Foundations of Dataflow Analysis

Control Flow Graph:
- Nodes N – statements of program
- Edges E – flow of control
 - $\text{pred}(n)$ = set of all immediate predecessors of n
 - $\text{succ}(n)$ = set of all immediate successors of n
- Start node s_0
- Set of final nodes N_{final}

Terminology: Program Points

- One program point before each node
- One program point after each node
- Join point – program point with multiple predecessors
- Split point – program point with multiple successors

Terminology: Control-Flow Graph

Terminology: Extended Basic Block

EBB: Conceptually it is a program sequence with only one entry point but possibly several exit points.

Path of an EBB: A sequence of basic blocks B_1, B_2, \ldots, B_n where all B_i ($i > 1$) have a unique predecessor from the set B_1, \ldots, B_{i-1}.

Dataflow Analysis

Compile-Time Reasoning About Run-Time Values of Variables or Expressions at Different Program Points
- Which assignment statements produced the value of the variables at this point?
- Which variables contain values that are no longer used after this program point?
- What is the range of possible values of a variable at this program point?
Dataflow Analysis: Basic Idea

- Information about a program represented using values from an algebraic structure called lattice
- Analysis produces a lattice value for each program point
- Two flavors of analyses
 - Forward dataflow analyses
 - Backward dataflow analyses

Forward Dataflow Analysis

- Analysis propagates values forward through control flow graph with flow of control
 - Each node has a transfer function \(f \)
 - Input – value at program point before node
 - Output – new value at program point after node
 - Values flow from program points after predecessor nodes to program points before successor nodes
 - At join points, values are combined using a merge function
- Canonical Example: Reaching Definitions

Backward Dataflow Analysis

- Analysis propagates values backward through control flow graph against flow of control
 - Each node has a transfer function \(f \)
 - Input – value at program point after node
 - Output – new value at program point before node
 - Values flow from program points before successor nodes to program points after predecessor nodes
 - At split points, values are combined using a merge function
- Canonical Example: Live Variables

Partial Orders

- Set \(P \)
 - Partial order \(\leq \)
 - \(\forall x,y,z \in P \)
 - \(x \leq x \) (reflexive)
 - \(x \leq y \) and \(y \leq x \) implies \(x = y \) (antisymmetric)
 - \(x \leq y \) and \(y \leq z \) implies \(x \leq z \) (transitive)

Upper Bounds

- If \(S \subseteq P \) then
 - \(x \in P \) is an upper bound of \(S \) if \(\forall y \in S, y \leq x \)
 - \(x \in P \) is the least upper bound of \(S \) if
 - \(x \) is an upper bound of \(S \), and
 - \(x \leq y \) for all upper bounds \(y \) of \(S \)
 - \(\lor \) - join, least upper bound (lub), supremum (sup)
 - \(\lor S \) is the least upper bound of \(S \)
 - \(x \lor y \) is the least upper bound of \{\(x,y \}\}

Lower Bounds

- If \(S \subseteq P \) then
 - \(x \in P \) is a lower bound of \(S \) if \(\forall y \in S, x \leq y \)
 - \(x \in P \) is the greatest lower bound of \(S \) if
 - \(x \) is a lower bound of \(S \), and
 - \(y \leq x \) for all lower bounds \(y \) of \(S \)
 - \(\land \) - meet, greatest lower bound (glb), infimum (inf)
 - \(\land S \) is the greatest lower bound of \(S \)
 - \(x \land y \) is the greatest lower bound of \{\(x,y \}\}
Coverings

- Notation: \(x < y \) if \(x \leq y \) and \(x \neq y \)
- \(x \) is covered by \(y \) (\(y \) covers \(x \)) if
 - \(x < y \), and
 - \(-x < y \) implies \(x = z \)
- Conceptually, \(y \) covers \(x \) if there are no elements between \(x \) and \(y \)

Example

- \(P = \{000, 001, 010, 011, 100, 101, 110, 111\} \)
 - (standard boolean lattice, also called hypercube)
 - \(x \leq y \) if \((x \text{ bitwise}_\text{and} y) = x\)

 ![Hasse Diagram](image)

We can visualize a partial order with a Hasse Diagram

- If \(y \) covers \(x \)
 - Line from \(y \) to \(x \)
 - \(y \) is above \(x \) in diagram

Lattices

- If \(x \wedge y \) and \(x \vee y \) exist (i.e., are in \(P \), then \(P \) is a lattice.
- If \(\forall S \) and \(\exists S \) exist for all \(S \subseteq P \), then \(P \) is a complete lattice.
- Theorem: All finite lattices are complete
- Example of a lattice that is not complete
 - Integers \(\mathbb{Z} \)
 - For any \(x, y \in \mathbb{Z} \), \(x \vee y = \max(x,y) \), \(x \wedge y = \min(x,y) \)
 - But \(\forall Z \) and \(\exists Z \) do not exist
 - \(\mathbb{Z} \cup \{+\infty, -\infty\} \) is a complete lattice

Top and Bottom

- Greatest element of \(P \) (if it exists) is top (\(\top \))
- Least element of \(P \) (if it exists) is bottom (\(\bot \))

Connection between \(\leq \), \(\wedge \), and \(\vee \)

The following 3 properties are equivalent:
- \(x \leq y \)
- \(x \lor y = y \)
- \(x \land y = x \)
- Will prove:
 - \(x \leq y \) implies \(x \lor y = y \) and \(x \land y = x \)
 - \(x \lor y = y \) implies \(x \leq y \)
 - \(x \land y = x \) implies \(x \leq y \)
- By Transitivity,
 - \(x \lor y = y \) implies \(x \land y = x \)
 - \(x \land y = x \) implies \(x \lor y = y \)

Connecting Lemma Proofs (1)

- Proof of \(x \leq y \) implies \(x \lor y = y \)
 - \(x \leq y \) implies \(y \) is an upper bound of \(\{x, y\} \).
 - Any upper bound \(z \) of \(\{x, y\} \) must satisfy \(y \leq z \).
 - So \(y \) is least upper bound of \(\{x, y\} \) and \(x \lor y = y \)
- Proof of \(x \leq y \) implies \(x \land y = x \)
 - \(x \leq y \) implies \(x \) is a lower bound of \(\{x, y\} \).
 - Any lower bound \(z \) of \(\{x, y\} \) must satisfy \(z \leq x \).
 - So \(x \) is greatest lower bound of \(\{x, y\} \) and \(x \land y = x \)
Connecting Lemma Proofs (2)

• Proof of \(x \lor y = y \) implies \(x \leq y \)
 – \(y \) is an upper bound of \(\{x, y\} \) implies \(x \leq y \)

• Proof of \(x \land y = x \) implies \(x \leq y \)
 – \(x \) is a lower bound of \(\{x, y\} \) implies \(x \leq y \)

Lattices as Algebraic Structures

• Have defined \(\lor \) and \(\land \) in terms of \(\leq \)

• Will now define \(\leq \) in terms of \(\lor \) and \(\land \)

 – Start with \(\lor \) and \(\land \) as arbitrary algebraic operations
 that satisfy associative, commutative, idempotence, and absorption laws
 – Will define \(\leq \) using \(\lor \) and \(\land \)
 – Will show that \(\leq \) is a partial order

Algebraic Properties of Lattices

Assume arbitrary operations \(\lor \) and \(\land \) such that

– \((x \lor y) \lor z = x \lor (y \lor z) \) (associativity of \(\lor \))
– \((x \land y) \land z = x \land (y \land z) \) (associativity of \(\land \))
– \(x \lor y = y \lor x \) (commutativity of \(\lor \))
– \(x \land y = y \land x \) (commutativity of \(\land \))
– \(x \lor (x \land y) = x \) (absorption of \(\lor \) over \(\land \))
– \(x \land (x \lor y) = x \) (absorption of \(\land \) over \(\lor \))

Connection Between \(\land \) and \(\lor \)

Theorem: \(x \lor y = y \) if and only if \(x \land y = x \)

• Proof of \(x \lor y = y \) implies \(x = x \land y \)
 \(x = x \land (x \lor y) \) (by absorption)
 \(= x \land y \) (by assumption)

• Proof of \(x \land y = x \) implies \(y = x \lor y \)
 \(y = y \lor (x \land y) \) (by commutativity)
 \(= y \lor x \) (by assumption)
 \(= x \lor y \) (by commutativity)

Properties of \(\leq \)

• Define \(x \leq y \) if \(x \lor y = y \)

• Proof of transitive property. Must show that
 \(x \lor y = y \) and \(y \lor z = z \) implies \(x \lor z = z \)
 \(x \lor z = x \lor (y \lor z) \) (by assumption)
 \(= (x \lor y) \lor z \) (by associativity)
 \(= y \lor z \) (by assumption)
 \(= z \) (by assumption)

• Proof of antisymmetry property. Must show that
 \(x \lor y = y \) and \(y \lor x = x \) implies \(x = y \)
 \(x = y \lor x \) (by assumption)
 \(= x \lor y \) (by commutativity)
 \(= y \) (by assumption)

• Proof of reflexivity property. Must show that
 \(x \lor x = x \)
 \(x \lor x = x \) (by idempotence)

Properties of \(\leq \)

• Proof of antisymmetry property. Must show that
 \(x \lor y = y \) and \(y \lor x = x \) implies \(x = y \)
 \(x = y \lor x \) (by assumption)
 \(= x \lor y \) (by commutativity)
 \(= y \) (by assumption)

• Proof of reflexivity property. Must show that
 \(x \lor x = x \)
 \(x \lor x = x \) (by idempotence)
Properties of \leq

- Induced operation \leq agrees with original definitions of \lor and \land, i.e.,
 \[x \lor y = \sup \{x, y\} \]
 \[x \land y = \inf \{x, y\} \]

Proof of $x \lor y = \sup \{x, y\}$

- Consider any upper bound u for x and y.
- Given $x \lor u = u$ and $y \lor u = u$, must show $x \lor y \leq u$, i.e., $(x \lor y) \lor u = u$.
 \[u = x \lor u \quad \text{(by assumption)} \]
 \[= x \lor (y \lor u) \quad \text{(by assumption)} \]
 \[= (x \lor y) \lor u \quad \text{(by associativity)} \]

Proof of $x \land y = \inf \{x, y\}$

- Consider any lower bound l for x and y.
- Given $x \land l = l$ and $y \land l = l$, must show $l \leq x \land y$, i.e., $(x \land y) \land l = l$.
 \[1 = x \land 1 \quad (\text{by assumption}) \]
 \[= x \land (y \land l) \quad (\text{by assumption}) \]
 \[= (x \land y) \land l \quad (\text{by associativity}) \]

Chains

- A set S is a chain if $\forall x, y \in S, y \leq x$ or $x \leq y$.
- P has no infinite chains if every chain in P is finite.
- P satisfies the ascending chain condition if for all sequences $x_1 \leq x_2 \leq \ldots$ there exists n such that $x_n = x_{n+1} = \ldots$

Transfer Functions

- Assume a lattice of abstract values P.
- Transfer function $f : P \to P$ for each node in control flow graph.
- f models effect of the node on program information.

Properties of Transfer Functions

Each dataflow analysis problem has a set F of transfer functions $f : P \to P$.
- Identity function $i \in F$.
- F must be closed under composition: $\forall f, g \in F$, the function $h = \lambda x. f(g(x)) \in F$.
- Each $f \in F$ must be monotone: $x \leq y$ implies $f(x) \leq f(y)$.
- Sometimes all $f \in F$ are distributive: $f(x \lor y) = f(x) \lor f(y)$.
- Distributivity implies monotonicity.
Distributivity Implies Monotonicity

Proof:
• Assume \(f(x \lor y) = f(x) \lor f(y) \)
• Must show: \(x \lor y = y \) implies \(f(x) \lor f(y) = f(y) \)
 \[
 f(y) = f(x \lor y) \quad \text{(by assumption)}
 = f(x) \lor f(y) \quad \text{(by distributivity)}
 \]

Forward Dataflow Analysis

• Simulates execution of program forward with flow of control
• For each node \(n \), have
 - \(\text{in}_n \) – value at program point before \(n \)
 - \(\text{out}_n \) – value at program point after \(n \)
 - \(f_n \) – transfer function for \(n \) (given \(\text{in}_n \) computes \(\text{out}_n \))
• Require that solutions satisfy
 - \(\forall n, \text{out}_n = f_n(\text{in}_n) \)
 - \(\forall n \neq n_0, \text{in}_n = \lor \{ \text{out}_m | m \in \text{pred}(n) \} \)
 - \(\text{in}_{n_0} = \bot \)

Dataflow Equations

• Result is a set of dataflow equations
 \[
 \text{out}_n := f_n(\text{in}_n) \\
 \text{in}_n := \lor \{ \text{out}_m | m \in \text{pred}(n) \}
 \]
• Conceptually separates analysis problem from program

Worklist Algorithm for Solving Forward Dataflow Equations

for each \(n \) do \(\text{out}_n := f_n(\bot) \)
worklist := \(N \)
while worklist \(\neq \emptyset \) do
 remove a node \(n \) from worklist
 \(\text{inn} := \lor \{ \text{out}_m | m \in \text{pred}(n) \} \)
 \(\text{out}_n := f_n(\text{inn}) \)
 if \(\text{out}_n \) changed then
 worklist := worklist \cup \text{succ}(n)

Correctness Argument

Why result satisfies dataflow equations?
• Whenever we process a node \(n \), set \(\text{out}_n := f_n(\text{in}_n) \)
 Algorithm ensures that \(\text{out}_n = f_n(\text{in}_n) \)
• Whenever \(\text{out}_n \) changes, put \(\text{succ}(m) \) on worklist.
 Consider any node \(n \in \text{succ}(m) \).
 It will eventually come off the worklist and the algorithm will set
 \[
 \text{in}_n := \lor \{ \text{out}_m | m \in \text{pred}(n) \}
 \]
 to ensure that \(\text{in}_n = \lor \{ \text{out}_m | m \in \text{pred}(n) \} \)

Termination Argument

Why does the algorithm terminate?
• Sequence of values taken on by \(\text{in}_n \) or \(\text{out}_n \) is a chain. If values stop increasing, the worklist empties and the algorithm terminates.
• If the lattice has the ascending chain property, the algorithm terminates
 – Algorithm terminates for finite lattices
 – For lattices without the ascending chain property, we must use a widening operator
Widening Operators

- Detect lattice values that may be part of an infinitely ascending chain
- Artificially raise value to least upper bound of the chain
- Example:
 - Lattice is set of all subsets of integers
 - Widening operator might raise all sets of size n or greater to \(\text{TOP} \)
 - Could be used to collect possible values taken on by a variable during execution of the program

Reaching Definitions

- Concept of definition and use
 - \(z = x \times y \)
 - is a definition of \(z \)
 - is a use of \(x \) and \(y \)
- A definition reaches a use if
 - the value written by definition
 - may be read by the use.

Reaching Definitions Framework

- \(P = \) powerset of set of all definitions in program (all subsets of set of definitions in program)
- \(\lor = \) \(\cup \) (order is \(\subseteq \))
- \(\bot = \) \(\emptyset \)
- \(F = \) all functions \(f \) of the form \(f(x) = a \cup (x-b) \)
 - \(b \) is set of definitions that node kills
 - \(a \) is set of definitions that node generates
- General pattern for many transfer functions
 - \(f(x) = \text{GEN} \cup (x\text{-KILL}) \)

Does Reaching Definitions Framework Satisfy Properties?

- \(\subseteq \) satisfies conditions for \(\leq \)
 - \(x \leq y \) and \(y \leq z \) implies \(x \leq z \) (transitivity)
 - \(x \leq y \) and \(y \leq x \) implies \(y = x \) (antisymmetry)
 - \(x \leq x \) (reflexivity)
- \(F \) satisfies transfer function conditions
 - \(\lambda x. (x \lor (x\cdot F)) = \lambda x. x \in F \) (identity)
 - Will show \(f(x \lor y) = f(x) \lor f(y) \) (distributivity)
 - \(f(x \lor y) = (a \lor (x \cdot b)) \lor (a \lor (y \cdot b)) \)
 - \(a \lor (x \cdot b) \lor (y \cdot b) \)
 - \(a \lor ((x \cup y) \cdot b) \)
 - \(f(x \cup y) \)

Does Reaching Definitions Framework Satisfy Properties?

- What about composition?
 - Given \(f_1(x) = a_1 \cup (x \cdot b_1) \) and \(f_2(x) = a_2 \cup (x \cdot b_2) \)
 - Must show \(f_1(f_2(x)) \) can be expressed as \(a \cup (x \cdot b) \)
 - \(f_1(f_2(x)) = a_1 \cup ((a_2 \cup (x \cdot b_2)) \cdot b_1) \)
 - \(= a_1 \cup ((a_2 \cdot b_2) \cup ((x \cdot b_2) \cdot b_1)) \)
 - \(= (a_1 \cdot (a_2 \cdot b_2)) \cup ((x \cdot b_2) \cdot b_1)) \)
 - \(= (a_1 \cdot (a_2 \cdot b_2)) \cup ((x \cdot b_2) \cdot b_1)) \)
 - Let \(a = (a_1 \cdot (a_2 \cdot b_2)) \) and \(b = b_2 \cup b_1 \)
 - Then \(f_1(f_2(x)) = a \cup (x \cdot b) \)
General Result
All GEN/KILL transfer function frameworks satisfy the properties:
– Identity
– Distributivity
– Compositionality

Available Expressions Framework
• P = powerset of set of all expressions in program (all subsets of set of expressions)
• \(\lor = \cap \) (order is \(\supseteq \))
• \(\bot = P \) (but \(\text{in}_{ \emptyset } = \emptyset \))
• F = all functions \(f \) of the form \(f(x) = a \cup (x-b) \)
 – b is set of expressions that node kills
 – a is set of expressions that node generates
• Another GEN/KILL analysis

Concept of Conservatism
• Reaching definitions use \(\cup \) as join
 – Optimizations must take into account all definitions that reach along ANY path
• Available expressions use \(\cap \) as join
 – Optimization requires expression to reach along ALL paths
• Optimizations must conservatively take all possible executions into account.
• Structure of analysis varies according to the way the results of the analysis are to be used.

Backward Dataflow Analysis
• Simulates execution of program backward against the flow of control
• For each node \(n \), we have
 – in\(_ n \) – value at program point before \(n \)
 – out\(_ n \) – value at program point after \(n \)
 – \(f_n \) – transfer function for \(n \) (given out\(_ n \), computes in\(_ n \))
• Require that solutions satisfy
 – \(\forall n. \text{in}_{ n } = f_{ n } (\text{out}_{ n }) \)
 – \(\forall n \notin N_{\text{final}}. \text{out}_{ n } = \lor \{ \text{in}_{ m } | m \in \text{succ}(n) \} \)
 – \(\forall n \in N_{\text{final}} = \text{out}_{ n } = \bot \)

Worklist Algorithm for Solving Backward Dataflow Equations
for each \(n \) do \(\text{in}_n := f_n(\bot) \)
worklist := N
while worklist \(\neq \emptyset \) do
 remove a node \(n \) from worklist
 \(\text{out}_n := \lor \{ \text{in}_m | m \in \text{succ}(n) \} \)
 \(\text{in}_n := f_n(\text{out}_n) \)
 if \(\text{in}_n \) changed then
 worklist := worklist \(\cup \) pred\((n)\)

Live Variables Analysis Framework
• P = powerset of set of all variables in program (all subsets of set of variables in program)
• \(\lor = \cup \) (order is \(\subseteq \))
• \(\bot = \emptyset \)
• F = all functions \(f \) of the form \(f(x) = a \cup (x-b) \)
 – b is set of variables that the node kills
 – a is set of variables that the node reads
Meaning of Dataflow Results

• Connection between executions of program and dataflow analysis results
• Each execution generates a trajectory of states: \(s_0; s_1; \ldots; s_k \), where each \(s_i \in ST \)
• Map current state \(s_k \) to
 – Program point \(n \) where execution located
 – Value \(x \) in dataflow lattice
• Require \(x \leq \text{inn} \)

Abstraction Function for Forward Dataflow Analysis

• Meaning of analysis results is given by an abstraction function \(AF: ST \to P \)
• Require that for all states \(s \)
 \[AF(s) \leq \text{inn}_n \]
 where \(n \) is program point where the execution is located in state \(s \), and \(\text{inn}_n \) is the abstract value before that point.

Sign Analysis Example

Sign analysis - compute sign of each variable \(v \)
• Base Lattice: flat lattice on \{-, zero, +\}
 - TOP
 - zero
 - +
 - BOT
• Actual lattice records a value for each variable
 – Example element: \([a \to +, b \to \text{zero}, c \to -]\)

Interpretation of Lattice Values

If value of \(v \) in lattice is:
 – BOT: no information about the sign of \(v \)
 – -: variable \(v \) is negative
 – zero: variable \(v \) is 0
 – +: variable \(v \) is positive
 – TOP: \(v \) may be positive or negative or 0

Operation \(\otimes \) on Lattice

<table>
<thead>
<tr>
<th>(\otimes)</th>
<th>BOT</th>
<th>-</th>
<th>zero</th>
<th>+</th>
<th>TOP</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOT</td>
<td>BOT</td>
<td>-</td>
<td>zero</td>
<td>+</td>
<td>TOP</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>+</td>
<td>zero</td>
<td>-</td>
<td>TOP</td>
</tr>
<tr>
<td>zero</td>
<td>zero</td>
<td>zero</td>
<td>zero</td>
<td>zero</td>
<td>zero</td>
</tr>
<tr>
<td>+</td>
<td>+</td>
<td>-</td>
<td>zero</td>
<td>+</td>
<td>TOP</td>
</tr>
<tr>
<td>TOP</td>
<td>TOP</td>
<td>TOP</td>
<td>zero</td>
<td>TOP</td>
<td>TOP</td>
</tr>
</tbody>
</table>

Transfer Functions

Defined by structural induction on the shape of nodes:
 – If \(n \) of the form \(v = c \)
 • \(f(x) = x[v \to +] \) if \(c \) is positive
 • \(f(x) = x[v \to \text{zero}] \) if \(c \) is 0
 • \(f(x) = x[v \to -] \) if \(c \) is negative
 – If \(n \) of the form \(v_i = v_j \)
 • \(f(x) = x[v_i \to x[v_j \otimes x[v_j]]] \)
Abstraction Function

• $AF(s)[v] = \text{sign of } v$
 – $AF([a\to 5, b\to 0, c\to 2]) = [a\to +, b\to \text{zero}, c\to -]$

• Establishes meaning of the analysis results
 – If analysis says a variable v has a given sign
 – then v always has that sign in actual execution.

• Two sources of imprecision
 – Abstraction Imprecision – concrete values (integers) abstracted as lattice values (-, zero, and +)
 – Control Flow Imprecision – one lattice value for all different possible flow of control possibilities

Imprecision Example

Abstraction Imprecision:

$$a = 1$$

$$[a\to+]$$

$$b = -1$$

$$[a\to+, b\to+]$$

$$c = a^b$$

Control Flow Imprecision:

$$[b\to \text{TOP}]$$ summarizes results of all executions.

In any execution state s, $AF(s)[b] \neq \text{TOP}$

General Sources of Imprecision

• Abstraction Imprecision
 – Lattice values less precise than execution values
 – Abstraction function throws away information

• Control Flow Imprecision
 – Analysis result has a single lattice value to summarize results of multiple concrete executions
 – Join operation \lor moves up in lattice to combine values from different execution paths

 Typically if $x \leq y$, then x is more precise than y.

Why Have Imprecision?

ANSWER: To make analysis tractable

• Conceptually infinite sets of values in execution
 – Typically abstracted by finite set of lattice values

• Execution may visit infinite set of states
 – Abstracted by computing joins of different paths

Augmented Execution States

• Abstraction functions for some analyses require augmented execution states
 – Reaching definitions: states are augmented with the definition that created each value
 – Available expressions: states are augmented with expression for each value

Meet Over All Paths Solution

• What solution would be ideal for a forward dataflow analysis problem?

• Consider a path $p = n_0, n_1, \ldots, n_k$ to a node n (note that for all i, $n_i \in \text{pred}(n_{i+1})$)

• The solution must take this path into account:
 $$f_p(L) = (f_{n_k}(f_{n_{k-1}}(\ldots(f_{n_1}(\bot)) \ldots)) \leq n_k$$

• So the solution must have the property that
 $$\forall \{\mu(L) \mid p \text{ is a path to } n\} \leq n_k$$

 and ideally
 $$\forall \{\mu(L) \mid p \text{ is a path to } n\} = n_k$$
Soundness Proof of Analysis Algorithm

Property to prove:
For all paths p to n, \(f_p(\bot) \leq i_n \)

- Proof is by induction on the length of p
 - Uses monotonicity of transfer functions
 - Uses following lemma

Lemma:
The worklist algorithm produces a solution such that
if \(n \in \text{pred}(m) \) then \(o_n \leq i_m \)

Proof

- Base case: p is of length 0
 - Then \(p = n_0 \) and \(f_p(\bot) = \bot = i_{n_0} \)
- Induction step:
 - Assume theorem for all paths of length k
 - Show for an arbitrary path p of length k+1.

Induction Step Proof

- \(p = n_0, \ldots, n_k, n \)
- Must show \((f_k(f_{k-1}(\ldots f_{n_1}(f_{n_0}(\bot)) \ldots))) \leq i_n \)
 - By induction, \((f_k(f_{k-1}(\ldots f_{n_1}(f_{n_0}(\bot)) \ldots))) \leq i_{n_k} \)
 - By monotonicity, we get:
 - By lemma, \(o_{n_k} \leq i_n \)
 - By transitivity, \((f_k(f_{k-1}(\ldots f_{n_1}(f_{n_0}(\bot)) \ldots))) \leq i_n \)

Distributivity

- Distributivity preserves precision
- If framework is distributive, then the worklist algorithm produces the meet over paths solution
 - For all n:
 \[
 \lor \{f_p(\bot) \mid p \text{ is a path to } n\} = i_n
 \]

Lack of Distributivity Example

Integer Constant Propagation (ICP)
- Flat lattice on integers

\[
\begin{array}{c|c|c|c|c|c}
 & \text{TOP} & -1 & 0 & 1 & \text{BOT} \\
\hline
-2 & \text{BOT} & -1 & 0 & 1 & \text{TOP} \\
\end{array}
\]
- Example element: \([a \rightarrow 3, b \rightarrow 2, c \rightarrow 5]\)

Transfer Functions

- If n of the form \(v = c \)
 - \(f_v(x) = x[v\rightarrow c] \)
- If n of the form \(v_1 = v_2 + v_3 \)
 - \(f_v(x) = x[v_1\rightarrow x[v_2] + x[v_3]] \)
- Lack of distributivity of ICP
 - Consider transfer function \(f \) for \(c = a + b \)
 - \(f([a \rightarrow 3, b \rightarrow 2]) \lor f([a \rightarrow 2, b \rightarrow 3]) = [a \rightarrow \text{TOP}, b \rightarrow \text{TOP}, c \rightarrow 5] \)
 - \(f([a \rightarrow 3, b \rightarrow 2], [a \rightarrow 2, b \rightarrow 3]) = f([a \rightarrow \text{TOP}, b \rightarrow \text{TOP}]) = [a \rightarrow \text{TOP}, b \rightarrow \text{TOP}, c \rightarrow \text{TOP}] \)
Lack of Distributivity Anomaly

\[\begin{align*}
 a &= 2 & a &= 3 \\
 b &= 3 & b &= 2 \\
 [a \rightarrow 2, b \rightarrow 3] & \quad [a \rightarrow 3, b \rightarrow 2] \\
 [a \rightarrow \text{TOP}, b \rightarrow \text{TOP}] & \quad [a \rightarrow \text{TOP}, b \rightarrow \text{TOP}] \\
 c &= a + b & \text{Lack of Distributivity Imprecision:} & \quad [a \rightarrow \text{TOP}, b \rightarrow \text{TOP}, c \rightarrow 5] \text{ more precise} \\
 [a \rightarrow \text{TOP}, b \rightarrow \text{TOP}, c \rightarrow \text{TOP}] & \quad [a \rightarrow \text{TOP}, b \rightarrow \text{TOP}, c \rightarrow \text{TOP}]
\end{align*} \]

Summary

- Formal dataflow analysis framework
 - Lattices, partial orders
 - Transfer functions, joins and splits
 - Dataflow equations and fixed point solutions
- Connection with program
 - Abstraction function AF: S \rightarrow P
 - For any state s and program point n, AF(s) \leq \text{in}_n
 - Meet over paths solutions, distributivity