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Foundations of
Dataflow Analysis

Terminology: Program Representation

Control Flow Graph:
— Nodes N - statements of program
— Edges E - flow of control
« pred(n) = set of all immediate predecessors of n
« succ(n) = set of all immediate successors of n
— Start node n,
— Set of final nodes Ny,
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Terminology: Control-Flow Graph

Control-flow graph (CFG)
* Nodes for basic blocks
+ Edges for branches

+ Basis for much of program
is & transformation

This CFG, G = (N,E)
+ N={AB,C,D,EF,G}

* E={(A,B),(A,C),(B,G),(C,D),
(C,E),(D,F),(E,F),(F.E)}

*IN[=7,|E|=8
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Terminology: Extended Basic Block

EBB: Conceptually itis a
program sequence with
only one entry point but
possibly several exit points.

Extended Basic Block (EBB):
A sequence of basic blocks
B,,B,, ...,B,whereall B, (i>1)
have a unique predecessor
from the setB,,...,B,,.

Path of an EBB: A sequence of basic blocks
B,, B,, ..., B, where B, is the predecessor of B, ..
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Terminology: Program Points

* One program point before each node
 One program point after each node

« Join point — program point with multiple
predecessors

Split point — program point with multiple
successors
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Dataflow Analysis

Compile-Time Reasoning About

Run-Time Values of Variables or Expressions

at Different Program Points

— Which assignment statements produced the value of
the variables at this point?

— Which variables contain values that are no longer
used after this program point?

— What is the range of possible values of a variable at
this program point?
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Dataflow Analysis: Basic Idea

« Information about a program represented using
values from an algebraic structure called lattice
* Analysis produces a lattice value for each
program point
» Two flavors of analyses
— Forward dataflow analyses
— Backward dataflow analyses

Kostis Sagonas 7 Spring 2012

Backward Dataflow Analysis

 Analysis propagates values backward through
control flow graph against flow of control
— Each node has a transfer function f
« Input — value at program point after node
« Output — new value at program point before node
— Values flow from program points before successor
nodes to program points after predecessor nodes
— At split points, values are combined using a merge

function
— Canonical Example: Live Variables
Kostis Sagonas 9 SEring 2012
Upper Bounds
e If Sc P then

— xeP is an upper bound of S if VyeS, y <x
— XeP is the least upper bound of S if
« X is an upper bound of S, and
« x <y for all upper bounds y of S
— v - join, least upper bound (lub), supremum (sup)
« v Sis the least upper bound of S
* X vy is the least upper bound of {x,y}
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Forward Dataflow Analysis

* Analysis propagates values forward through
control flow graph with flow of control
— Each node has a transfer function f
« Input — value at program point before node
« Output — new value at program point after node
— Values flow from program points after predecessor
nodes to program points before successor nodes
— At join points, values are combined using a merge
function

« Canonical Example: Reaching Definitions

Kostis Sagonas 8
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Partial Orders

e SetP

« Partial order < such that vx,y,zeP
-X<X (reflexive)
(antisymmetric)

(transitive)

—-x<yandy<ximpliesx=y
—-x<yandy<zimpliesx<z

Kostis Sagonas 10 Spring 2012

Lower Bounds

e If ScPthen

— xeP is a lower bound of S if VyeS, x<y
— XeP is the greatest lower bound of S if
« x is a lower bound of S, and
« y < x for all lower bounds y of S
— A - meet, greatest lower bound (glb), infimum (inf)
* A Sis the greatest lower bound of S
¢ X Ay is the greatest lower bound of {x,y}
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Coverings

* Notation: x<y if x <y and xz2y

« xis covered by y (y covers x) if
- X<y, and
-x<z<yimpliesx=z

« Conceptually, y covers x if there are no
elements between x and y
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Lattices

e IfxAyandx vy exist (i.e., are in P) for all x,yeP,
then P is a lattice.
e If ASand vSexist forall Sc P,
then P is a complete lattice.
* Theorem: All finite lattices are complete
» Example of a lattice that is not complete
— Integers Z
— Forany X, yeZ, x vy =max(x,y), X Ay = min(x,y)
— But v Z and A Z do not exist
— Z U {+o0,—0 } is a complete lattice
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Connection between <, A, and v

The following 3 properties are equivalent:
- X<y
- Xvy=y
- XAYy=X

* Will prove:
—x<yimpliessxvy=yandx Ay=Xx
- xvy=yimpliesx <y
- XAy=ximpliesx <y

* By Transitivity,
- xvy=yimpliesx Ay=Xx
- XxAy=ximpliesxvy=y
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Example

« P ={000, 001, 010, 011, 100, 101, 110, 111}
(standard boolean lattice, also called hypercube)
e x <y if (x bitwise_and y) = x

We can visualize a partial
111 . .
order with a Hasse Diagram

ou/ll\luo * Ify covers x
>0< * Line from y to x

00 00 « y is above x in diagram

&

000
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Top and Bottom

« Greatest element of P (if it exists) is top (T)
* Least element of P (if it exists) is bottom (L)
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Connecting Lemma Proofs (1)

e Proof of x <y impliesxvy=y

—x <y implies y is an upper bound of {x,y}.

— Any upper bound z of {x,y} must satisfy y < z.

— Soy is least upper bound of {x,y}and x vy =y
 Proof of x <y implies x Ay =X

—x <y implies x is a lower bound of {x,y}.

— Any lower bound z of {x,y} must satisfy z < x.

— So x is greatest lower bound of {x,y} and x Ay = X
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Connecting Lemma Proofs (2)

e Proof of x vy =yimpliesx <y

-y is an upper bound of {x,y} implies x <y
e Proof of x Ay =ximpliesx <y

— x is a lower bound of {x,y} implies x <y
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Lattices as Algebraic Structures

» Have defined v and A in terms of <
* Will now define < in terms of v and A

— Start with v and A as arbitrary algebraic operations
that satisfy associative, commutative, idempotence,
and absorption laws

— Will define < using v and A
— Will show that < is a partial order

Algebraic Properties of Lattices

Assume arbitrary operations v and A such that
—(xvy)vz=xv(yvz) (associativity of v)
—(xAy)Az=xA(ynrz) (associativity of A)

-XVYy=yVvX (commutativity of v)
—XAY=YAX (commutativity of A)
- XVX=X (idempotence of v)
—XAX=X (idempotence of A)

-XV(XAYy)=Xx (absorption of v over A)

- XA(XVYy)=X (absorption of A over v)
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Connection Between A and v

Theorem: x vy =yifandonly if x Ay =x
e Proof of x vy=yimpliesx=x Ay
X=XA(XVY) (by absorption)
=XAY (by assumption)
* Proof of x Ay =X impliesy =xvy
y=yv(yax) (byabsorption)
Zyv(XAY) (by commutativity)

Properties of <

e Definex<yifxvy=y
* Proof of transitive property. Must show that
xvy=yandyvz=zimpliesxvz=z
Xvz=xv (yvz) (by assumption)
= (x vy) vz (by associativity)
Zyvz (by assumption)
=z (by assumption)

ZyvX (by assumption)
=XVYy (by commutativity)
Kostis Sagonas 22 SEring 2012
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Properties of <

* Proof of antisymmetry property. Must show that
xvy=yandyv x=ximpliesx=y
Xx=yvx (byassumption)
=xvy (by commutativity)

-y (by assumption)
* Proof of reflexivity property. Must show that
XV X=X
XV X=X (by idempotence)
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Properties of <

« Induced operation < agrees with original
definitions of v and A, i.e.,

-xvy=sup{x vy}

-xAy=inf{x, y}
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Proof of x Ay = inf {Xx, y}
 Consider any lower bound | for x and y.
e Givenx Al=landy A | =1, must show
I<xAay ie,XAy)al=l
I=xnl (by assumption)
=xA(yal) (by assumption)
=(xAay)al (by associativity)
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Transfer Functions

« Assume a lattice of abstract values P

« Transfer function f; P—P for each node in
control flow graph

 f models effect of the node on the program
information
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Proof of x vy =sup {x, y}

« Consider any upper bound u for x and y.

e Given x vu=uandy v u=u, must show
Xvy<uie,(Xvy)vu=u

u=xvu (by assumption)
=xXv(yvu) (by assumption)
=(xvy)vu (byassociativity)
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Chains

e AsetSisachainif vx,yeS.y<xorx<y

* P has no infinite chains if every chain in P is
finite

« P satisfies the ascending chain condition if

for all sequences X, < X, < ...there exists n
such that X, = X,,; = ...
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Properties of Transfer Functions

Each dataflow analysis problem has a set F of
transfer functions f: P—P
— ldentity function ieF
— F must be closed under composition:
Vvf,geF, the function h = Ax.f(g(x)) eF

— Each f eF must be monotone:

x <y implies f(x) < f(y)
— Sometimes all f eF are distributive:

f(x vy) =f(x) v f(y)
— Distributivity implies monotonicity
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Distributivity Implies Monotonicity

Proof:
» Assume f(x v y) = f(x) v f(y)
e Must show: x vy =y implies f(x) v f(y) = f(y)
fly)=f(xvy)  (byassumption)
=f(x) v f(y) (by distributivity)
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Dataflow Equations

* Result is a set of dataflow equations
out, :=f,(in,)
in, :=v {out, | minpred(n) }
« Conceptually separates analysis problem from

Forward Dataflow Analysis

 Simulates execution of program forward with
flow of control
» For each node n, have
— in, — value at program point before n
- out, — value at program point after n
— f, — transfer function for n (given in,, computes out,)
 Require that solutions satisfy
- vn, out, = f,(in,)
- Vn=n,, in,=v {out, | min pred(n) }

—ing=1
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Worklist Algorithm for Solving
Forward Dataflow Equations

for each n do out, :=f (L)
worklist := N
while worklist = & do
remove a node n from worklist
in, :=v {out, | minpred(n) }
out, :=f.(in,)
if out, changed then
worklist := worklist w succ(n)

program
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Correctness Argument

Why result satisfies dataflow equations?

* Whenever we process a node n, set out, :=f.(in,)
Algorithm ensures that out, = f (in,)

» Whenever out,, changes, put succ(m) on worklist.
Consider any node n e succ(m).
It will eventually come off the worklist and the
algorithm will set
in, :=v {out, | minpred(n) }
to ensure that in, = v { out,, | m in pred(n) }
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Termination Argument

Why does the algorithm terminate?

* Sequence of values taken on by in, or out, is a
chain. If values stop increasing, the worklist
empties and the algorithm terminates.

« If the lattice has the ascending chain property,
the algorithm terminates
— Algorithm terminates for finite lattices

— For lattices without the ascending chain property,
we must use a widening operator
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Widening Operators

* Detect lattice values that may be part of an
infinitely ascending chain

« Atrtificially raise value to least upper bound of
the chain

* Example:
— Lattice is set of all subsets of integers

— Widening operator might raise all sets of size n or
greater to TOP

— Could be used to collect possible values taken on by
a variable during execution of the program
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Reaching Definitions

!
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Does Reaching Definitions

Framework Satisfy Properties?

 c satisfies conditions for <
—Xxcyandyczimplies x c z (transitivity)
—xcyandyc ximplies y = x (antisymmetry)
- X < x (reflexivity)
* F satisfies transfer function conditions
- XD U (x- D) = Ax.xeF (identity)
— Will show f(x U y) = f(x) U f(y) (distributivity)
fx) Uf(y) = (@ (x-b)) U (au(y-h))
=auX-b)u(y-b)
zau((xuy)-b)
=f(xuy)
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Reaching Definitions

« Concept of definition and use
—zZ=Xx+y
— is a definition of z
—isauseof xandy

* A definition reaches a use if
— the value written by definition
— may be read by the use.
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Reaching Definitions Framework

» P =powerset of set of all definitions in program
(all subsets of set of definitions in program)
e v=u (orderisc)
e 1l=¢
* F = all functions f of the form f(x) = a U (x-b)
— b is set of definitions that node kills
— ais set of definitions that node generates
General pattern for many transfer functions
- f(x) = GEN U (x-KILL)
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Does Reaching Definitions
Framework Satisfy Properties?

What about composition?
— Given f;(X) = a; U (x-b,) and f,(x) = a, U (x-b,)
— Must show f,(f,(x)) can be expressed as a U (x - b)
fi(f2(x)) = 8y L (3,  (x-by)) - by)
=a; U ((a2- by) U ((x-by) - by))
=(a; v (3 - by) W ((x-by) - by))
=(ay Y (- by)) U (x-(by U by))
—-Leta=(a, v (a,-by))andb=b, Ub,
— Then f,(f)(X)) =au (x—b)
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General Result

All GEN/KILL transfer function frameworks
satisfy the properties:
— ldentity
— Distributivity
— Compositionality
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Concept of Conservatism

 Reaching definitions use U as join

— Optimizations must take into account all definitions
that reach along ANY path

« Available expressions use M as join
— Optimization requires expression to reach along
ALL paths
 Optimizations must conservatively take all
possible executions into account.
« Structure of analysis varies according to the
way the results of the analysis are to be used.
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Worklist Algorithm for Solving
Backward Dataflow Equations

for each ndo in, := f (L)
worklist := N
while worklist = & do
remove a node n from worklist
out, :=v {in,, | minsucc(n) }
in, := f (out,)
if in, changed then
worklist := worklist U pred(n)
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Available Expressions Framework

« P = powerset of set of all expressions in
program (all subsets of set of expressions)

e v = (orderis D)

o L =P (butin, =)

« F =all functions f of the form f(x) =a U (x-b)
— b is set of expressions that node kills
— ais set of expressions that node generates

¢ Another GEN/KILL analysis
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Backward Dataflow Analysis

« Simulates execution of program backward
against the flow of control
* For each node n, we have
— in, — value at program point before n
— out, — value at program point after n
— f, — transfer function for n (given out,, computes in,)
 Require that solutions satisfy
- Vvn. in, = f (out,)
— VN & Ny oUt, = v {iing, | min succ(n) }
—Vn € Ngjp =0ut, =L
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Live Variables Analysis Framework

» P =powerset of set of all variables in program
(all subsets of set of variables in program)

e v=u (orderisc)

e 1l=g

« F =all functions f of the form f(x) =a u (x-b)
— b is set of variables that the node kills
— ais set of variables that the node reads
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Meaning of Dataflow Results

« Connection between executions of program and
dataflow analysis results

e Each execution generates a trajectory of states:
— Sg;51;.-;SWhere each 5;eST

» Map current state s, to
— Program point n where execution located
— Value x in dataflow lattice

* Require x <in,

Kostis Sagonas 49 Spring 2012

Sign Analysis Example

Sign analysis - compute sign of each variable v
« Base Lattice: flat lattice on {-,zero,+}

TOP
/‘\

- zZero +

\‘/

BOT
« Actual lattice records a value for each variable
— Example element: [a—+, b—zero, c—-]
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Operation ® on Lattice

® |BOT| - zero | + | TOP
BOT | BOT | - zero | + | TOP
- - + |zero| - | TOP

Zero | zero | zero | zero | zero | zero

+ + - |zero| + |TOP

TOP | TOP | TOP | zero | TOP | TOP
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Abstraction Function for Forward
Dataflow Analysis

« Meaning of analysis results is given by an
abstraction function AF:ST—P
 Require that for all states s
AF(s) <in,
where n is program point where the execution is
located in state s, and in,, is the abstract value
before that point.
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Interpretation of Lattice Values

If value of v in lattice is:
— BOT: no information about the sign of v
— -2 variable v is negative
— zero: variable vis 0
— +: variable v is positive
— TOP: v may be positive or negative or 0
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Transfer Functions

Defined by structural induction on the shape of
nodes:
—Ifnoftheformv=c
o f(x) = x[v— +] if ¢ is positive
o () = x[v—>zero] if cis O
o f,(X) = X[v— -] if c is negative
— If n of the form v, = v,*v,
 £,00) = X[V, >X[V;] ® X[Vs]]
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Abstraction Function

e AF(s)[v] =signof v
— AF([a—5, b—0, c—>-2]) = [a—>+, b—zero, c—-]
« Establishes meaning of the analysis results
— If analysis says a variable v has a given sign
— then v always has that sign in actual execution.
» Two sources of imprecision
— Abstraction Imprecision — concrete values (integers)
abstracted as lattice values (-,zero, and +)
— Control Flow Imprecision — one lattice value for all
different possible flow of control possibilities
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General Sources of Imprecision

« Abstraction Imprecision
— Lattice values less precise than execution values
— Abstraction function throws away information

« Control Flow Imprecision

— Analysis result has a single lattice value to
summarize results of multiple concrete executions

— Join operation v moves up in lattice to combine
values from different execution paths

— Typically if x <y, then x is more precise than y
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Augmented Execution States

* Abstraction functions for some analyses require
augmented execution states
— Reaching definitions: states are augmented with the
definition that created each value

— Available expressions: states are augmented with
expression for each value
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Imprecision Example

Abstraction Imprecision:
[a—1] abstracted as [a—+] a=1

[aa+/\[a?+]

b=-1 b=1

[as+, ba-]\ /H+, b>+]

[a—>+ b—>TOP] |,
c=a*b
Control Flow Imprecision:
[b—>TOP] summarizes results of all executions.
In any execution state s, AF(s)[b]=TOP
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Why Have Imprecision?

ANSWER: To make analysis tractable
 Conceptually infinite sets of values in execution
— Typically abstracted by finite set of lattice values

« Execution may visit infinite set of states
— Abstracted by computing joins of different paths
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Meet Over All Paths Solution

» What solution would be ideal for a forward dataflow
analysis problem?
* Consider a path p =ng, n,, ..., N, nto a node n
(note that for all i, n; € pred(n;,,))
 The solution must take this path into account:
fo (1) = (Falfoea (- Fra(Fo(L)) -.)) <iing
 So the solution must have the property that
v{f, (1) | pisapath to n} <in,
and ideally
v{f, (L) | pis apath ton} = in,
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Soundness Proof of Analysis
Algorithm

Property to prove:
Forall paths pton, f; (L) <in,
* Proof is by induction on the length of p
— Uses monotonicity of transfer functions
— Uses following lemma
Lemma:
The worklist algorithm produces a solution such that
if n € pred(m) then out, <in,
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Induction Step Proof

* p=ny ...,N, N
o Must show (f(fi.1(...F 1 (Fo(L)) ...)) <in,
— By induction, (fi;(...f,;(fo(L)) ...)) <ing
— Apply f, to both sides.
By monotonicity, we get:
(fi(fiea (- Fra(Fo(L)) ) < filing) = outy,
- By lemma, out,, < in,
— By transitivity, (f(fi.i(...f.1(fo(L)) ...)) <in,
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Lack of Distributivity Example

Integer Constant Propagation (ICP)
« Flat lattice on integers

» Actual lattice records a value for each variable
— Example element: [a—3, b—2, c—>5]
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Proof

« Base case: p is of length 0
- Thenp =nyand f(L) =L =iny,

« Induction step:
— Assume theorem for all paths of length k
— Show for an arbitrary path p of length k+1.
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Distributivity

« Distributivity preserves precision

« If framework is distributive, then the worklist
algorithm produces the meet over paths solution
— Forall n:

vif, (L) [ pis apathton}=in,
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Transfer Functions

e Ifnoftheformv=c
—f,(x) = x[v—c]
* If n of the form v, = v,+v,
= £,x) = X[V, x[v,] + x[v3]])
« Lack of distributivity of ICP
— Consider transfer function fforc=a+Db

- f([a—3, b—>2]) v f([a—>2, b—3]) = [a—>TOP, b—>TOP, c—5]

- f([a—3, b—>2]v[a—>2, b—3]) = f([a—>TOP, b—>TOP]) =
[a—>TOP, b—>TOP, c>TOP]
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Lack of Distributivity Anomaly Summary
T~ + Formal dataflow analysis framework
a=2 a=3 — Lattices, partial orders
b=3 b=2 — Transfer functions, joins and splits
[a—>2, b—3] [a—3, b—>2] — Dataflow equations and fixed point solutions
 Connection with program
[a—>TOP, b—>TOP] Lack of Distributivity Imprecision: — Abstraction function AF: S — P
¢ = a+b || [a>TOP, b->TOP, c—>5] more precise — For any state s and program point n, AF(s) < in,
[a-TOP, b->TOP, ¢ >TOP] — Meet over paths solutions, distributivity
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