twice.

KT2 *11

SSA Construction Algorithm (Less high-level)

2. Rename variables in a pre-order walk over dominator tree
(use an array of stacks, one stack per global name)

Staring with the rogf block, b ‘ 1 counter per name for subscripts ‘

a.) generate unique names for each ®-function
and push them on the appropriate stacks
b.) rewrite each operation in the block
i. Rewrite uses of global names with the current version
(from the stack)
ii. Rewrite definition by inventing & pushing new name

c.) fill in ®-function parameters of successor blocks

d.) recurse on bs chilyren in the dominator tree /| Reset the state

e.) <on exit from block ¥> pop names generated in 6 from stacks

‘ Need the end-of-block name for this path ‘

KT2 *12




Aside on Terminology: Dominators

Definitions

x dominates y if and only if every path from the entry of the
control-flow graph to the node for y includes x

* By definition, x dominates x
*  We associate a Dom set with each node
* |Dom(x)| 21

Immediate dominators

* For any node x, there must be a y in Dom(x) such that y is closest
tox

* We call this y the immediate dominator of x
* Asamatter of notation, we write this as IDom(x)

By convention, IDom(xo) is not defined for the entry node x

Dominators (cont)

Dominators have many uses in program analysis & transformation

*  Finding loops

*  Building SSA form
*  Making code motion decisions

Dominator sets

Dominator tree
A

I
B [+ G
AT

F

KT2 13 KT2 * 14
SSA Construction Algorithm (Low-level detail) Example
Computing Dominance
* First step in ®-function insertion computes dominance. B, Progress of iterative solution for Dow
. e ' - D
* A node ndominates m iff nis on every path from n,to m. B, ;t?;" 1 3 DM(",,) 6 7
> Every node dominates itself / \ 2 PR K LR [ LR LR X IR
> n's immediate dominator is its closest dominator, IDom(n)t B, B, 2 01 [0,1,2]0,1,30,1,3.4[0,1,3.5[0.1,3,6[ 0,1,7
Dom(n,) = { np} B/ \B Results of iterative solution for Dom
/ o 2 s
Dom(n) ={n}u (n Dom [ [ol 12131 a4l s ] e 7]
(=L} Opprecen 2 \B/ }DOMI 0 Iro1 Io12Io1310134lo135lo136|o17|
) 6 IDom o 1 1
Computing DOM /
* These equations form a rapid data-flow framework. T’ -
* TIferative algorithm will solve them in d(G) + 3 passes Flow Graph
> Each pass does Nunions & £ intersections,
> Eis O(N?) = O(N?)work
KT2 leOM(ﬂ) # n, unless nis ny, by 15 KT2 *16
convention.
Example Example
Progress of iterative solution for Dom
9 B, Dominance Frontiers & ®-Function Insertion
ter- D
,,ﬁe;,, 1 OM(H‘.) 6 7 X D(...) * A definition at nforces a ®-function at miff
0 N N N N N N / \ n ¢ Dom(m) but n < Dom(p) for some p < preds(m)
1 01 [01,2]01.3[0,1,3.[0,1,35[0,1,36[ 0.1.7
2 0,1 [0,1,2]0,1,3]0,1,3,4[0,1,3,5[0,1,3,6] 0,1,7 B, B, * DF(n) is fringe just beyond region ndominates
o ) / \ [ ToTaT2] 5 7]
Results of iterative solution for Dom X B IDDM{ [ I 01 {012101 3Io1ulo135lo136lo1 7I
s DF | - - 7 7 6 6 7 1
[ Jolil2lslalslel7] N/
[pow| o [0 [01.2[04.3[0.1.340,135[01.36[01.7] e ()
1Dow ol T+T sl sl sl , / * DF(4) is {6}, so « in 4 forces a d-function in 6
X O(...) * «in 6 forces a d-function in DF(6) = {7}
v
- - ¢ «in7forces a ®-function in DF(7) = {1}
Dominance There are asymptotically faster algorithms. Dominance . L
Tree With the right data structures, the iterative Frontiers * «in1forcesad-functioninDF(1)=@  (hal)
algorithm can be made faster.
See Cooper, Harvey, and Kennedy. For each assignment, we insert the ®-functions
KT2 17 KT2 * 18




Example

Computing Dominance Frontiers
Bo * Only join points are in DF(n) for some n
* Leads to a simple, intuitive algorithm for computing
dominance frontiers
For each join point x
For each CFG predecessor of x
Run up to IDOM(x) in the dominator tree, adding
xto DF(n) for each n between x and IDOM(x)

(i.e., |preds(x) > 1)

o[ 1 T 23] al 5T e 7]
[pom| o | 0,1 [01.2]0,1,3]01,34]0.1,35[0,1.3.6[ 01,7
[oF - T+ 776 6 7 1]

* For some applications, we need post-dominance,

Dominénce the post-dominator tree, and reverse dominance
Frontiers frontiers, RDF(n)

> Just dominance on the reverse CFG
> Reverse the edges & add unique exit node

KT2 * We will use these in dead code elimination using* 19
SSA

SSA Construction Algorithm (Reminder)

1. Insert ®-functions at some join points

a.) calculate dominance frontiers

b.) find global names Needs a little more detail

for each name, build a list of blocks that define it

c.) insert ®-functions

v global name 7
V block 6 in which nis defined
V¥ block d'in b's dominance frontier
insert a ®-function for nin d
add d'to s list of defining blocks

SSA Construction Algorithm

Finding global hames
. Otherwise, we do not
* Different between two forms of SSA / need a d-function

*  Minimal uses all names
*  Semi-pruned SSA uses names that are /ive on entry to some block
> Shrinks name space & number of d-functions
> Pays for itself in compile-time speed
* For each “global hame", need a list of blocks where it is defined
> Drives ®-function insertion
> bdefines x implies a ®-function for xin every c € DF(b)

Pruned SSA adds a test to see if xis live at insertion point

With all the ®-functions

* Lots of new ops

* Renaming is next

d « a(d,d)
c « @(c,c)
b« ==

ac o(a,a)
b « ®(b,b)
¢« o(c,c)
d e od,d)
y « ath
Assume a, b, z « c+d
¢, & d defined i vl

before B, i > 100}

SSA Construction Algorithm (Less high-level)

2. Rename variables in a pre-order walk over dominator tree
(use an array of stacks, one stack per global name)
Staring with the rg6t block, b ‘ 1 counter per name for subscripts ‘
a.) generate unique names for each ®-function
and push them on the appropriate stacks

b.) rewrite each operation in the block
i. Rewrite uses of global names with the current version
(from the stack)
ii. Rewrite definition by inventing & pushing new name

c.) fill in ®-function parameters of successor blocks
d.) recurse on &s children in the dominator tree /| Reset the state

e.) <on exit from block &> pop names generated in b from stacks

‘ Need the end-of-block name for this path ‘

23

SSA Construction Algorithm (Less high-level)

Adding all the details ...

Rename(b)

- for each ®-function in b, x « @(...)
for each global name rename x as NewName(x)

i

counteri] 0 for each operation “x «-y op z”inb

rewrite y as top(stack[y])

stack[i] < @
EH'R%(W rewrite z as top(stack[z])
o rewrite x as NewName(x)
NewName(n) for each successor of b in the CFG
i < counter[n] rewrite appropriate ® parameters

counter[n] < counter[n] + 1
push n; onto stack[n]
returnn;

for each successor s of b in dom. tree
Rename(s)

for each operation “x <~y op z”inb
pop(stack(x])




By

a < o(a,a)
b « o(b,b)
¢« a(c.c)
d— o(d.d)
i codi.i

e ew

Example

Before processing B,

Assume a, b,
c, & d defined
before B,

c e ]

a« d(a,a)

¢ < ogd,dy
c « a(c.c)
b

has not been
defined

a e oag.a)
b « ®(by.b)
¢« B(c.C)
d « (dy,d)

Example

End of B,

C e eee

Counters
Stacks

£ e
By

a, « ®(a,a)
b, « ®(by.b)

Example

a, « ®(ag,a)
b, « ®(by,b)
¢« B(co,C)
d, « ©(dy, d)

— >0 >
-
B,

Example

End of B, e 2o End of B,
C o -e=
d « o(d,d)
¢ « o(c,c)
By b« eee a b c d i a b c i
_ Counters | 3|2 (3|22 Counters |3 (3 (4|3 |2
ac :l")((:.i)) Stacks |4 b, | c,|d,] o Stacks |4 | b, |c,|d,
c « o(c,c) a, | b |c |d|i a, | b, |c, |d
d « o(d,d)
y « ath a, c, a,|b,|c,|d
z « cd S —
i el Cs
i> 100
*
B[ g e e i e
Lo % Example Lo 22— Example
B, s] p w((:ﬂ'?) ————— B[ a m((:”'i)) —————
« (b, @(by.
c1 e @(coc) c,  (co.c)
d, « ®(dg.d) d, < ©(dy.d)
iy« 0Cio. i) . iy« 0o, i)
lag ¢ e Before starting B, Yy« —ae End of B,
G eoe C  wee
B“ d e =en P
4 < ogd.dy d « ogd,d)
¢ « (c.c) ¢ « olc.c) .
Bg b« === a b c d i Bs b« === a b c d i
Counters (3|3 |4 |32 Counters (4 |3 |4 |42
ba: ?':’((ah:ab)) Stacks |5 (b, [ c, | d, | i :i x((zi.ah)) Stacks |4 [b, [ c,|d,| i
z::;((g,.g)) a, |b |c |d|i zi;’((g; g)) a b jc|d|i
Y« e a, c, y « ath a, C, | ds
z « crd z « cd
i vl i itl ay
i > 100




S
-

Example

e T
-

Example

e *lecien
« o(by, « (b
c1 e @(coc) c,  (co.c)
4« <:>§c_10,c_1; 4 « (ﬁgd d)
iy« oCio.i iy e oG
lag ¢ e Endof B, Yy« —ae End of B,
G eoe C  wee
By
8,
d, === C o -e- C, ===
4 < o(d,.dy
¢ « 0(c,.0)
Bs  eee a b c d i a b c d i
Counters (4|3 |4 |52 Counters (4 |3 (5|52
a« ®(a,,a) Stacks i Stacks
RS 8| b | S || o 2 | by | S| do | o
ze m((;:,.g)) a, |b |c |d|i a, | b, |c |d|i
« D
y < atb a, c, | d a, c, | ds
z « crd | |
oo a, d, a c
i>100,
* *
—° >0 2 >
ol g R Example =l g 2 Example
B[ a, « d(ag.a) B[ a, « o(ap.a)
by « m((bn.h)) b, « m((ho.b))
¢, « @(cy,C. €; « @(cy,C;
d; (4, d) 4, 00, )
(i, @(ig,
hotde® End of B, b P Before B,
B[ a o een [ Epa—
d,  eoe 4y  eoe
4 o === | B“ Cy o =n 4 o === | B“ PP
ds « <\>(:1A-d;) ds « @(d;,d3)
5 « B(c;,C0) cg « @(c;,C0)
5nje-z- a b c d i ibae-z-A a b c d i
_ Counters |4 (46|62 Counters |4 (46|62
2c n;((:z.:j)) Stacks |5 |b, | c, | d 2 ‘;((:z-?)) Stacks |4 | b, |c,|d,
« (b, b, - .
e ‘:;((§3~§5)) a, | b |ec|d e ("(5:'53) a | b |c|d
« a(d,,
v S a | b, |c|d 5 0 a| |e
o (2] [%]
ici af [o|d ey
i> 100 i>100)
* *
Example Example
— PRPEPY —

3y « ©(3g.a,)
b, « ©(by.b,)
€y ¢ (). Cq)
d, « (dgadg)

2)

Endof B,

d,  =e=

ds « @(d,,dy)
¢y « D(c,.C.)
s e

By

a, « ®(ay,a;)

a b _c
Counters | 5|5 |7
Stacks |5 [, |c, | d,

b, « ®(bo.b,)
¢, « B(CouCq)
d, « ©(dy.dg)
iy« 0o iz)

After renaming
* Semi-pruned SSA form

* We’redone ...

B
a  ee
C o -ee
B[ a
ds
B —
) oen o < on

ds « ®(d,,d;)
€5 « ©(C2.C0)
s oo

Counters
Stacks

Semi-pruned = only names
live in 2 or more blocks are
“global names”.




SSA Construction Algorithm (Pruned SSA)

What's this "pruned SSA" stuff?

*  Minimal SSA still contains extraneous ®-functions

* Inserts some ®-functions where they are dead

*  Would like to avoid inserting them

Two ideas

*  Semi-pruned SSA: discard names used in only one block
> Significant reduction in total number of ®-functions
> Needs only local liveness information (cheap to compute)

*  Pruned 55A: only insert ®-functions where their value is live
> Inserts even fewer ®-functions, but costs more to do
> Requires global live variable analysis (more expensive)

In practice, both are simple modifications to step 1.

SSA Construction Algorithm

We can improve the stack management

* Push at most one name per stack per block (save push & pop)
* Thread names together by block

* To pop names for block b, use b's thread

This is another good use for a scoped hash table
* Significant reductions in pops and pushes
* Makes a minor difference in SSA construction time

* Scoped table is a clean, clear way to handle the problem

SSA Deconstruction

At some point, we need executable code

* Real machines do not implement ®
functions

* Need to fix up the flow of values

Basic idea

* Insert copies ®-function pred's
* Simple algorithm
> Works in most cases

* Adds lots of copies
> Most of them coalesce away

Bocme | [Rgeme ]




