Using Program Analysis for Optimization

Analysis and Optimizations

• Program Analysis
 – Discovers properties of a program

• Optimizations
 – Use analysis results to transform program
 – Goal: improve some aspect of program
 • number of executed instructions, number of cycles
 • cache hit rate
 • memory space (code or data)
 • power consumption
 – Has to be safe: Keep the semantics of the program

Control Flow Graph

<table>
<thead>
<tr>
<th>entry</th>
<th>s = 0; a = 4; i = 0;</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>if (k == 0) b = 1;</td>
</tr>
<tr>
<td></td>
<td>else b = 2;</td>
</tr>
<tr>
<td></td>
<td>while (i < n) {</td>
</tr>
<tr>
<td></td>
<td>s = s + a*b;</td>
</tr>
<tr>
<td></td>
<td>i = i + 1;</td>
</tr>
<tr>
<td></td>
<td>}</td>
</tr>
<tr>
<td></td>
<td>return s;</td>
</tr>
</tbody>
</table>

Control Flow Graph

• Nodes represent computation
 – Each node is a Basic Block
 – A Basic Block is a sequence of instructions with
 • No branches out of middle of basic block
 • No branches into middle of basic block
 • Basic blocks should be maximal
 – Execution of basic block starts with first instruction
 – Includes all instructions in basic block
• Edges represent control flow

Two Kinds of Variables

• Temporaries introduced by the compiler
 – Transfer values only within basic block
 – Introduced as part of instruction flattening
 – Introduced by optimizations/transformations

• Program variables
 – Declared in original program
 – May transfer values between basic blocks

Basic Block Optimizations

• Common Sub-Expression Elimination
 – a = (x+y)z; b = x+y;
 – t = x+y; a = t+z; b = t;

• Copy Propagation
 – a = x+y; b = a; c = b+z;
 – a = x+y; b = a; c = a+z;

• Constant Propagation
 – x = 5; b = x+y;
 – b = 5+y;

• Dead Code Elimination
 – a = x+y; b = a; c = a+z;
 – a = x+y; c = a+z

• Algebraic Simplification
 – a = x * 1;
 – a = x;

• Strength Reduction
 – t = i * 4;
 – t = i << 2;
Value Numbering

• Normalize basic block so that all statements are of the form
 – var = var op var (where op is a binary operator)
 – var = op var (where op is a unary operator)
 – var = var

• Simulate execution of basic block
 – Assign a virtual value to each variable
 – Assign a virtual value to each expression
 – Assign a temporary variable to hold value of each computed expression

Value Numbering for CSE

• As we simulate execution of program
 • Generate a new version of program
 – Each new value assigned to temporary
 a = x+y; becomes a = x+y; t = a;
 – Temporary preserves value for use later in program even if original variable is rewritten
 a = x+y; a = a+z; b = x+y
 becomes
 a = x+y; t = a; a = a+z; b = t;

CSE Example

• Original
 a = x+y
 b = a+z
 b = b+y
 c = a+z

• After CSE
 a = x+y
 b = a+z
 t = b
 b = b+y
 c = t

• Issues
 – Temporaries store values for use later
 – CSE with different names
 a = x; b = x+y; c = a+y;
 – Excessive generation and use of temporaries

Problems

• Algorithm has a temporary for each new value
 – a = x+y; t1 = a

• Introduces
 – lots of temporaries
 – lots of copy statements to temporaries

• In many cases, temporaries and copy statements are unnecessary
 So we eliminate them with copy propagation and dead code elimination

Copy Propagation

• Once again, simulate execution of program
 • If possible, use the original variable instead of a temporary
 – a = x+y; b = x+y;
 – After CSE becomes a = x+y; t = a; b = t;
 – After CP becomes a = x+y; t = a; b = a;
 • Key idea: determine when original variables are NOT overwritten between computation of stored value and use of stored value
Copy Propagation Maps

- Maintain two maps
 - tmp to var: tells which variable to use instead of a given temporary variable
 - var to set (inverse of tmp to var): tells which temps are mapped to a given variable by tmp to var

Copy Propagation Example

<table>
<thead>
<tr>
<th>Original</th>
<th>After CSE</th>
<th>After CSE and Copy Propagation</th>
</tr>
</thead>
<tbody>
<tr>
<td>a = x+y</td>
<td>a = x+y</td>
<td>a = x+y</td>
</tr>
<tr>
<td>b = a+z</td>
<td>t1 = a</td>
<td>t1 = a</td>
</tr>
<tr>
<td>c = x+y</td>
<td>b = a+z</td>
<td>b = a+z</td>
</tr>
<tr>
<td>a = b</td>
<td>t2 = b</td>
<td>t2 = b</td>
</tr>
</tbody>
</table>

Copy Propagation Example

<table>
<thead>
<tr>
<th>Basic Block</th>
<th>Basic Block After CSE</th>
<th>Basic Block After CSE and Copy Prop</th>
</tr>
</thead>
<tbody>
<tr>
<td>a = x+y</td>
<td>a = x+y</td>
<td>a = x+y</td>
</tr>
<tr>
<td>t1 = a</td>
<td>t1 = a</td>
<td>t1 = a</td>
</tr>
<tr>
<td>b = a+z</td>
<td>b = a+z</td>
<td>b = a+z</td>
</tr>
<tr>
<td>t2 = b</td>
<td>t2 = b</td>
<td>t2 = b</td>
</tr>
</tbody>
</table>

tmp to var: t1 → a var to set: a → {t1}
Copy Propagation Example

Basic Block
After CSE

Basic Block
After CSE and Copy Prop

\[a = x + y \]
\[t_1 = a \]
\[b = a + z \]
\[t_2 = b \]
\[c = t_1 \]
\[a = b \]
\[\text{tmp to var} \rightarrow \text{var to set} \]
\[t_1 \rightarrow a \]
\[t_2 \rightarrow b \]

Basic Block After CSE

Basic Block After CSE and Copy Prop

\[a = x + y \]
\[t_1 = a \]
\[b = a + z \]
\[t_2 = b \]
\[c = t_1 \]
\[a = b \]
\[\text{tmp to var} \rightarrow \text{var to set} \]
\[t_1 \rightarrow t_1 \]
\[t_2 \rightarrow t_2 \]

Basic Block After CSE + Copy Prop

Basic Block After CSE + Copy Prop + DCE

\[a = x + y \]
\[t_1 = a \]
\[b = a + z \]
\[t_2 = b \]
\[c = a \]
\[a = b \]

Basic Block After CSE + Copy Prop

Basic Block After CSE + Copy Prop

\[a = x + y \]
\[t_1 = a \]
\[b = a + z \]
\[t_2 = b \]
\[c = a \]
\[a = b \]

Basic Block After CSE + Copy Prop

Basic Block After CSE + Copy Prop

\[a = x + y \]
\[t_1 = a \]
\[b = a + z \]
\[t_2 = b \]
\[c = a \]
\[a = b \]

Basic Block After CSE + Copy Prop

Basic Block After CSE + Copy Prop

\[a = x + y \]
\[t_1 = a \]
\[b = a + z \]
\[t_2 = b \]
\[c = a \]
\[a = b \]

Basic Block After CSE + Copy Prop

Basic Block After CSE + Copy Prop

\[a = x + y \]
\[t_1 = a \]
\[b = a + z \]
\[t_2 = b \]
\[c = a \]
\[a = b \]

Basic Block After CSE + Copy Prop

Basic Block After CSE + Copy Prop

\[a = x + y \]
\[t_1 = a \]
\[b = a + z \]
\[t_2 = b \]
\[c = a \]
\[a = b \]

Basic Block After CSE + Copy Prop

Basic Block After CSE + Copy Prop

\[a = x + y \]
\[t_1 = a \]
\[b = a + z \]
\[t_2 = b \]
\[c = a \]
\[a = b \]

Basic Block After CSE + Copy Prop

Basic Block After CSE + Copy Prop

\[a = x + y \]
\[t_1 = a \]
\[b = a + z \]
\[t_2 = b \]
\[c = a \]
\[a = b \]

Basic Block After CSE + Copy Prop

Basic Block After CSE + Copy Prop

\[a = x + y \]
\[t_1 = a \]
\[b = a + z \]
\[t_2 = b \]
\[c = a \]
\[a = b \]

Basic Block After CSE + Copy Prop

Basic Block After CSE + Copy Prop

\[a = x + y \]
\[t_1 = a \]
\[b = a + z \]
\[t_2 = b \]
\[c = a \]
\[a = b \]

Basic Block After CSE + Copy Prop

Basic Block After CSE + Copy Prop

\[a = x + y \]
\[t_1 = a \]
\[b = a + z \]
\[t_2 = b \]
\[c = a \]
\[a = b \]

Basic Block After CSE + Copy Prop

Basic Block After CSE + Copy Prop

\[a = x + y \]
\[t_1 = a \]
\[b = a + z \]
\[t_2 = b \]
\[c = a \]
\[a = b \]

Basic Block After CSE + Copy Prop

Basic Block After CSE + Copy Prop

\[a = x + y \]
\[t_1 = a \]
\[b = a + z \]
\[t_2 = b \]
\[c = a \]
\[a = b \]

Basic Block After CSE + Copy Prop

Basic Block After CSE + Copy Prop

\[a = x + y \]
\[t_1 = a \]
\[b = a + z \]
\[t_2 = b \]
\[c = a \]
\[a = b \]

Basic Block After CSE + Copy Prop

Basic Block After CSE + Copy Prop

\[a = x + y \]
\[t_1 = a \]
\[b = a + z \]
\[t_2 = b \]
\[c = a \]
\[a = b \]

Basic Block After CSE + Copy Prop

Basic Block After CSE + Copy Prop

\[a = x + y \]
\[t_1 = a \]
\[b = a + z \]
\[t_2 = b \]
\[c = a \]
\[a = b \]

Basic Block After CSE + Copy Prop

Basic Block After CSE + Copy Prop

\[a = x + y \]
\[t_1 = a \]
\[b = a + z \]
\[t_2 = b \]
\[c = a \]
\[a = b \]

Basic Block After CSE + Copy Prop

Basic Block After CSE + Copy Prop

\[a = x + y \]
\[t_1 = a \]
\[b = a + z \]
\[t_2 = b \]
\[c = a \]
\[a = b \]

Basic Block After CSE + Copy Prop

Basic Block After CSE + Copy Prop

\[a = x + y \]
\[t_1 = a \]
\[b = a + z \]
\[t_2 = b \]
\[c = a \]
\[a = b \]

Basic Block After CSE + Copy Prop

Basic Block After CSE + Copy Prop

\[a = x + y \]
\[t_1 = a \]
\[b = a + z \]
\[t_2 = b \]
\[c = a \]
\[a = b \]

Basic Block After CSE + Copy Prop

Basic Block After CSE + Copy Prop

\[a = x + y \]
\[t_1 = a \]
\[b = a + z \]
\[t_2 = b \]
\[c = a \]
\[a = b \]

Basic Block After CSE + Copy Prop

Basic Block After CSE + Copy Prop

\[a = x + y \]
\[t_1 = a \]
\[b = a + z \]
\[t_2 = b \]
\[c = a \]
\[a = b \]

Basic Block After CSE + Copy Prop

Basic Block After CSE + Copy Prop

\[a = x + y \]
\[t_1 = a \]
\[b = a + z \]
\[t_2 = b \]
\[c = a \]
\[a = b \]

Basic Block After CSE + Copy Prop

Basic Block After CSE + Copy Prop

\[a = x + y \]
\[t_1 = a \]
\[b = a + z \]
\[t_2 = b \]
\[c = a \]
\[a = b \]
Basic Block After
CSE + Copy Propagation

\[
a = x + y \\
t_1 = a \\
b = a + z \\
t_2 = b \\
c = a \\
a = b
\]

Needed Set
\{b, c\}

Basic Block After
CSE + Copy Propagation

\[
a = x + y \\
t_1 = a \\
b = a + z \\
t_2 = b \\
c = a \\
a = b
\]

Needed Set
\{a, b\}

Basic Block after
CSE + Copy Propagation + Dead Code Elimination

\[
a = x + y \\
t_1 = a \\
b = a + z \\
c = a \\
a = b
\]

Needed Set
\{a, b\}

Basic Block after
CSE + Copy Propagation + Dead Code Elimination

\[
a = x + y \\
t_1 = a \\
b = a + z \\
c = a \\
a = b
\]

Needed Set
\{a, b, z\}

Basic Block after
CSE + Copy Propagation + Dead Code Elimination

\[
a = x + y \\
t_1 = a \\
b = a + z \\
c = a \\
a = b
\]

Needed Set
\{a, z\}
Interesting Properties

- Analysis and Optimization algorithms simulate execution of program
 - CSE and Copy Propagation go forward
 - Dead Code Elimination goes backwards
- Optimizations are stacked
 - Group of basic transformations
 - Work together to get good result
 - Often, one transformation creates inefficient code that is cleaned up by subsequent transformations

Other Basic Block Transformations

- Constant Propagation
- Strength Reduction
 - $a \ll 2 = a \times 4$;
 - $a + a + a = 3 \times a$;
- Algebraic Simplification
 - $a = a \times 1$;
 - $b = b + 0$;
- Need a unified transformation framework

Dataflow Analysis

- Used to determine properties of programs that involve multiple basic blocks
- Typically used to enable transformations
 - common sub-expression elimination
 - constant and copy propagation
 - dead code elimination
- Analysis and transformation often come in pairs

Reaching Definitions

- Concept of definition and use
 - $z = x + y$
 - is a definition of z
 - is a use of x and y
- A definition reaches a use if
 - value written by definition
 - may be read by use
Reaching Definitions

\[
\begin{align*}
\text{s} &= 0; \\
a &= 4; \\
i &= 0; \\
k &= 0 \\
b &= 1; \\
b &= 2; \\
i < n \
\end{align*}
\]

\[i = i + 1; \rightarrow s = s + a \times b; \rightarrow \text{return } s\]

Reaching Definitions and Constant Propagation

• Is a use of a variable a constant?
 – Check all reaching definitions
 – If all assign variable to same constant
 – Then use is in fact a constant
• Can replace variable with constant

Is a constant in \(s = s + a \times b\)?

\[
\begin{align*}
s &= 0; \\
a &= 4; \\
i &= 0; \\
k &= 0 \\
b &= 1; \\
b &= 2; \\
i < n \
\end{align*}
\]

\[i = i + 1; \rightarrow s = s + a \times b; \rightarrow \text{return } s\]

Yes!
On all reaching definitions
\(a = 4\)

Constant Propagation Transform

\[
\begin{align*}
s &= 0; \\
a &= 4; \\
i &= 0; \\
k &= 0 \\
b &= 1; \\
b &= 2; \\
i < n \
\end{align*}
\]

\[i = i + 1; \rightarrow s = s + a \times b; \rightarrow \text{return } s\]

Yes!
On all reaching definitions
\(a = 4\)

Is \(b\) constant in \(s = s + a \times b\)?

\[
\begin{align*}
s &= 0; \\
a &= 4; \\
i &= 0; \\
k &= 0 \\
b &= 1; \\
b &= 2; \\
i < n \
\end{align*}
\]

\[i = i + 1; \rightarrow s = s + a \times b; \rightarrow \text{return } s\]

No!
One reaching definition with \(b = 1\)
One reaching definition with \(b = 2\)

Computing Reaching Definitions

• Compute with sets of definitions
 – represent sets using bit vectors
 – each definition has a position in bit vector
• At each basic block, compute
 – definitions that reach start of block
 – definitions that reach end of block
• Do computation by simulating execution of program until the fixed point is reached
Formalizing Analysis

- Each basic block has
 - **IN** - set of definitions that reach beginning of block
 - **OUT** - set of definitions that reach end of block
 - **GEN** - set of definitions generated in block
 - **KILL** - set of definitions killed in the block
- \(\text{GEN}[s = s + a*b; i = i + 1;] = 0000011 \)
- \(\text{KILL}[s = s + a*b; i = i + 1;] = 1010000 \)
- Compiler scans each basic block to derive **GEN** and **KILL** sets

Dataflow Equations

- \(\text{IN}[b] = \text{OUT}[b1] \cup \ldots \cup \text{OUT}[bn] \)
 - where \(b1, \ldots, bn \) are predecessors of \(b \) in CFG
- \(\text{OUT}[b] = (\text{IN}[b] - \text{KILL}[b]) \cup \text{GEN}[b] \)
- \(\text{IN}[\text{entry}] = 0000000 \)
- Result: system of equations

Solving Equations

- Use fixed point algorithm
- Initialize with solution of \(\text{OUT}[b] = 0000000 \)
- Repeatedly apply equations
 - \(\text{IN}[b] = \text{OUT}[b1] \cup \ldots \cup \text{OUT}[bn] \)
 - \(\text{OUT}[b] = (\text{IN}[b] - \text{KILL}[b]) \cup \text{GEN}[b] \)
- Until reaching fixed point
 - i.e., until equation application has no further effect
- Use a worklist to track which equation applications may have a further effect

Reaching Definitions Algorithm

for all nodes \(n \) in \(N \) \(\text{OUT}[n] = \emptyset \); // \(\text{OUT}[n] = \text{GEN}[n] \);
Worklist = \(N \); // \(N \) = all nodes in graph
while (Worklist != \(\emptyset \))
 choose a node \(n \) in Worklist;
 Worklist = Worklist - \{ \(n \) \};
 \(\text{IN}[n] = \emptyset \);
 for all nodes \(p \) in predecessors(\(n \)) \(\text{IN}[n] = \text{IN}[n] \cup \text{OUT}[p] \);
 \(\text{OUT}[n] = (\text{IN}[n] - \text{KILL}[n]) \cup \text{GEN}[n] \);
 if (\(\text{OUT}[n] \) changed)
 for all nodes \(s \) in successors(\(n \)) Worklist = Worklist \cup \{ \(s \) \}.
Questions

- Does the algorithm halt?
 - yes, because transfer function is monotonic
 - if increase IN, increase OUT
 - in limit, all bits are 1
- If bit is 1, is there always an execution in which corresponding definition reaches basic block?
- If bit is 0, does the corresponding definition ever reach basic block?
- Concept of conservative analysis

Available Expressions

- An expression x+y is available at a point p if
 - every path from the initial node to p evaluates x+y before reaching p
 - and there are no assignments to x or y after the evaluation but before p
- Available Expression information can be used to do global (across basic blocks) CSE
- If an expression is available at use, there is no need to re-evaluate it

Computing Available Expressions

- Represent sets of expressions using bit vectors
- Each expression corresponds to a bit
- Run dataflow algorithm similar to reaching definitions
- Big difference:
 - A definition reaches a basic block if it comes from ANY predecessor in CFG
 - An expression is available at a basic block only if it is available from ALL predecessors in CFG

Available Expressions Example

Expressions
1: x+y
2: i < n
3: i+c
4: x == 0

Global CSE Transform

Expressions
1: x+y
2: i < n
3: i+c
4: x == 0

must use same temp for CSE in all blocks

Formalizing Analysis

- Each basic block has
 - IN - set of expressions available at start of block
 - OUT - set of expressions available at end of block
 - GEN - set of expressions computed in block
 - KILL - set of expressions killed in the block
- GEN[x = z; b = x+y] = 1000
- KILL[x = z; b = x+y] = 1001
- Compiler scans each basic block to derive GEN and KILL sets
Dataflow Equations

- \(\text{IN}[b] = \text{OUT}[b1] \cap ... \cap \text{OUT}[bn] \)
 - where \(b1, ..., bn \) are predecessors of \(b \) in CFG
- \(\text{OUT}[b] = (\text{IN}[b] - \text{KILL}[b]) \cup \text{GEN}[b] \)
- \(\text{IN}[\text{entry}] = 0000 \)
- Result: system of equations

Solving Equations

- Use fixed point algorithm
- \(\text{IN}[\text{entry}] = 0000 \)
- Initialize \(\text{OUT}[b] = 1111 \)
- Repeatedly apply equations
 - \(\text{IN}[b] = \text{OUT}[b1] \cap ... \cap \text{OUT}[bn] \)
 - \(\text{OUT}[b] = (\text{IN}[b] - \text{KILL}[b]) \cup \text{GEN}[b] \)
- Use a worklist algorithm to track which equation applications may have further effect

Available Expressions Algorithm

\[
\begin{align*}
\text{for all nodes } n \text{ in } N & : \text{OUT}[n] = E; \quad \text{// OUT}[n] = E - \text{KILL}[n]; \\
\text{IN[Entry]} = \emptyset; \text{OUT[Entry]} = \text{GEN[Entry]}; \\
\text{Worklist} = N - \{ \text{Entry} \}; \quad \text{// N = all nodes in graph} \\
\text{while (Worklist} \neq \emptyset) & : \text{// choose a node } n \text{ in Worklist;} \\
\text{Worklist} = \text{Worklist} - \{ n \}; \quad \text{// worklist unchanged} \\
\text{IN}[n] = E; \quad \text{// E is set of all expressions} \\
\text{for all nodes } p \text{ in predecessors}(n) & : \text{IN}[n] = \text{IN}[n] \cap \text{OUT}[p]; \\
\text{OUT}[n] = (\text{IN}[n] - \text{KILL}[n]) \cup \text{GEN}[n]; \quad \text{if (OUT}[n] \text{ changed)} \\
\text{for all nodes } s \text{ in successors}(n) & : \text{Worklist} = \text{Worklist} \cup \{ s \}; \\
\end{align*}
\]

Questions

- Does algorithm always halt?
- If expression is available in some execution, is it always marked as available in analysis?
- If expression is not available in some execution, can it be marked as available in analysis?
- In what sense is the algorithm conservative?

Duality In Two Algorithms

- Reaching definitions
 - Confluence operation is set union
 - \(\text{OUT}[b] \) initialized to empty set
- Available expressions
 - Confluence operation is set intersection
 - \(\text{OUT}[b] \) initialized to set of available expressions
- General framework for dataflow algorithms
- Build parameterized dataflow analyzer once, use for all dataflow analysis problems

Liveness Analysis

- A variable \(v \) is live at point \(p \) if
 - \(v \) is used along some path starting at \(p \), and
 - no definition of \(v \) along the path before the use.
- When is a variable \(v \) dead at point \(p \)?
 - No use of \(v \) on any path from \(p \) to exit node, or
 - If all paths from \(p \), redefine \(v \) before using \(v \).
What Use is Liveness Information?

- **Register allocation**
 - If a variable is dead, we can reassign its register
- **Dead code elimination**
 - Eliminate assignments to variables not read later
 - But must not eliminate last assignment to variable (such as instance variable) visible outside CFG
 - Can eliminate other dead assignments
 - Handle by making all externally visible variables live on exit from CFG

Conceptual Idea of Analysis

- **Simulate execution**
- But start from exit and go backwards in CFG
- Compute liveness information from end to beginning of basic blocks

Liveness Example

- Assume a, b, c visible outside function and thus are live on exit
- Assume x, y, z, t are not visible on exit
- Represent liveness using a bit vector
 - order is abcxzyt

Using Liveness Information for Dead Code Elimination

- Assume a, b, c visible outside function and thus are live on exit
- Assume x, y, z, t are not visible on exit
- Represent liveness using a bit vector
 - order is abcxzyt

Formalizing Analysis

- Each basic block has
 - IN - set of variables live at start of block
 - OUT - set of variables live at end of block
 - USE - set of variables with upwards exposed uses in block
 - DEF - set of variables defined in block
- **USE**\[x = z; x = x + 1;\] = \{ z \} (x not in USE)
- **DEF**\[x = z; x = x + 1; y = 1;\] = \{ x, y \}
- Compiler scans each basic block to derive USE and DEF sets

Algorithm

\[
\text{OUT}[ext{Exit}] = \emptyset; \\
\text{IN}[ext{Exit}] = \text{USE}[n]; \\
\text{for all nodes } n \text{ in } N - \{ \text{ Exit } \} \text{ IN}[n] = \emptyset; \\
\text{Worklist} = N - \{ \text{ Exit } \}; \\
\text{while} (\text{Worklist} \neq \emptyset) \\
\text{choose a node } n \text{ in Worklist}; \\
\text{Worklist} = \text{Worklist} - \{ n \}; \\
\text{OUT}[n] = \emptyset; \\
\text{for all nodes } s \text{ in successors}(n) \text{ OUT}[n] = \text{OUT}[n] \cup \text{IN}[s]; \\
\text{IN}[n] = \text{USE}[n] \cup (\text{OUT}[n] - \text{DEF}[n]); \\
\text{if} (\text{IN}[n] \text{ changed}) \\
\text{for all nodes } p \text{ in predecessors}(n) \text{ Worklist} = \text{Worklist} \cup \{ p \};
\]
Similar to Other Dataflow Algorithms

- Backwards analysis, not forwards
- Still have transfer functions
- Still have confluence operators
- Can generalize framework to work for both forwards and backwards analyses

Analysis Information Inside Basic Blocks

- One detail:
 - Given dataflow information at IN and OUT of node
 - Also need to compute information at each statement of basic block
 - Simple propagation algorithm usually works fine
 - Can be viewed as restricted case of dataflow analysis

Summary

- Basic blocks and basic block optimizations
 - Copy and constant propagation
 - Common sub-expression elimination
 - Dead code elimination
- Dataflow Analysis
 - Control flow graph
 - IN[b], OUT[b], transfer functions, join points
- Paired of analyses and transformations
 - Reaching definitions/constant propagation
 - Available expressions/common sub-expression elimination
 - Liveness analysis/Dead code elimination