
Foundations of
Dataflow Analysis

Kostis Sagonas 2 Spring 2012

Terminology: Program Representation

Control Flow Graph:
– Nodes N – statements of program
– Edges E – flow of control

• pred(n) = set of all immediate predecessors of n
• succ(n) = set of all immediate successors of n

– Start node n0

– Set of final nodes Nfinal

Kostis Sagonas 3 Spring 2012

Terminology: Control-Flow Graph

m ← a + b
n ← a + b

A

p ← c + d
r ← c + d

B

y ← a + b
z ← c + d

G

q ← a + b
r ← c + d

C

e ← b + 18
s ← a + b
u ← e + f

D e ← a + 17
t ← c + d
u ← e + f

E

v ← a + b
w ← c + d
x ← e + f

F

Control-flow graph (CFG)

• Nodes for basic blocks

• Edges for branches

• Basis for much of program
analysis & transformation

This CFG, G = (N,E)

• N = {A,B,C,D,E,F,G}

• E = {(A,B),(A,C),(B,G),(C,D),
(C,E),(D,F),(E,F),(F,E)}

• |N| = 7, |E| = 8

Kostis Sagonas 4 Spring 2012

Extended Basic Block (EBB):
A sequence of basic blocks
B1, B2, …, Bn where all Bi (i > 1)
have a unique predecessor
from the set B1, …, Bi-1 .

Terminology: Extended Basic Block
m ← a + b
n ← a + b

A

p ← c + d
r ← c + d

B

y ← a + b
z ← c + d

G

q ← a + b
r ← c + d

C

e ← b + 18
s ← a + b
u ← e + f

D e ← a + 17
t ← c + d
u ← e + f

E

v ← a + b
w ← c + d
x ← e + f

F

Path of an EBB: A sequence of basic blocks
B1, B2, …, Bn where Bi is the predecessor of Bi+1.

EBB: Conceptually it is a
program sequence with
only one entry point but
possibly several exit points.

Kostis Sagonas 5 Spring 2012

• One program point before each node
• One program point after each node
• Join point – program point with multiple

predecessors
• Split point – program point with multiple

successors

Terminology: Program Points

Kostis Sagonas 6 Spring 2012

Dataflow Analysis

Compile-Time Reasoning About
Run-Time Values of Variables or Expressions
at Different Program Points
– Which assignment statements produced the value of

the variables at this point?
– Which variables contain values that are no longer

used after this program point?
– What is the range of possible values of a variable at

this program point?

Kostis Sagonas 7 Spring 2012

Dataflow Analysis: Basic Idea

• Information about a program represented using
values from an algebraic structure called lattice

• Analysis produces a lattice value for each
program point

• Two flavors of analyses
– Forward dataflow analyses
– Backward dataflow analyses

Kostis Sagonas 8 Spring 2012

Forward Dataflow Analysis

• Analysis propagates values forward through
control flow graph with flow of control
– Each node has a transfer function f

• Input – value at program point before node
• Output – new value at program point after node

– Values flow from program points after predecessor
nodes to program points before successor nodes

– At join points, values are combined using a merge
function

• Canonical Example: Reaching Definitions

Kostis Sagonas 9 Spring 2012

Backward Dataflow Analysis

• Analysis propagates values backward through
control flow graph against flow of control
– Each node has a transfer function f

• Input – value at program point after node
• Output – new value at program point before node

– Values flow from program points before successor
nodes to program points after predecessor nodes

– At split points, values are combined using a merge
function

– Canonical Example: Live Variables
Kostis Sagonas 10 Spring 2012

Partial Orders

• Set P
• Partial order ≤ such that ∀x,y,z∈P

– x ≤ x (reflexive)
– x ≤ y and y ≤ x implies x = y (antisymmetric)
– x ≤ y and y ≤ z implies x ≤ z (transitive)

Kostis Sagonas 11 Spring 2012

Upper Bounds

• If S ⊆ P then
– x∈P is an upper bound of S if ∀y∈S, y ≤ x
– x∈P is the least upper bound of S if

• x is an upper bound of S, and
• x ≤ y for all upper bounds y of S

– ∨ - join, least upper bound (lub), supremum (sup)
• ∨ S is the least upper bound of S
• x ∨ y is the least upper bound of {x,y}

Kostis Sagonas 12 Spring 2012

Lower Bounds

• If S ⊆ P then
– x∈P is a lower bound of S if ∀y∈S, x ≤ y
– x∈P is the greatest lower bound of S if

• x is a lower bound of S, and
• y ≤ x for all lower bounds y of S

– ∧ - meet, greatest lower bound (glb), infimum (inf)
• ∧ S is the greatest lower bound of S
• x ∧ y is the greatest lower bound of {x,y}

Kostis Sagonas 13 Spring 2012

Coverings

• Notation: x< y if x ≤ y and x≠y

• x is covered by y (y covers x) if
– x < y, and
– x ≤ z < y implies x = z

• Conceptually, y covers x if there are no
elements between x and y

Kostis Sagonas 14 Spring 2012

Example
• P = {000, 001, 010, 011, 100, 101, 110, 111}

(standard boolean lattice, also called hypercube)
• x ≤ y if (x bitwise_and y) = x

111

011
101

110

010
001

000

100

We can visualize a partial
order with a Hasse Diagram

• If y covers x
• Line from y to x
• y is above x in diagram

Kostis Sagonas 15 Spring 2012

Lattices

• If x ∧ y and x ∨ y exist (i.e., are in P) for all x,y∈P,
then P is a lattice.

• If ∧S and ∨S exist for all S ⊆ P,
then P is a complete lattice.

• Theorem: All finite lattices are complete
• Example of a lattice that is not complete

– Integers Z
– For any x, y∈Z, x ∨ y = max(x,y), x ∧ y = min(x,y)
– But ∨ Z and ∧ Z do not exist
– Z ∪ {+∞,−∞ } is a complete lattice

Kostis Sagonas 16 Spring 2012

Top and Bottom

• Greatest element of P (if it exists) is top (T)
• Least element of P (if it exists) is bottom (⊥)

Kostis Sagonas 17 Spring 2012

Connection between ≤, ∧, and ∨
The following 3 properties are equivalent:

– x ≤ y
– x ∨ y = y
– x ∧ y = x

• Will prove:
– x ≤ y implies x ∨ y = y and x ∧ y = x
– x ∨ y = y implies x ≤ y
– x ∧ y = x implies x ≤ y

• By Transitivity,
– x ∨ y = y implies x ∧ y = x
– x ∧ y = x implies x ∨ y = y

Kostis Sagonas 18 Spring 2012

Connecting Lemma Proofs (1)

• Proof of x ≤ y implies x ∨ y = y
– x ≤ y implies y is an upper bound of {x,y}.
– Any upper bound z of {x,y} must satisfy y ≤ z.
– So y is least upper bound of {x,y} and x ∨ y = y

• Proof of x ≤ y implies x ∧ y = x
– x ≤ y implies x is a lower bound of {x,y}.
– Any lower bound z of {x,y} must satisfy z ≤ x.
– So x is greatest lower bound of {x,y} and x ∧ y = x

Kostis Sagonas 19 Spring 2012

Connecting Lemma Proofs (2)

• Proof of x ∨ y = y implies x ≤ y
– y is an upper bound of {x,y} implies x ≤ y

• Proof of x ∧ y = x implies x ≤ y
– x is a lower bound of {x,y} implies x ≤ y

Kostis Sagonas 20 Spring 2012

Lattices as Algebraic Structures

• Have defined ∨ and ∧ in terms of ≤
• Will now define ≤ in terms of ∨ and ∧

– Start with ∨ and ∧ as arbitrary algebraic operations
that satisfy associative, commutative, idempotence,
and absorption laws

– Will define ≤ using ∨ and ∧
– Will show that ≤ is a partial order

Kostis Sagonas 21 Spring 2012

Algebraic Properties of Lattices

Assume arbitrary operations ∨ and ∧ such that
– (x ∨ y) ∨ z = x ∨ (y ∨ z) (associativity of ∨)
– (x ∧ y) ∧ z = x ∧ (y ∧ z) (associativity of ∧)
– x ∨ y = y ∨ x (commutativity of ∨)
– x ∧ y = y ∧ x (commutativity of ∧)
– x ∨ x = x (idempotence of ∨)
– x ∧ x = x (idempotence of ∧)
– x ∨ (x ∧ y) = x (absorption of ∨ over ∧)
– x ∧ (x ∨ y) = x (absorption of ∧ over ∨)

Kostis Sagonas 22 Spring 2012

Connection Between ∧ and ∨

Theorem: x ∨ y = y if and only if x ∧ y = x
• Proof of x ∨ y = y implies x = x ∧ y

x = x ∧ (x ∨ y) (by absorption)
= x ∧ y (by assumption)

• Proof of x ∧ y = x implies y = x ∨ y
y = y ∨ (y ∧ x) (by absorption)

= y ∨ (x ∧ y) (by commutativity)
= y ∨ x (by assumption)
= x ∨ y (by commutativity)

Kostis Sagonas 23 Spring 2012

Properties of ≤

• Define x ≤ y if x ∨ y = y
• Proof of transitive property. Must show that

x ∨ y = y and y ∨ z = z implies x ∨ z = z
x ∨ z = x ∨ (y ∨ z) (by assumption)

= (x ∨ y) ∨ z (by associativity)
= y ∨ z (by assumption)
= z (by assumption)

Kostis Sagonas 24 Spring 2012

Properties of ≤

• Proof of antisymmetry property. Must show that
x ∨ y = y and y ∨ x = x implies x = y

x = y ∨ x (by assumption)
= x ∨ y (by commutativity)
= y (by assumption)

• Proof of reflexivity property. Must show that
x ∨ x = x

x ∨ x = x (by idempotence)

Kostis Sagonas 25 Spring 2012

Properties of ≤

• Induced operation ≤ agrees with original
definitions of ∨ and ∧, i.e.,
– x ∨ y = sup {x, y}
– x ∧ y = inf {x, y}

Kostis Sagonas 26 Spring 2012

Proof of x ∨ y = sup {x, y}

• Consider any upper bound u for x and y.
• Given x ∨ u = u and y ∨ u = u, must show

x ∨ y ≤ u, i.e., (x ∨ y) ∨ u = u
u = x ∨ u (by assumption)

= x ∨ (y ∨ u) (by assumption)
= (x ∨ y) ∨ u (by associativity)

Kostis Sagonas 27 Spring 2012

Proof of x ∧ y = inf {x, y}

• Consider any lower bound l for x and y.
• Given x ∧ l = l and y ∧ l = l, must show

l ≤ x ∧ y, i.e., (x ∧ y) ∧ l = l
l = x ∧ l (by assumption)

= x ∧ (y ∧ l) (by assumption)
= (x ∧ y) ∧ l (by associativity)

Kostis Sagonas 28 Spring 2012

Chains

• A set S is a chain if ∀x,y∈S. y ≤ x or x ≤ y
• P has no infinite chains if every chain in P is

finite
• P satisfies the ascending chain condition if

for all sequences x1 ≤ x2 ≤ …there exists n
such that xn = xn+1 = …

Kostis Sagonas 29 Spring 2012

Transfer Functions

• Assume a lattice of abstract values P
• Transfer function f: P→P for each node in

control flow graph
• f models effect of the node on the program

information

Kostis Sagonas 30 Spring 2012

Properties of Transfer Functions
Each dataflow analysis problem has a set F of

transfer functions f: P→P
– Identity function i∈F
– F must be closed under composition:
∀f,g∈F, the function h = λx.f(g(x)) ∈F

– Each f ∈F must be monotone:
x ≤ y implies f(x) ≤ f(y)

– Sometimes all f ∈F are distributive:
f(x ∨ y) = f(x) ∨ f(y)

– Distributivity implies monotonicity

Kostis Sagonas 31 Spring 2012

Distributivity Implies Monotonicity

Proof:
• Assume f(x ∨ y) = f(x) ∨ f(y)
• Must show: x ∨ y = y implies f(x) ∨ f(y) = f(y)

f(y) = f(x ∨ y) (by assumption)
= f(x) ∨ f(y) (by distributivity)

Kostis Sagonas 32 Spring 2012

Forward Dataflow Analysis

• Simulates execution of program forward with
flow of control

• For each node n, have
– inn – value at program point before n
– outn – value at program point after n
– fn – transfer function for n (given inn, computes outn)

• Require that solutions satisfy
– ∀n, outn = fn(inn)
– ∀n ≠ n0, inn = ∨ { outm | m in pred(n) }
– inn0 = ⊥

Kostis Sagonas 33 Spring 2012

Dataflow Equations

• Result is a set of dataflow equations
outn := fn(inn)

inn := ∨ { outm | m in pred(n) }
• Conceptually separates analysis problem from

program

Kostis Sagonas 34 Spring 2012

Worklist Algorithm for Solving
Forward Dataflow Equations

for each n do outn := fn(⊥)
worklist := N
while worklist ≠ ∅ do

remove a node n from worklist
inn := ∨ { outm | m in pred(n) }
outn := fn(inn)
if outn changed then

worklist := worklist ∪ succ(n)

Kostis Sagonas 35 Spring 2012

Correctness Argument

Why result satisfies dataflow equations?
• Whenever we process a node n, set outn := fn(inn)

Algorithm ensures that outn = fn(inn)
• Whenever outm changes, put succ(m) on worklist.

Consider any node n ∈ succ(m).
It will eventually come off the worklist and the
algorithm will set

inn := ∨ { outm | m in pred(n) }
to ensure that inn = ∨ { outm | m in pred(n) }

Kostis Sagonas 36 Spring 2012

Termination Argument

Why does the algorithm terminate?
• Sequence of values taken on by inn or outn is a

chain. If values stop increasing, the worklist
empties and the algorithm terminates.

• If the lattice has the ascending chain property,
the algorithm terminates
– Algorithm terminates for finite lattices
– For lattices without the ascending chain property,

we must use a widening operator

Kostis Sagonas 37 Spring 2012

Widening Operators

• Detect lattice values that may be part of an
infinitely ascending chain

• Artificially raise value to least upper bound of
the chain

• Example:
– Lattice is set of all subsets of integers
– Widening operator might raise all sets of size n or

greater to TOP
– Could be used to collect possible values taken on by

a variable during execution of the program

Kostis Sagonas 38 Spring 2012

Reaching Definitions

• Concept of definition and use
– z = x+y
– is a definition of z
– is a use of x and y

• A definition reaches a use if
– the value written by definition
– may be read by the use.

Kostis Sagonas 39 Spring 2012

Reaching Definitions
s = 0;
a = 4;
i = 0;

k == 0

b = 1; b = 2;

i < n

s = s + a*b;
i = i + 1; return s

Kostis Sagonas 40 Spring 2012

Reaching Definitions Framework

• P = powerset of set of all definitions in program
(all subsets of set of definitions in program)

• ∨ = ∪ (order is ⊆)
• ⊥ = ∅
• F = all functions f of the form f(x) = a ∪ (x-b)

– b is set of definitions that node kills
– a is set of definitions that node generates

General pattern for many transfer functions
– f(x) = GEN ∪ (x-KILL)

Kostis Sagonas 41 Spring 2012

Does Reaching Definitions
Framework Satisfy Properties?

• ⊆ satisfies conditions for ≤
– x ⊆ y and y ⊆ z implies x ⊆ z (transitivity)
– x ⊆ y and y ⊆ x implies y = x (antisymmetry)
– x ⊆ x (reflexivity)

• F satisfies transfer function conditions
– λx.∅ ∪ (x- ∅) = λx.x∈F (identity)
– Will show f(x ∪ y) = f(x) ∪ f(y) (distributivity)

f(x) ∪ f(y) = (a ∪ (x – b)) ∪ (a ∪ (y – b))
= a ∪ (x – b) ∪ (y – b)
= a ∪ ((x ∪ y) – b)
= f(x ∪ y)

Kostis Sagonas 42 Spring 2012

Does Reaching Definitions
Framework Satisfy Properties?

What about composition?
– Given f1(x) = a1 ∪ (x-b1) and f2(x) = a2 ∪ (x-b2)
– Must show f1(f2(x)) can be expressed as a ∪ (x - b)

f1(f2(x)) = a1 ∪ ((a2 ∪ (x-b2)) - b1)
= a1 ∪ ((a2 - b1) ∪ ((x-b2) - b1))
= (a1 ∪ (a2 - b1)) ∪ ((x-b2) - b1))
= (a1 ∪ (a2 - b1)) ∪ (x-(b2 ∪ b1))

– Let a = (a1 ∪ (a2 - b1)) and b = b2 ∪ b1

– Then f1(f2(x)) = a ∪ (x – b)

Kostis Sagonas 43 Spring 2012

General Result

All GEN/KILL transfer function frameworks
satisfy the properties:
– Identity
– Distributivity
– Compositionality

Kostis Sagonas 44 Spring 2012

Available Expressions Framework

• P = powerset of set of all expressions in
program (all subsets of set of expressions)

• ∨ = ∩ (order is ⊇)
• ⊥ = P (but inn0 = ∅)
• F = all functions f of the form f(x) = a ∪ (x-b)

– b is set of expressions that node kills
– a is set of expressions that node generates

• Another GEN/KILL analysis

Kostis Sagonas 45 Spring 2012

Concept of Conservatism

• Reaching definitions use ∪ as join
– Optimizations must take into account all definitions

that reach along ANY path
• Available expressions use ∩ as join

– Optimization requires expression to reach along
ALL paths

• Optimizations must conservatively take all
possible executions into account.

• Structure of analysis varies according to the
way the results of the analysis are to be used.

Kostis Sagonas 46 Spring 2012

Backward Dataflow Analysis

• Simulates execution of program backward
against the flow of control

• For each node n, we have
– inn – value at program point before n
– outn – value at program point after n
– fn – transfer function for n (given outn, computes inn)

• Require that solutions satisfy
– ∀n. inn = fn(outn)
– ∀n ∉ Nfinal. outn = ∨ { inm | m in succ(n) }
– ∀n ∈ Nfinal = outn = ⊥

Kostis Sagonas 47 Spring 2012

Worklist Algorithm for Solving
Backward Dataflow Equations

for each n do inn := fn(⊥)
worklist := N
while worklist ≠ ∅ do

remove a node n from worklist
outn := ∨ { inm | m in succ(n) }
inn := fn(outn)
if inn changed then

worklist := worklist ∪ pred(n)

Kostis Sagonas 48 Spring 2012

Live Variables Analysis Framework

• P = powerset of set of all variables in program
(all subsets of set of variables in program)

• ∨ = ∪ (order is ⊆)
• ⊥ = ∅
• F = all functions f of the form f(x) = a ∪ (x-b)

– b is set of variables that the node kills
– a is set of variables that the node reads

Kostis Sagonas 49 Spring 2012

Meaning of Dataflow Results

• Connection between executions of program and
dataflow analysis results

• Each execution generates a trajectory of states:
– s0;s1;…;sk,where each si∈ST

• Map current state sk to
– Program point n where execution located
– Value x in dataflow lattice

• Require x ≤ inn

Kostis Sagonas 50 Spring 2012

Abstraction Function for Forward
Dataflow Analysis

• Meaning of analysis results is given by an
abstraction function AF:ST→P

• Require that for all states s
AF(s) ≤ inn

where n is program point where the execution is
located in state s, and inn is the abstract value
before that point.

Kostis Sagonas 51 Spring 2012

Sign Analysis Example

Sign analysis - compute sign of each variable v
• Base Lattice: flat lattice on {-,zero,+}

• Actual lattice records a value for each variable
– Example element: [a→+, b→zero, c→-]

- zero +

TOP

BOT

Kostis Sagonas 52 Spring 2012

Interpretation of Lattice Values

If value of v in lattice is:
– BOT: no information about the sign of v
– -: variable v is negative
– zero: variable v is 0
– +: variable v is positive
– TOP: v may be positive or negative or 0

Kostis Sagonas 53 Spring 2012

Operation ⊗ on Lattice

⊗ BOT - zero + TOP

BOT BOT - zero + TOP

- - + zero - TOP

zero zero zero zero zero zero

+ + - zero + TOP

TOP TOP TOP zero TOP TOP

Kostis Sagonas 54 Spring 2012

Transfer Functions

Defined by structural induction on the shape of
nodes:
– If n of the form v = c

• fn(x) = x[v→ +] if c is positive
• fn(x) = x[v→zero] if c is 0
• fn(x) = x[v→ -] if c is negative

– If n of the form v1 = v2*v3

• fn(x) = x[v1→x[v2] ⊗ x[v3]]

Kostis Sagonas 55 Spring 2012

Abstraction Function

• AF(s)[v] = sign of v
– AF([a→5, b→0, c→-2]) = [a→+, b→zero, c→-]

• Establishes meaning of the analysis results
– If analysis says a variable v has a given sign
– then v always has that sign in actual execution.

• Two sources of imprecision
– Abstraction Imprecision – concrete values (integers)

abstracted as lattice values (-,zero, and +)
– Control Flow Imprecision – one lattice value for all

different possible flow of control possibilities

Kostis Sagonas 56 Spring 2012

Imprecision Example

b = -1 b = 1

a = 1

[a→+][a→+]

[a→+, b→+][a→+, b→-]

[a→+, b→TOP]
c = a*b

Abstraction Imprecision:
[a→1] abstracted as [a→+]

Control Flow Imprecision:
[b→TOP] summarizes results of all executions.
In any execution state s, AF(s)[b]≠TOP

Kostis Sagonas 57 Spring 2012

General Sources of Imprecision

• Abstraction Imprecision
– Lattice values less precise than execution values
– Abstraction function throws away information

• Control Flow Imprecision
– Analysis result has a single lattice value to

summarize results of multiple concrete executions
– Join operation ∨ moves up in lattice to combine

values from different execution paths
– Typically if x ≤ y, then x is more precise than y

Kostis Sagonas 58 Spring 2012

Why Have Imprecision?

ANSWER: To make analysis tractable
• Conceptually infinite sets of values in execution

– Typically abstracted by finite set of lattice values
• Execution may visit infinite set of states

– Abstracted by computing joins of different paths

Kostis Sagonas 59 Spring 2012

Augmented Execution States

• Abstraction functions for some analyses require
augmented execution states
– Reaching definitions: states are augmented with the

definition that created each value
– Available expressions: states are augmented with

expression for each value

Kostis Sagonas 60 Spring 2012

Meet Over All Paths Solution
• What solution would be ideal for a forward dataflow

analysis problem?
• Consider a path p = n0, n1, …, nk, n to a node n

(note that for all i, ni ∈ pred(ni+1))
• The solution must take this path into account:

fp (⊥) = (fnk(fnk-1(…fn1(fn0(⊥)) …)) ≤ inn

• So the solution must have the property that
∨{fp (⊥) | p is a path to n} ≤ inn

and ideally
∨{fp (⊥) | p is a path to n} = inn

Kostis Sagonas 61 Spring 2012

Soundness Proof of Analysis
Algorithm

Property to prove:
For all paths p to n, fp (⊥) ≤ inn

• Proof is by induction on the length of p
– Uses monotonicity of transfer functions
– Uses following lemma

Lemma:
The worklist algorithm produces a solution such that

if n ∈ pred(m) then outn ≤ inm

Kostis Sagonas 62 Spring 2012

Proof

• Base case: p is of length 0
– Then p = n0 and fp(⊥) = ⊥ = inn0

• Induction step:
– Assume theorem for all paths of length k
– Show for an arbitrary path p of length k+1.

Kostis Sagonas 63 Spring 2012

Induction Step Proof
• p = n0, …, nk, n
• Must show (fk(fk-1(…fn1(fn0(⊥)) …)) ≤ inn

– By induction, (fk-1(…fn1(fn0(⊥)) …)) ≤ innk

– Apply fk to both sides.
By monotonicity, we get:

(fk(fk-1(…fn1(fn0(⊥)) …)) ≤ fk(innk) = outnk

– By lemma, outnk ≤ inn

– By transitivity, (fk(fk-1(…fn1(fn0(⊥)) …)) ≤ inn

Kostis Sagonas 64 Spring 2012

Distributivity

• Distributivity preserves precision
• If framework is distributive, then the worklist

algorithm produces the meet over paths solution
– For all n:

∨{fp (⊥) | p is a path to n} = inn

Kostis Sagonas 65 Spring 2012

Lack of Distributivity Example

Integer Constant Propagation (ICP)
• Flat lattice on integers

• Actual lattice records a value for each variable
– Example element: [a→3, b→2, c→5]

-1 10

TOP

BOT

-2 2 ……

Kostis Sagonas 66 Spring 2012

Transfer Functions

• If n of the form v = c
– fn(x) = x[v→c]

• If n of the form v1 = v2+v3
– fn(x) = x[v1→x[v2] + x[v3]]

• Lack of distributivity of ICP
– Consider transfer function f for c = a + b
– f([a→3, b→2]) ∨ f([a→2, b→3]) = [a→TOP, b→TOP, c→5]
– f([a→3, b→2]∨[a→2, b→3]) = f([a→TOP, b→TOP]) =

[a→TOP, b→TOP, c→TOP]

Kostis Sagonas 67 Spring 2012

Lack of Distributivity Anomaly

a = 2
b = 3

a = 3
b = 2

[a→3, b→2][a→2, b→3]

[a→TOP, b→TOP]
c = a+b

[a→TOP, b→TOP, c →TOP]

Lack of Distributivity Imprecision:
[a→TOP, b→TOP, c→5] more precise

Kostis Sagonas 68 Spring 2012

Summary

• Formal dataflow analysis framework
– Lattices, partial orders
– Transfer functions, joins and splits
– Dataflow equations and fixed point solutions

• Connection with program
– Abstraction function AF: S → P
– For any state s and program point n, AF(s) ≤ inn

– Meet over paths solutions, distributivity

