il

Foundations of
Dataflow Analysis

Terminology: Program Representation

Control Flow Graph:
— Nodes N - statements of program
— Edges E - flow of control
« pred(n) = set of all immediate predecessors of n
« succ(n) = set of all immediate successors of n
— Start node n,
— Set of final nodes Ny,

Kostis Sagonas 2 Spring 2012

Terminology: Control-Flow Graph

Control-flow graph (CFG)
* Nodes for basic blocks
+ Edges for branches

+ Basis for much of program
is & transformation

This CFG, G = (N,E)
+ N={AB,C,D,EF,G}

* E={(A,B),(A,C),(B,G),(C,D),
(C,E),(D,F),(E,F),(F.E)}

*IN[=7,|E|=8

Kostis Sagonas 3 Spring 2012

Terminology: Extended Basic Block

EBB: Conceptually itis a
program sequence with
only one entry point but
possibly several exit points.

Extended Basic Block (EBB):
A sequence of basic blocks
B,,B,, ...,B,whereall B, (i>1)
have a unique predecessor
from the setB,,...,B,,.

Path of an EBB: A sequence of basic blocks
B,, B,, ..., B, where B, is the predecessor of B, ..

Kostis Sagonas 4 Spring 2012

Terminology: Program Points

* One program point before each node
 One program point after each node

« Join point — program point with multiple
predecessors

Split point — program point with multiple
successors

Kostis Sagonas 5 Spring 2012

Dataflow Analysis

Compile-Time Reasoning About

Run-Time Values of Variables or Expressions

at Different Program Points

— Which assignment statements produced the value of
the variables at this point?

— Which variables contain values that are no longer
used after this program point?

— What is the range of possible values of a variable at
this program point?

Kostis Sagonas 6 Spring 2012

Dataflow Analysis: Basic Idea

« Information about a program represented using
values from an algebraic structure called lattice
* Analysis produces a lattice value for each
program point
» Two flavors of analyses
— Forward dataflow analyses
— Backward dataflow analyses

Kostis Sagonas 7 Spring 2012

Backward Dataflow Analysis

 Analysis propagates values backward through
control flow graph against flow of control
— Each node has a transfer function f
« Input — value at program point after node
« Output — new value at program point before node
— Values flow from program points before successor
nodes to program points after predecessor nodes
— At split points, values are combined using a merge

function
— Canonical Example: Live Variables
Kostis Sagonas 9 SEring 2012
Upper Bounds
e If Sc P then

— xeP is an upper bound of S if VyeS, y <x
— XeP is the least upper bound of S if
« X is an upper bound of S, and
« x <y for all upper bounds y of S
— v - join, least upper bound (lub), supremum (sup)
« v Sis the least upper bound of S
* X vy is the least upper bound of {x,y}

Kostis Sagnnas 11

Spring 2012

Forward Dataflow Analysis

* Analysis propagates values forward through
control flow graph with flow of control
— Each node has a transfer function f
« Input — value at program point before node
« Output — new value at program point after node
— Values flow from program points after predecessor
nodes to program points before successor nodes
— At join points, values are combined using a merge
function

« Canonical Example: Reaching Definitions

Kostis Sagonas 8

Spring 2012

Partial Orders

e SetP

« Partial order < such that vx,y,zeP
-X<X (reflexive)
(antisymmetric)

(transitive)

—-x<yandy<ximpliesx=y
—-x<yandy<zimpliesx<z

Kostis Sagonas 10 Spring 2012

Lower Bounds

e If ScPthen

— xeP is a lower bound of S if VyeS, x<y
— XeP is the greatest lower bound of S if
« x is a lower bound of S, and
« y < x for all lower bounds y of S
— A - meet, greatest lower bound (glb), infimum (inf)
* A Sis the greatest lower bound of S
¢ X Ay is the greatest lower bound of {x,y}

Kostis Sagnnas 12 SErlng 2012

Coverings

* Notation: x<y if x <y and xz2y

« xis covered by y (y covers x) if
- X<y, and
-x<z<yimpliesx=z

« Conceptually, y covers x if there are no
elements between x and y

Kostis Sagonas 13 Spring 2012

Lattices

e IfxAyandx vy exist (i.e., are in P) for all x,yeP,
then P is a lattice.
e If ASand vSexist forall Sc P,
then P is a complete lattice.
* Theorem: All finite lattices are complete
» Example of a lattice that is not complete
— Integers Z
— Forany X, yeZ, x vy =max(x,y), X Ay = min(x,y)
— But v Z and A Z do not exist
— Z U {+o0,—0 } is a complete lattice

Kostis Sagonas 15 Spring 2012

Connection between <, A, and v

The following 3 properties are equivalent:
- X<y
- Xvy=y
- XAYy=X

* Will prove:
—x<yimpliessxvy=yandx Ay=Xx
- xvy=yimpliesx <y
- XAy=ximpliesx <y

* By Transitivity,
- xvy=yimpliesx Ay=Xx
- XxAy=ximpliesxvy=y

Kostis Sagnnas 17 SErlng 2012

Example

« P ={000, 001, 010, 011, 100, 101, 110, 111}
(standard boolean lattice, also called hypercube)
e x <y if (x bitwise_and y) = x

We can visualize a partial
111 . .
order with a Hasse Diagram

ou/ll\luo * Ify covers x
>0< * Line from y to x

00 00 « y is above x in diagram

&

000

Kostis Sagonas 14 Spring 2012

Top and Bottom

« Greatest element of P (if it exists) is top (T)
* Least element of P (if it exists) is bottom (L)

Kostis Sagonas 16 Spring 2012

Connecting Lemma Proofs (1)

e Proof of x <y impliesxvy=y

—x <y implies y is an upper bound of {x,y}.

— Any upper bound z of {x,y} must satisfy y < z.

— Soy is least upper bound of {x,y}and x vy =y
 Proof of x <y implies x Ay =X

—x <y implies x is a lower bound of {x,y}.

— Any lower bound z of {x,y} must satisfy z < x.

— So x is greatest lower bound of {x,y} and x Ay = X

Kostis Sagnnas 18 SErlng 2012

Connecting Lemma Proofs (2)

e Proof of x vy =yimpliesx <y

-y is an upper bound of {x,y} implies x <y
e Proof of x Ay =ximpliesx <y

— x is a lower bound of {x,y} implies x <y

Kostis Sagonas 19 Spring 2012

Lattices as Algebraic Structures

» Have defined v and A in terms of <
* Will now define < in terms of v and A

— Start with v and A as arbitrary algebraic operations
that satisfy associative, commutative, idempotence,
and absorption laws

— Will define < using v and A
— Will show that < is a partial order

Algebraic Properties of Lattices

Assume arbitrary operations v and A such that
—(xvy)vz=xv(yvz) (associativity of v)
—(xAy)Az=xA(ynrz) (associativity of A)

-XVYy=yVvX (commutativity of v)
—XAY=YAX (commutativity of A)
- XVX=X (idempotence of v)
—XAX=X (idempotence of A)

-XV(XAYy)=Xx (absorption of v over A)

- XA(XVYy)=X (absorption of A over v)

Kostis Sagonas 20 Spring 2012

Kostis Sagonas 21 Spring 2012

Connection Between A and v

Theorem: x vy =yifandonly if x Ay =x
e Proof of x vy=yimpliesx=x Ay
X=XA(XVY) (by absorption)
=XAY (by assumption)
* Proof of x Ay =X impliesy =xvy
y=yv(yax) (byabsorption)
Zyv(XAY) (by commutativity)

Properties of <

e Definex<yifxvy=y
* Proof of transitive property. Must show that
xvy=yandyvz=zimpliesxvz=z
Xvz=xv (yvz) (by assumption)
= (x vy) vz (by associativity)
Zyvz (by assumption)
=z (by assumption)

ZyvX (by assumption)
=XVYy (by commutativity)
Kostis Sagonas 22 SEring 2012

Kostis Sagnnas 23 SErlng 2012

Properties of <

* Proof of antisymmetry property. Must show that
xvy=yandyv x=ximpliesx=y
Xx=yvx (byassumption)
=xvy (by commutativity)

-y (by assumption)
* Proof of reflexivity property. Must show that
XV X=X
XV X=X (by idempotence)
Kostis Sagnnas 24 Serlng 2012

Properties of <

« Induced operation < agrees with original
definitions of v and A, i.e.,

-xvy=sup{x vy}

-xAy=inf{x, y}
Kostis Sagonas 25 Sering 2012
Proof of x Ay = inf {Xx, y}
 Consider any lower bound | for x and y.
e Givenx Al=landy A | =1, must show
I<xAay ie,XAy)al=l
I=xnl (by assumption)
=xA(yal) (by assumption)
=(xAay)al (by associativity)
Kostis Sagonas 27 SEring 2012

Transfer Functions

« Assume a lattice of abstract values P

« Transfer function f; P—P for each node in
control flow graph

 f models effect of the node on the program
information

Kostis Sagnnas 29

Spring 2012

Proof of x vy =sup {x, y}

« Consider any upper bound u for x and y.

e Given x vu=uandy v u=u, must show
Xvy<uie,(Xvy)vu=u

u=xvu (by assumption)
=xXv(yvu) (by assumption)
=(xvy)vu (byassociativity)
Kostis Sagonas 26 Sering 2012
Chains

e AsetSisachainif vx,yeS.y<xorx<y

* P has no infinite chains if every chain in P is
finite

« P satisfies the ascending chain condition if

for all sequences X, < X, < ...there exists n
such that X, = X,,; = ...

Kostis Sagonas 28 Spring 2012

Properties of Transfer Functions

Each dataflow analysis problem has a set F of
transfer functions f: P—P
— ldentity function ieF
— F must be closed under composition:
Vvf,geF, the function h = Ax.f(g(x)) eF

— Each f eF must be monotone:

x <y implies f(x) < f(y)
— Sometimes all f eF are distributive:

f(x vy) =f(x) v f(y)
— Distributivity implies monotonicity

Kostis Sagnnas 30 SErlng 2012

Distributivity Implies Monotonicity

Proof:
» Assume f(x v y) = f(x) v f(y)
e Must show: x vy =y implies f(x) v f(y) = f(y)
fly)=f(xvy) (byassumption)
=f(x) v f(y) (by distributivity)

Kostis Sagonas 31 Spring 2012

Dataflow Equations

* Result is a set of dataflow equations
out, :=f,(in,)
in, :=v {out, | minpred(n) }
« Conceptually separates analysis problem from

Forward Dataflow Analysis

 Simulates execution of program forward with
flow of control
» For each node n, have
— in, — value at program point before n
- out, — value at program point after n
— f, — transfer function for n (given in,, computes out,)
 Require that solutions satisfy
- vn, out, = f,(in,)
- Vn=n,, in,=v {out, | min pred(n) }

—ing=1
Kostis Sagonas 32 Spring 2012

Worklist Algorithm for Solving
Forward Dataflow Equations

for each n do out, :=f (L)
worklist := N
while worklist = & do
remove a node n from worklist
in, :=v {out, | minpred(n) }
out, :=f.(in,)
if out, changed then
worklist := worklist w succ(n)

program
Kostis Sagonas 33 Spring 2012
Correctness Argument

Why result satisfies dataflow equations?

* Whenever we process a node n, set out, :=f.(in,)
Algorithm ensures that out, = f (in,)

» Whenever out,, changes, put succ(m) on worklist.
Consider any node n e succ(m).
It will eventually come off the worklist and the
algorithm will set
in, :=v {out, | minpred(n) }
to ensure that in, = v { out,, | m in pred(n) }

Kostis Sagonas 34 Spring 2012

Kostis Sagnnas 35 SErlng 2012

Termination Argument

Why does the algorithm terminate?

* Sequence of values taken on by in, or out, is a
chain. If values stop increasing, the worklist
empties and the algorithm terminates.

« If the lattice has the ascending chain property,
the algorithm terminates
— Algorithm terminates for finite lattices

— For lattices without the ascending chain property,
we must use a widening operator

Kostis Sagnnas 36 SErlng 2012

Widening Operators

* Detect lattice values that may be part of an
infinitely ascending chain

« Atrtificially raise value to least upper bound of
the chain

* Example:
— Lattice is set of all subsets of integers

— Widening operator might raise all sets of size n or
greater to TOP

— Could be used to collect possible values taken on by
a variable during execution of the program

Kostis Sagonas 37 Spring 2012

Reaching Definitions

!

Kostis Sagonas 39 Spring 2012

Does Reaching Definitions

Framework Satisfy Properties?

 c satisfies conditions for <
—Xxcyandyczimplies x c z (transitivity)
—xcyandyc ximplies y = x (antisymmetry)
- X < x (reflexivity)
* F satisfies transfer function conditions
- XD U (x- D) = Ax.xeF (identity)
— Will show f(x U y) = f(x) U f(y) (distributivity)
fx) Uf(y) = (@ (x-b)) U (au(y-h))
=auX-b)u(y-b)
zau((xuy)-b)
=f(xuy)
Kostis Sagnnas 41 Serlng 2012

Reaching Definitions

« Concept of definition and use
—zZ=Xx+y
— is a definition of z
—isauseof xandy

* A definition reaches a use if
— the value written by definition
— may be read by the use.

Kostis Sagonas 38 Spring 2012

Reaching Definitions Framework

» P =powerset of set of all definitions in program
(all subsets of set of definitions in program)
e v=u (orderisc)
e 1l=¢
* F = all functions f of the form f(x) = a U (x-b)
— b is set of definitions that node kills
— ais set of definitions that node generates
General pattern for many transfer functions
- f(x) = GEN U (x-KILL)

Kostis Sagonas 40 Spring 2012

Does Reaching Definitions
Framework Satisfy Properties?

What about composition?
— Given f;(X) = a; U (x-b,) and f,(x) = a, U (x-b,)
— Must show f,(f,(x)) can be expressed as a U (x - b)
fi(f2(x)) = 8y L (3, (x-by)) - by)
=a; U ((a2- by) U ((x-by) - by))
=(a; v (3 - by) W ((x-by) - by))
=(ay Y (- by)) U (x-(by U by))
—-Leta=(a, v (a,-by))andb=b, Ub,
— Then f,(f)(X)) =au (x—b)

Kostis Sagnnas 42 SErlng 2012

General Result

All GEN/KILL transfer function frameworks
satisfy the properties:
— ldentity
— Distributivity
— Compositionality

Kostis Sagonas 43 Spring 2012

Concept of Conservatism

 Reaching definitions use U as join

— Optimizations must take into account all definitions
that reach along ANY path

« Available expressions use M as join
— Optimization requires expression to reach along
ALL paths
 Optimizations must conservatively take all
possible executions into account.
« Structure of analysis varies according to the
way the results of the analysis are to be used.

Kostis Sagonas 45 Spring 2012

Worklist Algorithm for Solving
Backward Dataflow Equations

for each ndo in, := f (L)
worklist := N
while worklist = & do
remove a node n from worklist
out, :=v {in,, | minsucc(n) }
in, := f (out,)
if in, changed then
worklist := worklist U pred(n)

Kostis Sagnnas 47 SErlng 2012

Available Expressions Framework

« P = powerset of set of all expressions in
program (all subsets of set of expressions)

e v = (orderis D)

o L =P (butin, =)

« F =all functions f of the form f(x) =a U (x-b)
— b is set of expressions that node kills
— ais set of expressions that node generates

¢ Another GEN/KILL analysis

Kostis Sagonas 44 Spring 2012

Backward Dataflow Analysis

« Simulates execution of program backward
against the flow of control
* For each node n, we have
— in, — value at program point before n
— out, — value at program point after n
— f, — transfer function for n (given out,, computes in,)
 Require that solutions satisfy
- Vvn. in, = f (out,)
— VN & Ny oUt, = v {iing, | min succ(n) }
—Vn € Ngjp =0ut, =L

Kostis Sagonas 46 Spring 2012

Live Variables Analysis Framework

» P =powerset of set of all variables in program
(all subsets of set of variables in program)

e v=u (orderisc)

e 1l=g

« F =all functions f of the form f(x) =a u (x-b)
— b is set of variables that the node kills
— ais set of variables that the node reads

Kostis Sagnnas 48 SErlng 2012

Meaning of Dataflow Results

« Connection between executions of program and
dataflow analysis results

e Each execution generates a trajectory of states:
— Sg;51;.-;SWhere each 5;eST

» Map current state s, to
— Program point n where execution located
— Value x in dataflow lattice

* Require x <in,

Kostis Sagonas 49 Spring 2012

Sign Analysis Example

Sign analysis - compute sign of each variable v
« Base Lattice: flat lattice on {-,zero,+}

TOP
/‘\

- zZero +

\‘/

BOT
« Actual lattice records a value for each variable
— Example element: [a—+, b—zero, c—-]

Kostis Sagonas 51 Spring 2012

Operation ® on Lattice

® |BOT| - zero | + | TOP
BOT | BOT | - zero | + | TOP
- - + |zero| - | TOP

Zero | zero | zero | zero | zero | zero

+ + - |zero| + |TOP

TOP | TOP | TOP | zero | TOP | TOP

Kostis Sagnnas 53 SErlng 2012

Abstraction Function for Forward
Dataflow Analysis

« Meaning of analysis results is given by an
abstraction function AF:ST—P
 Require that for all states s
AF(s) <in,
where n is program point where the execution is
located in state s, and in,, is the abstract value
before that point.

Kostis Sagonas 50 Spring 2012

Interpretation of Lattice Values

If value of v in lattice is:
— BOT: no information about the sign of v
— -2 variable v is negative
— zero: variable vis 0
— +: variable v is positive
— TOP: v may be positive or negative or 0

Kostis Sagonas 52 Spring 2012

Transfer Functions

Defined by structural induction on the shape of
nodes:
—Ifnoftheformv=c
o f(x) = x[v— +] if ¢ is positive
o () = x[v—>zero] if cis O
o f,(X) = X[v— -] if c is negative
— If n of the form v, = v,*v,
 £,00) = X[V, >X[V;] ® X[Vs]]

Kostis Sagnnas 54 SErlng 2012

Abstraction Function

e AF(s)[v] =signof v
— AF([a—5, b—0, c—>-2]) = [a—>+, b—zero, c—-]
« Establishes meaning of the analysis results
— If analysis says a variable v has a given sign
— then v always has that sign in actual execution.
» Two sources of imprecision
— Abstraction Imprecision — concrete values (integers)
abstracted as lattice values (-,zero, and +)
— Control Flow Imprecision — one lattice value for all
different possible flow of control possibilities

Kostis Sagonas 55 Spring 2012

General Sources of Imprecision

« Abstraction Imprecision
— Lattice values less precise than execution values
— Abstraction function throws away information

« Control Flow Imprecision

— Analysis result has a single lattice value to
summarize results of multiple concrete executions

— Join operation v moves up in lattice to combine
values from different execution paths

— Typically if x <y, then x is more precise than y

Kostis Sagonas 57 Spring 2012

Augmented Execution States

* Abstraction functions for some analyses require
augmented execution states
— Reaching definitions: states are augmented with the
definition that created each value

— Available expressions: states are augmented with
expression for each value

Kostis Sagnnas 59 SErlng 2012

Imprecision Example

Abstraction Imprecision:
[a—1] abstracted as [a—+] a=1

[aa+/\[a?+]

b=-1 b=1

[as+, ba-]\ /H+, b>+]

[a—>+ b—>TOP] |,
c=a*b
Control Flow Imprecision:
[b—>TOP] summarizes results of all executions.
In any execution state s, AF(s)[b]=TOP

Kostis Sagonas 56 Spring 2012

Why Have Imprecision?

ANSWER: To make analysis tractable
 Conceptually infinite sets of values in execution
— Typically abstracted by finite set of lattice values

« Execution may visit infinite set of states
— Abstracted by computing joins of different paths

Kostis Sagonas 58 Spring 2012

Meet Over All Paths Solution

» What solution would be ideal for a forward dataflow
analysis problem?
* Consider a path p =ng, n,, ..., N, nto a node n
(note that for all i, n; € pred(n;,,))
 The solution must take this path into account:
fo (1) = (Falfoea (- Fra(Fo(L)) -.)) <iing
 So the solution must have the property that
v{f, (1) | pisapath to n} <in,
and ideally
v{f, (L) | pis apath ton} = in,

Kostis Sagnnas 60 SErlng 2012

Soundness Proof of Analysis
Algorithm

Property to prove:
Forall paths pton, f; (L) <in,
* Proof is by induction on the length of p
— Uses monotonicity of transfer functions
— Uses following lemma
Lemma:
The worklist algorithm produces a solution such that
if n € pred(m) then out, <in,

Kostis Sagonas 61 Spring 2012

Induction Step Proof

* p=ny ...,N, N
o Must show (f(fi.1(...F 1 (Fo(L)) ...)) <in,
— By induction, (fi;(...f,;(fo(L)) ...)) <ing
— Apply f, to both sides.
By monotonicity, we get:
(fi(fiea (- Fra(Fo(L))) < filing) = outy,
- By lemma, out,, < in,
— By transitivity, (f(fi.i(...f.1(fo(L)) ...)) <in,

Kostis Sagonas 63

Spring 2012

Lack of Distributivity Example

Integer Constant Propagation (ICP)
« Flat lattice on integers

» Actual lattice records a value for each variable
— Example element: [a—3, b—2, c—>5]

Kostis Sagnnas 65 SErlng 2012

Proof

« Base case: p is of length 0
- Thenp =nyand f(L) =L =iny,

« Induction step:
— Assume theorem for all paths of length k
— Show for an arbitrary path p of length k+1.

Kostis Sagonas 62

Spring 2012

Distributivity

« Distributivity preserves precision

« If framework is distributive, then the worklist
algorithm produces the meet over paths solution
— Forall n:

vif, (L) [pis apathton}=in,

Kostis Sagonas 64 Spring 2012

Transfer Functions

e Ifnoftheformv=c
—f,(x) = x[v—c]
* If n of the form v, = v,+v,
= £,x) = X[V, x[v,] + x[v3]])
« Lack of distributivity of ICP
— Consider transfer function fforc=a+Db

- f([a—3, b—>2]) v f([a—>2, b—3]) = [a—>TOP, b—>TOP, c—5]

- f([a—3, b—>2]v[a—>2, b—3]) = f([a—>TOP, b—>TOP]) =
[a—>TOP, b—>TOP, c>TOP]

Kostis Sagnnas 66 SErlng 2012

Lack of Distributivity Anomaly Summary
T~ + Formal dataflow analysis framework
a=2 a=3 — Lattices, partial orders
b=3 b=2 — Transfer functions, joins and splits
[a—>2, b—3] [a—3, b—>2] — Dataflow equations and fixed point solutions
 Connection with program
[a—>TOP, b—>TOP] Lack of Distributivity Imprecision: — Abstraction function AF: S — P
¢ = a+b || [a>TOP, b->TOP, c—>5] more precise — For any state s and program point n, AF(s) < in,
[a-TOP, b->TOP, ¢ >TOP] — Meet over paths solutions, distributivity
Kostis Sagunas 67 SErinE 2012 Kostis Sagunas 68

Spring 2012

