

Terminology: Program Representation

Control Flow Graph:

- Nodes N - statements of program
- Edges E - flow of control
- pred(n) $=$ set of all immediate predecessors of n
- $\operatorname{succ}(n)=$ set of all immediate successors of n
- Start node n_{0}
- Set of final nodes $\mathrm{N}_{\text {final }}$

Terminology: Extended Basic Block

Terminology: Program Points

- One program point before each node
- One program point after each node
- Join point - program point with multiple predecessors
- Split point - program point with multiple successors

Dataflow Analysis

Compile-Time Reasoning About
Run-Time Values of Variables or Expressions at Different Program Points

- Which assignment statements produced the value of the variables at this point?
- Which variables contain values that are no longer used after this program point?
- What is the range of possible values of a variable at this program point?

Dataflow Analysis: Basic Idea

- Information about a program represented using values from an algebraic structure called lattice
- Analysis produces a lattice value for each program point
- Two flavors of analyses
- Forward dataflow analyses
- Backward dataflow analyses

Forward Dataflow Analysis

- Analysis propagates values forward through control flow graph with flow of control
- Each node has a transfer function f
- Input - value at program point before node
- Output - new value at program point after node
- Values flow from program points after predecessor nodes to program points before successor nodes
- At join points, values are combined using a merge function
- Canonical Example: Reaching Definitions

Backward Dataflow Analysis

- Analysis propagates values backward through control flow graph against flow of control
- Each node has a transfer function f
- Input - value at program point after node
- Output - new value at program point before node
- Values flow from program points before successor nodes to program points after predecessor nodes
- At split points, values are combined using a merge function
- Canonical Example: Live Variables

Upper Bounds

- If $\mathrm{S} \subseteq \mathrm{P}$ then
$-\mathrm{x} \in \mathrm{P}$ is an upper bound of S if $\forall \mathrm{y} \in \mathrm{S}, \mathrm{y} \leq \mathrm{x}$
$-\mathrm{x} \in \mathrm{P}$ is the least upper bound of S if
- x is an upper bound of S, and
- $\mathrm{x} \leq \mathrm{y}$ for all upper bounds y of S
$-\vee$ - join, least upper bound (lub), supremum (sup)
- $\vee \mathrm{S}$ is the least upper bound of S
- $x \vee y$ is the least upper bound of $\{x, y\}$

Partial Orders

- Set P
- Partial order \leq such that $\forall x, y, z \in P$
$-x \leq x$
(reflexive)
$-\mathrm{x} \leq \mathrm{y}$ and $\mathrm{y} \leq \mathrm{x}$ implies $\mathrm{x}=\mathrm{y} \quad$ (antisymmetric)
$-\mathrm{x} \leq \mathrm{y}$ and $\mathrm{y} \leq \mathrm{z}$ implies $\mathrm{x} \leq \mathrm{z} \quad$ (transitive)
\qquad

Lower Bounds

- If $\mathrm{S} \subseteq \mathrm{P}$ then
$-x \in P$ is a lower bound of S if $\forall y \in S, x \leq y$
$-\mathrm{x} \in \mathrm{P}$ is the greatest lower bound of S if
- x is a lower bound of S, and
- $\mathrm{y} \leq \mathrm{x}$ for all lower bounds y of S
$-\wedge$ - meet, greatest lower bound (glb), infimum (inf)
$\cdot \wedge S$ is the greatest lower bound of S
- $x \wedge y$ is the greatest lower bound of $\{x, y\}$

Coverings

- Notation: $\mathrm{x}<\mathrm{y}$ if $\mathrm{x} \leq \mathrm{y}$ and $\mathrm{x} \neq \mathrm{y}$
- x is covered by y (y covers x) if
$-\mathrm{x}<\mathrm{y}$, and
$-\mathrm{x} \leq \mathrm{z}<\mathrm{y}$ implies $\mathrm{x}=\mathrm{z}$
- Conceptually, y covers x if there are no elements between x and y

Kostis Sagonas 13

Lattices

- If $x \wedge y$ and $x \vee y$ exist (i.e., are in P) for all $x, y \in P$, then P is a lattice.
- If $\wedge S$ and $\vee S$ exist for all $S \subseteq P$, then P is a complete lattice.
- Theorem: All finite lattices are complete
- Example of a lattice that is not complete
- Integers Z
- For any $\mathrm{x}, \mathrm{y} \in \mathrm{Z}, \mathrm{x} \vee \mathrm{y}=\max (\mathrm{x}, \mathrm{y}), \mathrm{x} \wedge \mathrm{y}=\min (\mathrm{x}, \mathrm{y})$
- But $\vee Z$ and $\wedge Z$ do not exist
$-\mathrm{Z} \cup\{+\infty,-\infty\}$ is a complete lattice
Kostis Sagonas

Connection between \leq, \wedge, and \vee
The following 3 properties are equivalent:
$-x \leq y$
$-x \vee y=y$
$-x \wedge y=x$

- Will prove:
$-x \leq y$ implies $x \vee y=y$ and $x \wedge y=x$
$-x \vee y=y$ implies $x \leq y$
$-x \wedge y=x$ implies $x \leq y$
- By Transitivity,
$-x \vee y=y$ implies $x \wedge y=x$
$-x \wedge y=x$ implies $x \vee y=y$

Example

- $P=\{000,001,010,011,100,101,110,111\}$ (standard boolean lattice, also called hypercube)
- $x \leq y$ if $(x$ bitwise_and $y)=x$

Kostis Sagonas
We can visualize a partial order with a Hasse Diagram

- If y covers x
- Line from y to x
- y is above x in diagram

Top and Bottom

- Greatest element of P (if it exists) is top (T)
- Least element of P (if it exists) is bottom (\perp)

Connecting Lemma Proofs (1)

- Proof of $x \leq y$ implies $x \vee y=y$
$-x \leq y$ implies y is an upper bound of $\{x, y\}$.
- Any upper bound z of $\{\mathrm{x}, \mathrm{y}\}$ must satisfy $\mathrm{y} \leq \mathrm{z}$.
- So y is least upper bound of $\{x, y\}$ and $x \vee y=y$
- Proof of $x \leq y$ implies $x \wedge y=x$
$-x \leq y$ implies x is a lower bound of $\{x, y\}$.
- Any lower bound z of $\{x, y\}$ must satisfy $z \leq x$.
- So x is greatest lower bound of $\{x, y\}$ and $x \wedge y=x$

Connecting Lemma Proofs (2)

- Proof of $x \vee y=y$ implies $x \leq y$
$-y$ is an upper bound of $\{x, y\}$ implies $x \leq y$
- Proof of $x \wedge y=x$ implies $x \leq y$
$-x$ is a lower bound of $\{x, y\}$ implies $x \leq y$

Algebraic Properties of Lattices

Assume arbitrary operations \vee and \wedge such that
$-(x \vee y) \vee z=x \vee(y \vee z) \quad$ (associativity of \vee)
$-(x \wedge y) \wedge z=x \wedge(y \wedge z) \quad$ (associativity of $\wedge)$
$-x \vee y=y \vee x \quad$ (commutativity of \vee)
$-x \wedge y=y \wedge x \quad$ (commutativity of \wedge)
$-x \vee x=x \quad$ (idempotence of \vee)
$-\mathrm{x} \wedge \mathrm{x}=\mathrm{x} \quad$ (idempotence of \wedge)
$-x \vee(x \wedge y)=x \quad$ (absorption of \vee over \wedge)
$-x \wedge(x \vee y)=x \quad$ (absorption of \wedge over $\vee)$

Lattices as Algebraic Structures

- Have defined \vee and \wedge in terms of \leq
- Will now define \leq in terms of \vee and \wedge
- Start with \vee and \wedge as arbitrary algebraic operations that satisfy associative, commutative, idempotence, and absorption laws
- Will define \leq using \vee and \wedge
- Will show that \leq is a partial order

Connection Between \wedge and \vee

Theorem: $x \vee y=y$ if and only if $x \wedge y=x$

- Proof of $x \vee y=y$ implies $x=x \wedge y$

$$
\begin{aligned}
\mathrm{x} & =\mathrm{x} \wedge(\mathrm{x} \vee \mathrm{y}) & & \text { (by absorption) } \\
& =\mathrm{x} \wedge \mathrm{y} & & \text { (by assumption) }
\end{aligned}
$$

- Proof of $x \wedge y=x$ implies $y=x \vee y$

y	$=y \vee(y \wedge x)$		(by absorption)
	$=y \vee(x \wedge y)$		(by commutativity)
	$=y \vee x$		(by assumption)
	$=x \vee y$		(by commutativity)

Kostis Sagonas
(by commutativity) Spring 2012

Properties of \leq

- Define $x \leq y$ if $x \vee y=y$
- Proof of transitive property. Must show that
$\mathrm{x} \vee \mathrm{y}=\mathrm{y}$ and $\mathrm{y} \vee \mathrm{z}=\mathrm{z}$ implies $\mathrm{x} \vee \mathrm{z}=\mathrm{z}$
$\mathrm{x} \vee \mathrm{z}=\mathrm{x} \vee(\mathrm{y} \vee \mathrm{z})$ (by assumption)
$=(x \vee y) \vee z$ (by associativity)
$=\mathrm{y} \vee \mathrm{z} \quad$ (by assumption)
$=\mathrm{z} \quad$ (by assumption)

Properties of \leq

- Proof of antisymmetry property. Must show that $\mathrm{x} \vee \mathrm{y}=\mathrm{y}$ and $\mathrm{y} \vee \mathrm{x}=\mathrm{x}$ implies $\mathrm{x}=\mathrm{y}$
$\mathrm{x}=\mathrm{y} \vee \mathrm{x} \quad$ (by assumption)
$=x \vee y \quad$ (by commutativity)
= y (by assumption)
- Proof of reflexivity property. Must show that $x \vee x=x$
$\mathrm{x} \vee \mathrm{x}=\mathrm{x} \quad$ (by idempotence)

Properties of \leq

- Induced operation \leq agrees with original definitions of \vee and \wedge, i.e.,

$$
\begin{aligned}
& -x \vee y=\sup \{x, y\} \\
& -x \wedge y=\inf \{x, y\}
\end{aligned}
$$

Proof of $x \vee y=\sup \{x, y\}$

- Consider any upper bound u for x and y .
- Given $\mathrm{x} \vee \mathrm{u}=\mathrm{u}$ and $\mathrm{y} \vee \mathrm{u}=\mathrm{u}$, must show $x \vee y \leq u$, i.e., $(x \vee y) \vee u=u$

$$
\begin{aligned}
u & =x \vee u & & \text { (by assumption) } \\
& =x \vee(y \vee u) & & \text { (by assumption) } \\
& =(x \vee y) \vee u & & \text { (by associativity) }
\end{aligned}
$$

Proof of $x \wedge y=\inf \{x, y\}$

- Consider any lower bound l for x and y .
- Given $\mathrm{x} \wedge \mathrm{l}=\mathrm{l}$ and $\mathrm{y} \wedge \mathrm{l}=\mathrm{l}$, must show $\mathrm{l} \leq \mathrm{x} \wedge \mathrm{y}$, i.e., $(\mathrm{x} \wedge \mathrm{y}) \wedge \mathrm{l}=\mathrm{l}$

$$
\begin{array}{rlrl}
\mathrm{l} & =\mathrm{x} \wedge \mathrm{l} & \text { (by assumption) } \\
& =\mathrm{x} \wedge(\mathrm{y} \wedge \mathrm{l}) & \text { (by assumption) } \\
& =(\mathrm{x} \wedge \mathrm{y}) \wedge \mathrm{l} & & \text { (by associativity) }
\end{array}
$$

Transfer Functions

- Assume a lattice of abstract values P
- Transfer function $\mathrm{f}: \mathrm{P} \rightarrow \mathrm{P}$ for each node in control flow graph
- f models effect of the node on the program information

Chains

- A set S is a chain if $\forall x, y \in S . y \leq x$ or $x \leq y$
- P has no infinite chains if every chain in P is finite
- P satisfies the ascending chain condition if for all sequences $x_{1} \leq x_{2} \leq \ldots$ there exists n such that $X_{n}=x_{n+1}=\ldots$

Properties of Transfer Functions

Each dataflow analysis problem has a set F of transfer functions f: $\mathrm{P} \rightarrow \mathrm{P}$

- Identity function $\mathrm{i} \in \mathrm{F}$
- F must be closed under composition:
$\forall f, g \in F$, the function $h=\lambda x . f(g(x)) \in F$
- Each $\mathrm{f} \in \mathrm{F}$ must be monotone:
$\mathrm{x} \leq \mathrm{y}$ implies $\mathrm{f}(\mathrm{x}) \leq \mathrm{f}(\mathrm{y})$
- Sometimes all $f \in F$ are distributive: $f(x \vee y)=f(x) \vee f(y)$
- Distributivity implies monotonicity

Distributivity Implies Monotonicity

Proof:

- Assume $f(x \vee y)=f(x) \vee f(y)$
- Must show: $x \vee y=y$ implies $f(x) \vee f(y)=f(y)$

$$
\begin{aligned}
\mathrm{f}(\mathrm{y}) & =\mathrm{f}(\mathrm{x} \vee \mathrm{y}) & & \text { (by assumption) } \\
& =\mathrm{f}(\mathrm{x}) \vee \mathrm{f}(\mathrm{y}) & & \text { (by distributivity) }
\end{aligned}
$$

Forward Dataflow Analysis

- Simulates execution of program forward with flow of control
- For each node n, have
$-\mathrm{in}_{\mathrm{n}}$ - value at program point before n
- out ${ }_{n}$ - value at program point after n
$-f_{n}$ - transfer function for n (given in_{n}, computes out $_{\mathrm{n}}$)
- Require that solutions satisfy
$-\forall \mathrm{n}$, out $\mathrm{n}_{\mathrm{n}}=\mathrm{f}_{\mathrm{n}}\left(\mathrm{in}_{\mathrm{n}}\right)$
$-\forall \mathrm{n} \neq \mathrm{n}_{0}, \mathrm{in}_{\mathrm{n}}=\vee\left\{\right.$ out $_{\mathrm{m}} \mid \mathrm{m}$ in $\left.\operatorname{pred}(\mathrm{n})\right\}$
$-\mathrm{in}_{\mathrm{n} 0}=\perp$
Kostis Sagonas 32

Dataflow Equations

- Result is a set of dataflow equations

$$
\begin{aligned}
& \text { out }_{\mathrm{n}}:=\mathrm{f}_{\mathrm{n}}\left(\mathrm{in}_{\mathrm{n}}\right) \\
& \mathrm{in}_{\mathrm{n}}:=\vee\left\{\text { out }_{\mathrm{m}} \mid \mathrm{m} \text { in } \operatorname{pred}(\mathrm{n})\right\}
\end{aligned}
$$

- Conceptually separates analysis problem from program

Correctness Argument

Why result satisfies dataflow equations?

- Whenever we process a node n, set out $\mathrm{m}_{\mathrm{n}}:=\mathrm{f}_{\mathrm{n}}\left(\mathrm{in}_{\mathrm{n}}\right)$ Algorithm ensures that out ${ }_{n}=f_{n}\left(\mathrm{in}_{\mathrm{n}}\right)$
- Whenever out ${ }_{m}$ changes, put succ(m) on worklist. Consider any node $\mathrm{n} \in \operatorname{succ}(\mathrm{m})$.
It will eventually come off the worklist and the algorithm will set

$$
\mathrm{in}_{\mathrm{n}}:=\vee\left\{\text { out }_{\mathrm{m}} \mid \mathrm{m} \text { in } \operatorname{pred}(\mathrm{n})\right\}
$$

to ensure that $\mathrm{in}_{\mathrm{n}}=\vee\left\{\right.$ out $_{\mathrm{m}} \mid \mathrm{m}$ in pred(n) $\}$

Worklist Algorithm for Solving Forward Dataflow Equations

for each n do out $\mathrm{n}_{\mathrm{n}}:=\mathrm{f}_{\mathrm{n}}(\perp)$
worklist := N
while worklist $\neq \varnothing$ do
remove a node n from worklist
in $_{\mathrm{n}}:=\vee\left\{\right.$ out $_{\mathrm{m}} \mid \mathrm{m}$ in pred(n) $\}$
out $_{n}:=\mathrm{f}_{\mathrm{n}}\left(\mathrm{in}_{\mathrm{n}}\right)$
if out ${ }_{n}$ changed then worklist := worklist $\cup \operatorname{succ}(n)$

Termination Argument

Why does the algorithm terminate?

- Sequence of values taken on by in_{n} or out t_{n} is a chain. If values stop increasing, the worklist empties and the algorithm terminates.
- If the lattice has the ascending chain property, the algorithm terminates
- Algorithm terminates for finite lattices
- For lattices without the ascending chain property, we must use a widening operator

Widening Operators

- Detect lattice values that may be part of an infinitely ascending chain
- Artificially raise value to least upper bound of the chain
- Example:
- Lattice is set of all subsets of integers
- Widening operator might raise all sets of size n or greater to TOP
- Could be used to collect possible values taken on by a variable during execution of the program

Kostis Sagonas
37

Reaching Definitions

- Concept of definition and use
$-\mathrm{z}=\mathrm{x}+\mathrm{y}$
- is a definition of z
- is a use of x and y
- A definition reaches a use if
- the value written by definition
- may be read by the use.

Kostis Sagonas

Reaching Definitions Framework

- $P=$ powerset of set of all definitions in program (all subsets of set of definitions in program)
- $v=\cup$ (order is \subseteq)
- $\perp=\varnothing$
- $F=$ all functions f of the form $f(x)=a \cup(x-b)$
- b is set of definitions that node kills
- a is set of definitions that node generates

General pattern for many transfer functions

$$
-\mathrm{f}(\mathrm{x})=\mathrm{GEN} \cup(\mathrm{x}-\mathrm{KILL})
$$

Does Reaching Definitions Framework Satisfy Properties?

- \subseteq satisfies conditions for \leq
$-\mathrm{x} \subseteq \mathrm{y}$ and $\mathrm{y} \subseteq \mathrm{z}$ implies $\mathrm{x} \subseteq \mathrm{z}$ (transitivity)
$-\mathrm{x} \subseteq \mathrm{y}$ and $\mathrm{y} \subseteq \mathrm{x}$ implies $\mathrm{y}=\mathrm{x}$ (antisymmetry)
$-\mathrm{x} \subseteq \mathrm{x}$ (reflexivity)
- F satisfies transfer function conditions
$-\lambda \mathrm{x} . \varnothing \cup(\mathrm{x}-\varnothing)=\lambda \mathrm{x} . \mathrm{x} \in \mathrm{F}$ (identity)
- Will show $f(x \cup y)=f(x) \cup f(y)$ (distributivity)
$f(x) \cup f(y)=(a \cup(x-b)) \cup(a \cup(y-b))$

$$
=a \cup(x-b) \cup(y-b)
$$

$$
=a \cup((x \cup y)-b)
$$

$$
=f(x \cup y)
$$

Kostis Sagonas

Does Reaching Definitions Framework Satisfy Properties?

What about composition?

- Given $\mathrm{f}_{1}(\mathrm{x})=\mathrm{a}_{1} \cup\left(\mathrm{x}-\mathrm{b}_{1}\right)$ and $\mathrm{f}_{2}(\mathrm{x})=\mathrm{a}_{2} \cup\left(\mathrm{x}-\mathrm{b}_{2}\right)$
- Must show $f_{1}\left(f_{2}(x)\right)$ can be expressed as $a \cup(x-b)$
$\mathrm{f}_{1}\left(\mathrm{f}_{2}(\mathrm{x})\right)=\mathrm{a}_{1} \cup\left(\left(\mathrm{a}_{2} \cup\left(\mathrm{x}-\mathrm{b}_{2}\right)\right)-\mathrm{b}_{1}\right)$
$=a_{1} \cup\left(\left(a_{2}-b_{1}\right) \cup\left(\left(x-b_{2}\right)-b_{1}\right)\right)$
$\left.=\left(a_{1} \cup\left(a_{2}-b_{1}\right)\right) \cup\left(\left(x-b_{2}\right)-b_{1}\right)\right)$
$=\left(a_{1} \cup\left(a_{2}-b_{1}\right)\right) \cup\left(x-\left(b_{2} \cup b_{1}\right)\right)$
- Let $\mathrm{a}=\left(\mathrm{a}_{1} \cup\left(\mathrm{a}_{2}-\mathrm{b}_{1}\right)\right)$ and $\mathrm{b}=\mathrm{b}_{2} \cup \mathrm{~b}_{1}$
- Then $f_{1}\left(f_{2}(x)\right)=a \cup(x-b)$

General Result

All GEN/KILL transfer function frameworks satisfy the properties:

- Identity
- Distributivity
- Compositionality

Concept of Conservatism

- Reaching definitions use \cup as join
- Optimizations must take into account all definitions that reach along ANY path
- Available expressions use \cap as join
- Optimization requires expression to reach along ALL paths
- Optimizations must conservatively take all possible executions into account.
- Structure of analysis varies according to the way the results of the analysis are to be used.

Available Expressions Framework

- $\mathrm{P}=$ powerset of set of all expressions in program (all subsets of set of expressions)
- $v=\cap$ (order is \supseteq)
- $\perp=\mathrm{P}\left(\right.$ but $\left.\mathrm{in}_{\mathrm{n} 0}=\varnothing\right)$
- $F=$ all functions f of the form $f(x)=a \cup(x-b)$
- b is set of expressions that node kills
- a is set of expressions that node generates
- Another GEN/KILL analysis

Backward Dataflow Analysis

- Simulates execution of program backward against the flow of control
- For each node n, we have
$-\mathrm{in}_{\mathrm{n}}$ - value at program point before n
- out t_{n} - value at program point after n
$-f_{n}-$ transfer function for n (given out ${ }_{n}$, computes in $_{n}$)
- Require that solutions satisfy
$-\forall n$. in $n_{n}=f_{n}\left(\right.$ out $\left._{n}\right)$
$-\forall \mathrm{n} \notin \mathrm{N}_{\text {final }}$. out $_{\mathrm{n}}=\vee\left\{\right.$ in $_{\mathrm{m}} \mid \mathrm{m}$ in $\left.\operatorname{succ}(\mathrm{n})\right\}$
$-\forall \mathrm{n} \in \mathrm{N}_{\text {final }}=\mathrm{out}_{\mathrm{n}}=\perp$
Kostis Sagonas Spring 2012

Worklist Algorithm for Solving Backward Dataflow Equations

for each n do $\mathrm{in}_{\mathrm{n}}:=\mathrm{f}_{\mathrm{n}}(\perp)$
worklist := N
while worklist $\neq \varnothing$ do
remove a node n from worklist
out $_{\mathrm{n}}:=\vee\left\{\mathrm{in}_{\mathrm{m}} \mid \mathrm{m}\right.$ in $\left.\operatorname{succ}(\mathrm{n})\right\}$
$\mathrm{in}_{\mathrm{n}}:=\mathrm{f}_{\mathrm{n}}\left(\right.$ out $\left._{\mathrm{n}}\right)$
if in_{n} changed then
worklist := worklist $\cup \operatorname{pred}(n)$

Live Variables Analysis Framework

- $\mathrm{P}=$ powerset of set of all variables in program (all subsets of set of variables in program)
- $\vee=\cup$ (order is \subseteq)
- $\perp=\varnothing$
- $\mathrm{F}=$ all functions f of the form $\mathrm{f}(\mathrm{x})=\mathrm{a} \cup(\mathrm{x}-\mathrm{b})$
$-b$ is set of variables that the node kills
- a is set of variables that the node reads

Meaning of Dataflow Results

- Connection between executions of program and dataflow analysis results
- Each execution generates a trajectory of states:
$-\mathrm{s}_{0} ; \mathrm{s}_{1} ; \ldots ; \mathrm{s}_{\mathrm{k}}$, where each $\mathrm{s}_{\mathrm{i}} \in$ ST
- Map current state s_{k} to
- Program point n where execution located
- Value x in dataflow lattice
- Require $\mathrm{x} \leq \mathrm{in}_{\mathrm{n}}$

Kostis Sagonas

Sign Analysis Example

Sign analysis - compute sign of each variable v

- Base Lattice: flat lattice on $\{-$, zero,+ $\}$

- Actual lattice records a value for each variable
- Example element: [a $\rightarrow+$, $b \rightarrow z e r o, c \rightarrow-$]

Interpretation of Lattice Values

If value of v in lattice is:

- BOT: no information about the sign of v
- -: variable v is negative
- zero: variable v is 0
- +: variable v is positive
- TOP: v may be positive or negative or 0
\qquad

Operation \otimes on Lattice

Operation * on Lattice							
	\otimes	BOT	-	zero	$+$	TOP	
	BOT	BOT	-	zero	+	TOP	
	-	-	+	zero	-	TOP	
	zero	zero	zero	zero	zero	zero	
	$+$	$+$	-	zero	$+$	TOP	
	TOP	TOP	TOP	zero	TOP	TOP	
Kostis Sagonas			53				pring 2012

Kostis Sagonas

Abstraction Function for Forward Dataflow Analysis

- Meaning of analysis results is given by an abstraction function AF:ST $\rightarrow \mathrm{P}$
- Require that for all states s

$$
\mathrm{AF}(\mathrm{~s}) \leq \mathrm{in}_{\mathrm{n}}
$$

where n is program point where the execution is located in state s , and in_{n} is the abstract value before that point.

Transfer Functions

Defined by structural induction on the shape of nodes:

- If n of the form $\mathrm{v}=\mathrm{c}$
- $\mathrm{f}_{\mathrm{n}}(\mathrm{x})=\mathrm{x}[\mathrm{v} \rightarrow+]$ if c is positive
- $f_{n}(x)=x[v \rightarrow z e r o]$ if c is 0
- $f_{n}(x)=x[v \rightarrow-]$ if c is negative
- If n of the form $v_{1}=v_{2}{ }^{*} v_{3}$
- $\mathrm{f}_{\mathrm{n}}(\mathrm{x})=\mathrm{x}\left[\mathrm{v}_{1} \rightarrow \mathrm{x}\left[\mathrm{v}_{2}\right] \otimes \mathrm{x}\left[\mathrm{v}_{3}\right]\right]$

Abstraction Function

- $\mathrm{AF}(\mathrm{s})[\mathrm{v}]=$ sign of v
$-\mathrm{AF}([\mathrm{a} \rightarrow 5, \mathrm{~b} \rightarrow 0, \mathrm{c} \rightarrow-2])=[\mathrm{a} \rightarrow+, \mathrm{b} \rightarrow$ zero, $\mathrm{c} \rightarrow-]$
- Establishes meaning of the analysis results
- If analysis says a variable v has a given sign
- then v always has that sign in actual execution.
- Two sources of imprecision
- Abstraction Imprecision - concrete values (integers) abstracted as lattice values (-,zero, and +)
- Control Flow Imprecision - one lattice value for all different possible flow of control possibilities

General Sources of Imprecision

- Abstraction Imprecision
- Lattice values less precise than execution values
- Abstraction function throws away information
- Control Flow Imprecision
- Analysis result has a single lattice value to summarize results of multiple concrete executions
- Join operation \vee moves up in lattice to combine values from different execution paths
- Typically if $x \leq y$, then x is more precise than y

Augmented Execution States

- Abstraction functions for some analyses require augmented execution states
- Reaching definitions: states are augmented with the definition that created each value
- Available expressions: states are augmented with expression for each value

Why Have Imprecision?

ANSWER: To make analysis tractable

- Conceptually infinite sets of values in execution
- Typically abstracted by finite set of lattice values
- Execution may visit infinite set of states
- Abstracted by computing joins of different paths

Control Flow Imprecision:
[$\mathrm{b} \rightarrow \mathrm{TOP}$] summarizes results of all executions.
In any execution state $s, A F(s)[b] \neq T O P$
,
Abstraction Imprecision:
$[a \rightarrow 1]$ abstracted as $[a \rightarrow+] \quad a=1$

Kostis Sagonas

Soundness Proof of Analysis

Algorithm

Property to prove:
For all paths p to $n, f_{p}(\perp) \leq i n_{n}$

- Proof is by induction on the length of p
- Uses monotonicity of transfer functions
- Uses following lemma

Lemma:

The worklist algorithm produces a solution such that if $n \in \operatorname{pred}(m)$ then out ${ }_{n} \leq i n_{m}$

Kostis Sagonas

Induction Step Proof

- $\mathrm{p}=\mathrm{n}_{0}, \ldots, \mathrm{n}_{\mathrm{k}}, \mathrm{n}$
- Must show $\left(\mathrm{f}_{\mathrm{k}}\left(\mathrm{f}_{\mathrm{k}-1}\left(\ldots \mathrm{f}_{\mathrm{n} 1}\left(\mathrm{f}_{\mathrm{n} 0}(\perp)\right) \ldots\right)\right) \leq \mathrm{in}_{\mathrm{n}}\right.$
- By induction, $\left(\mathrm{f}_{\mathrm{k}-1}\left(\ldots \mathrm{f}_{\mathrm{n} 1}\left(\mathrm{f}_{\mathrm{n} 0}(\perp)\right) \ldots\right)\right) \leq \mathrm{in}_{\mathrm{nk}}$
- Apply f_{k} to both sides.

By monotonicity, we get:

$$
\left(\mathrm{f}_{\mathrm{k}}\left(\mathrm{f}_{\mathrm{k}-1}\left(\ldots \mathrm{f}_{\mathrm{n} 1}\left(\mathrm{f}_{\mathrm{n} 0}(\perp)\right) \ldots\right)\right) \leq \mathrm{f}_{\mathrm{k}}\left(\mathrm{in}_{\mathrm{nk}}\right)=\operatorname{out}_{\mathrm{nk}}\right.
$$

- By lemma, out ${ }_{\mathrm{nk}} \leq \mathrm{in}_{\mathrm{n}}$
- By transitivity, $\left(\mathrm{f}_{\mathrm{k}}\left(\mathrm{f}_{\mathrm{k}-1}\left(\ldots \mathrm{f}_{\mathrm{n} 1}\left(\mathrm{f}_{\mathrm{n} 0}(\perp)\right) \ldots\right)\right) \leq \mathrm{in}_{\mathrm{n}}\right.$
\qquad

Lack of Distributivity Example

Integer Constant Propagation (ICP)

- Flat lattice on integers

- Actual lattice records a value for each variable - Example element: $[a \rightarrow 3, b \rightarrow 2, c \rightarrow 5]$

Proof

- Base case: p is of length 0
- Then $\mathrm{p}=\mathrm{n}_{0}$ and $\mathrm{f}_{\mathrm{p}}(\perp)=\perp=\mathrm{in}_{\mathrm{n} 0}$
- Induction step:
- Assume theorem for all paths of length k
- Show for an arbitrary path p of length $\mathrm{k}+1$.

Distributivity

- Distributivity preserves precision
- If framework is distributive, then the worklist algorithm produces the meet over paths solution - For all n:

$$
\vee\left\{\mathrm{f}_{\mathrm{p}}(\perp) \mid \mathrm{p} \text { is a path to } \mathrm{n}\right\}=\mathrm{in} \mathrm{n}_{\mathrm{n}}
$$

Transfer Functions

- If n of the form $\mathrm{v}=\mathrm{c}$
$-\mathrm{f}_{\mathrm{n}}(\mathrm{x})=\mathrm{x}[\mathrm{v} \rightarrow \mathrm{c}]$
- If n of the form $v_{1}=v_{2}+v_{3}$
$-\mathrm{f}_{\mathrm{n}}(\mathrm{x})=\mathrm{x}\left[\mathrm{v}_{1} \rightarrow \mathrm{x}\left[\mathrm{v}_{2}\right]+\mathrm{x}\left[\mathrm{v}_{3}\right]\right]$
- Lack of distributivity of ICP
- Consider transfer function f for $\mathrm{c}=\mathrm{a}+\mathrm{b}$
$-\mathrm{f}([\mathrm{a} \rightarrow 3, \mathrm{~b} \rightarrow 2]) \vee \mathrm{f}([\mathrm{a} \rightarrow 2, \mathrm{~b} \rightarrow 3])=[\mathrm{a} \rightarrow$ TOP, $\mathrm{b} \rightarrow$ TOP, $\mathrm{c} \rightarrow 5]$
$-f([a \rightarrow 3, b \rightarrow 2] \vee[a \rightarrow 2, b \rightarrow 3])=f([a \rightarrow T O P, b \rightarrow T O P])=$ [$\mathrm{a} \rightarrow$ TOP, $\mathrm{b} \rightarrow$ TOP, $\mathrm{c} \rightarrow$ TOP]

Kostis Sagonas 65

Summary

- Formal dataflow analysis framework
- Lattices, partial orders
- Transfer functions, joins and splits
- Dataflow equations and fixed point solutions
- Connection with program
- Abstraction function AF: S \rightarrow P
- For any state s and program point $n, \mathrm{AF}(\mathrm{s}) \leq \mathrm{in}_{\mathrm{n}}$
- Meet over paths solutions, distributivity

