

Terminology: Program Points

- One program point before each node
- One program point after each node
- *Join point* program point with multiple predecessors
- *Split point* program point with multiple successors

- What is the range of possible values of a variable at this program point?

Dataflow Analysis: Basic Idea

- Information about a program represented using values from an algebraic structure called *lattice*
- Analysis produces a lattice value for each program point
- Two flavors of analyses
 - Forward dataflow analyses
 - Backward dataflow analyses

Forward Dataflow Analysis

- Analysis propagates values forward through control flow graph with flow of control
 - Each node has a transfer function f
 Input value at program point before node
 Output new value at program point after node
 - Values flow from program points after predecessor nodes to program points before successor nodes
- At join points, values are combined using a merge function
- Canonical Example: Reaching Definitions

Backward Dataflow Analysis

- Analysis propagates values backward through control flow graph against flow of control
 - Each node has a transfer function f
 Input value at program point after node
 - Output new value at program point before node
 - Values flow from program points before successor nodes to program points after predecessor nodes
 - At split points, values are combined using a merge function
- Canonical Example: Live Variables

Partial Orders

- Set P
- Partial order \leq such that $\forall x, y, z \in P$
 - $-x \le x$ $-x \le y$ and $y \le x$ implies x = y
 - $-x \le y$ and $y \le z$ implies $x \le z$
- (reflexive) y (antisymmetric)
 - s $x \le z$ (transitive)

Upper Bounds

- $\bullet \ If \ S \subseteq P \ then$
 - $-x \in P$ is an *upper bound* of S if $\forall y \in S, y \le x$
 - $\, x \! \in \! P$ is the least upper bound of S if
 - x is an upper bound of S, and
 - $x \le y$ for all upper bounds y of S
 - v *join*, least upper bound (lub), supremum (sup)
 v S is the least upper bound of S
 - $x \lor y$ is the least upper bound of $\{x,y\}$

• If $S \subseteq P$ then - $x \in P$ is a *lower bound* of S if $\forall y \in S, x \le y$

Lower Bounds

- $-x \in P$ is the greatest lower bound of S if
 - x is a lower bound of S, and
 - $y \le x$ for all lower bounds y of S
- ^ meet, greatest lower bound (glb), infimum (inf)
 ^ S is the greatest lower bound of S
 - $x \land y$ is the greatest lower bound of $\{x,y\}$

Coverings

- Notation: x < y if $x \le y$ and $x \ne y$
- x is *covered by* y (y *covers* x) if - x < y, and

$$-x \le z < y$$
 implies $x = z$

• Conceptually, y covers x if there are no elements between x and y

- If $x \land y$ and $x \lor y$ exist (i.e., are in P) for all $x,y \in P$, then P is a *lattice*.
- If \land S and \lor S exist for all S \subseteq P, then P is a *complete lattice*.
- Theorem: All finite lattices are complete
- Example of a lattice that is not complete - Integers Z
 - For any x, $y \in \mathbb{Z}$, $x \lor y = \max(x,y)$, $x \land y = \min(x,y)$
 - But \lor Z and \land Z do not exist
 - $Z \cup \{+\infty, -\infty\}$ is a complete lattice

- Proof of $x \lor y = y$ implies $x \le y$ - y is an upper bound of $\{x, y\}$ implies $x \le y$
- Proof of x ∧ y = x implies x ≤ y
 x is a lower bound of {x,y} implies x ≤ y

Lattices as Algebraic Structures

- Have defined \lor and \land in terms of \leq
- Will now define \leq in terms of \lor and \land
 - Start with \lor and \land as arbitrary algebraic operations that satisfy associative, commutative, idempotence, and absorption laws
 - Will define \leq using \vee and \wedge
 - Will show that \leq is a partial order

Proof of $x \land y = \inf \{x, y\}$

- Consider any lower bound l for x and y.
- Given $x \land l = l$ and $y \land l = l$, must show $l \le x \land y$, i.e., $(x \land y) \land l = l$ $l = x \land l$ (by assumption)
 - $= x \land (y \land l)$ (by assumption) $= (x \land y) \land l$ (by associativity)

y associativity)

- A set S is a *chain* if $\forall x, y \in S$. $y \le x$ or $x \le y$
- P has no infinite chains if every chain in P is finite
- P satisfies the *ascending chain condition* if for all sequences $x_1 \le x_2 \le ...$ there exists n such that $x_n = x_{n+1} = ...$

Distributivity Implies Monotonicity Proof:

- Assume $f(x \lor y) = f(x) \lor f(y)$
- Must show: $x \lor y = y$ implies $f(x) \lor f(y) = f(y)$ $f(y) = f(x \lor y)$ (by assumption)
 - $= f(x) \lor f(y)$ (by distributivity)

Forward Dataflow Analysis • Simulates execution of program forward with flow of control • For each node n, have $-in_n - value$ at program point before n $-out_n - value$ at program point after n $-f_n - transfer function for n (given in_n, computes out_n)$ • Require that solutions satisfy $-\forall n, out_n = f_n(in_n)$ $-\forall n \neq n_0, in_n = \lor \{ out_m \mid m in pred(n) \}$ $-in_{n0} = \bot$

Dataflow Equations

- Result is a set of dataflow equations $\begin{array}{l} \operatorname{out}_n := f_n(in_n) \\ \quad in_n := \lor \{ \operatorname{out}_m \mid m \text{ in pred}(n) \} \end{array}$
- Conceptually separates analysis problem from program

Worklist Algorithm for Solving Forward Dataflow Equations

for each n do out_n := $f_n(\perp)$ worklist := N while worklist $\neq \emptyset$ do remove a node n from worklist $in_n := \lor \{ \text{ out}_m \mid m \text{ in pred}(n) \}$ $out_n := f_n(in_n)$ if out_n changed then worklist := worklist \cup succ(n)

Correctness Argument

Why result satisfies dataflow equations?

- Whenever we process a node n, set $out_n := f_n(in_n)$ Algorithm ensures that $out_n = f_n(in_n)$
- Whenever out_m changes, put succ(m) on worklist. Consider any node n ∈ succ(m). It will eventually come off the worklist and the algorithm will set

 $\begin{array}{l} in_n := \lor \ \{ \ out_m \mid m \ in \ pred(n) \ \} \\ to \ ensure \ that \ in_n = \lor \ \{ \ out_m \mid m \ in \ pred(n) \ \} \end{array}$

Termination Argument Why does the algorithm terminate?

- Sequence of values taken on by in_n or out_n is a chain. If values stop increasing, the worklist empties and the algorithm terminates.
- If the lattice has the ascending chain property, the algorithm terminates
 - Algorithm terminates for finite lattices
 - For lattices without the ascending chain property, we must use a *widening* operator

Widening Operators

- Detect lattice values that may be part of an infinitely ascending chain
- Artificially raise value to least upper bound of the chain
- Example:
 - Lattice is set of all subsets of integers
 - Widening operator might raise all sets of size n or greater to TOP
 - Could be used to collect possible values taken on by a variable during execution of the program

Reaching Definitions

- Concept of *definition* and *use*
 - -z = x+y
 - is a definition of z
- is a use of x and y
- A definition reaches a use if
- the value written by definition
- may be read by the use.

- $-x \subseteq y$ and $y \subseteq z$ implies $x \subseteq z$ (utalishivity) $-x \subseteq y$ and $y \subseteq x$ implies y = x (antisymmetry)
- $-x \subseteq y$ and $y \subseteq x$ implies y = x (antisymmetry) $-x \subseteq x$ (reflexivity)
- F satisfies transfer function conditions
 - $-\lambda x.\emptyset \cup (x-\emptyset) = \lambda x.x \in F$ (identity)

 $= f(x \cup y)$

- $\begin{aligned} &- \text{ Will show } f(x \cup y) = f(x) \cup f(y) \text{ (distributivity)} \\ &f(x) \cup f(y) = (a \cup (x-b)) \cup (a \cup (y-b)) \\ &= a \cup (x-b) \cup (y-b) \end{aligned}$
 - $= a \cup ((x \cup y) b)$

$\begin{array}{l} Framework \ Satisfy \ Properties?\\ What about composition?\\ -\ Given \ f_1(x) = a_1 \cup (x{\text -}b_1) \ and \ f_2(x) = a_2 \cup (x{\text -}b_2)\\ -\ Must \ show \ f_1(f_2(x)) \ can \ be \ expressed \ as \ a \cup (x \ - b)\\ \ f_1(f_2(x)) = a_1 \cup ((a_2 \cup (x{\text -}b_2)) - b_1)\\ = a_1 \cup ((a_2 - b_1) \cup ((x{\text -}b_2) - b_1))\\ = (a_1 \cup (a_2 - b_1)) \cup ((x{\text -}b_2) - b_1))\\ = (a_1 \cup (a_2 - b_1)) \cup ((x{\text -}b_2 - b_1))\\ = (a_1 \cup (a_2 - b_1)) \cup (x{\text -}(b_2 \cup b_1))\\ -\ Let \ a = (a_1 \cup (a_2 - b_1)) \ ad \ b = b_2 \cup b_1\\ -\ Then \ f_1(f_2(x)) = a \cup (x - b) \end{array}$

Does Reaching Definitions

General Result

All GEN/KILL transfer function frameworks satisfy the properties:

- Identity
- Distributivity
- Compositionality

Available Expressions Framework

- P = powerset of set of all expressions in program (all subsets of set of expressions)
- $\lor = \cap$ (order is \supseteq)
- $\perp = P$ (but $in_{n0} = \emptyset$)
- F = all functions f of the form f(x) = a ∪ (x-b)
 b is set of expressions that node kills
 - a is set of expressions that node generates
- Another GEN/KILL analysis

Concept of Conservatism

- Reaching definitions use \cup as join
- Optimizations must take into account all definitions that reach along ANY path
- Available expressions use \cap as join
 - Optimization requires expression to reach along ALL paths
- Optimizations must <u>conservatively</u> take all possible executions into account.
- Structure of analysis varies according to the way the results of the analysis are to be used.

Backward Dataflow Analysis

- Simulates execution of program backward against the flow of control
- For each node n, we have
 - $-in_n$ value at program point before n
 - out_n value at program point after n
- $-f_n$ transfer function for n (given out_n, computes in_n)
- Require that solutions satisfy
 - $\forall n. in_n = f_n(out_n)$
 - $$\begin{split} & \forall n \not\in N_{final}. \ out_n = \lor \{ \ in_m \mid m \ in \ succ(n) \ \} \\ & \forall n \in N_{final} = out_n = \bot \end{split}$$

Worklist Algorithm for Solving Backward Dataflow Equations

for each n do $in_n := f_n(\bot)$ worklist := N while worklist $\neq \emptyset$ do remove a node n from worklist out_n := $\lor \{ in_m | m \text{ in succ}(n) \}$ $in_n := f_n(out_n)$ if in_n changed then worklist := worklist \cup pred(n) Live Variables Analysis Framework

- P = powerset of set of all variables in program (all subsets of set of variables in program)
- $\lor = \cup$ (order is \subseteq)
- $\perp = \emptyset$
- F = all functions f of the form $f(x) = a \cup (x-b)$
 - b is set of variables that the node kills
 a is set of variables that the node reads

Meaning of Dataflow Results

- Connection between executions of program and dataflow analysis results
- Each execution generates a trajectory of states: $\label{eq:s_0} s_0; s_1; \ldots; s_k, where \; each \; s_i {\in} ST$
- Map current state s_k to
 - Program point n where execution locatedValue x in dataflow lattice
- Require $x \le in_n$

Abstraction Function for Forward Dataflow Analysis

- Meaning of analysis results is given by an abstraction function AF:ST→P
- Require that for all states s $AF(s) \le in_n$ where n is program point where the execution is located in state s, and in_n is the abstract value before that point.

	Of	berat	ion (∂ on	Latti	ice	
ſ	\otimes	BOT	-	zero	+	TOP	
	BOT	BOT	-	zero	+	TOP	
	-	-	+	zero	-	TOP	
	zero	zero	zero	zero	zero	zero	
	+	+	-	zero	+	TOP	
	TOP	TOP	ТОР	zero	ТОР	TOP	
-							
ie Sagana			52				Enstee 20

Abstraction Function

• AF(s)[v] = sign of v

- $AF([a \rightarrow 5, b \rightarrow 0, c \rightarrow -2]) = [a \rightarrow +, b \rightarrow zero, c \rightarrow -]$
- Establishes meaning of the analysis results – If analysis says a variable v has a given sign
 - $\mbox{ then } v$ always has that sign in actual execution.
- Two sources of imprecision
 Abstraction Imprecision concrete values (integers)
 abstracted as lattice values (integers)
 - abstracted as lattice values (-,zero, and +) - Control Flow Imprecision – one lattice value for all different possible flow of control possibilities
 - restriction of control possionities

General Sources of Imprecision

- Abstraction Imprecision
 - Lattice values less precise than execution valuesAbstraction function throws away information
- Control Flow Imprecision
 - Analysis result has a single lattice value to summarize results of multiple concrete executions
 - Join operation v moves up in lattice to combine values from different execution paths
 - Typically if $x \le y$, then x is more precise than y

Spring 201

Why Have Imprecision?

ANSWER: To make analysis tractable

- Conceptually infinite sets of values in execution – Typically abstracted by finite set of lattice values
- Execution may visit infinite set of states – Abstracted by computing joins of different paths

t p () + r

Soundness Proof of Analysis Algorithm

Property to prove:

For all paths p to n, $f_p(\perp) \le in_n$

- Proof is by induction on the length of p
 - Uses monotonicity of transfer functionsUses following lemma

Lemma:

The worklist algorithm produces a solution such that $\label{eq:solution} if \ n \in pred(m) \ then \ out_n \leq in_m$

Proof

- Base case: p is of length 0
 - Then $p = n_0$ and $f_p(\perp) = \perp = in_{n0}$
- Induction step:
 - Assume theorem for all paths of length k
 - Show for an arbitrary path p of length k+1.

Induction Step Proof

- $p = n_0, ..., n_k, n$
- Must show $(f_k(f_{k-1}(...f_{n1}(f_{n0}(\bot))...)) \le in_n$
- By induction, $(f_{k-1}(\dots f_{n1}(f_{n0}(\perp)) \dots)) \leq in_{nk}$
 - Apply f_k to both sides.
 - By monotonicity, we get: $(f(f_{1}(f_{2}(f_{2}(f_{2}(f_{2}))))))$
- $(f_k(f_{k-l}(\ldots f_{n1}(f_{n0}(\bot))\ \ldots))\leq f_k(in_{nk})=out_{nk}$ By lemma, $out_{nk}\leq in_n$
- By transitivity, $(f_k(f_{k-1}(\dots f_{n1}(f_{n0}(\bot))))) \le in_n$

Distributivity

- · Distributivity preserves precision
- If framework is distributive, then the worklist algorithm produces the meet over paths solution For all n:
 - \vee { f_p (\perp) | p is a path to n } = in_n

- Formal dataflow analysis framework
 - Lattices, partial orders
 - Transfer functions, joins and splits
 - Dataflow equations and fixed point solutions
- Connection with program
 - Abstraction function AF: $S \rightarrow P$
 - For any state s and program point n, $AF(s) \leq in_n$

Spring

- Meet over paths solutions, distributivity $% \left({{{\left({{{{{\bf{n}}}} \right)}_{{{\bf{n}}}}}}} \right)$