
1

Advanced Compiler Design

Introduction to Optimizing Compilers,
Virtual Machines and Runtime Systems

Advanced Compiler Design 2

Administrivia

• Instructor:
– Kostis Sagonas (MIC, Hus 1, 352)

• Course home page
http://user.it.uu.se/~kostis/Teaching/KT2-12/

• If you want to be enrolled in the course, you have to
send, by January 20th, a mail with your name and your
UU e-mail address to:

kostis@it.uu.se

Advanced Compiler Design 3

Course Goals

• Familiarize yourself with the theoretical basis of
advanced compiler optimizations

• Give you a general orientation on the map of compiler
optimization techniques

• Give you a general understanding of
– how some modern programming language features and

constructs are implemented

– the tradeoffs that are involved in including some feature in a
modern programming language or not

Advanced Compiler Design 4

Course Goals and Requirements

Non-Goals:
• Overview all possible compiler optimizations

• Cover compilation techniques for parallelism/multicores

Requirements:
• You are supposed to be familiar with basic programming

language implementation concepts
– In particular, with semantic analysis and code generation

– However, these topics will not be needed in this course!

• You are supposed to know how to program in a high-
level language (esp. in some functional language)

Advanced Compiler Design 5

Course Content

• Static analysis and optimization
– Theory for Static Analysis

– Optimization Algorithms

• Implementation techniques for high-level
languages
– Memory Management (aka Garbage Collection)

– Virtual Machines & Bytecode Interpreters

– Just-in-time (JIT) Compilers

– Feedback-Directed Compilation

Advanced Compiler Design 6

Course Structure

• Course has theoretical and practical aspects
– Need both in modern optimizing compilers!

• Lectures get you up-to-date with various topics and
the state-of-the-art in programming language
implementation.

• Project (can be done in groups of 2 or 3)
– get you exposed with the real issues that need to be

addressed when implementing a compiler optimization
– teach you how to plan the development and testing of a

non-trivial piece of software
– teach you how to perform a serious performance evaluation.

2

Advanced Compiler Design 7

Course’s Literature

• In addition to lecture slides, various papers from the recent
research on programming language design and implementation
will be available at the course’s homepage

• These handouts are required reading

Slides of
lectures
posted on
the web

Advanced Compiler Design 8

Course Syllabus (Tentative)

• Introduction to advanced compiler design
• Using static analysis for global optimization
• Foundations of static analysis and abstract

interpretation
• Static Single Assignment (SSA): Construction and Use
• Global register allocation
• Automatic memory management
• Virtual machines and interpretation techniques

– Just-in-time (JIT) compilers
– Dynamic and feedback-directed compilation

• Implementation of Object Oriented Languages
• Implementation of Garbage Collectors for Java

Advanced Compiler Design 9

Introduction to Compiler Optimization

• The most important aspect of a compiler optimization
is that the program remains correct

• The terminology is confusing and misleading:
– Global means function-local
– Optimization means improvement
- Compilation time vs. runtime speedup is often a factor to take

into account

• The next slides try to give you a taxonomy of some
common compiler optimization techniques

Advanced Compiler Design 10

Taxonomy of Global Compiler Optimizations

Machine Independent

Redundancy

Redundancy Elimination

Partial Redund. Eliminat.

Consolidation

Code motion

Loop-invariant Code Motion

Consolidation

Global Scheduling

Constant Propagation

Useless code

Dead Code Elimination

Partial D.C.E.

Constant Propagation

Algebraic Simplification

Create opportunities

Re-association

Replication

Inline expansion

Specialization

Replication

Strength Reduction

Constant Propagation

Method Caching

Inline expansion

Heap→stack allocation

Tail Recursion Elimination

Advanced Compiler Design 11

Taxonomy of Global Compiler Optimizations

Machine Dependent

Hide Latency

Scheduling

Prefetching

Code layout

Data Packing

Manage Resources

Register allocation

Scheduling

Data packing

Coloring memory locations

Special features

Instruction selection

Peephole optimization

Advanced Compiler Design 12

Why is this course interesting?

• Optimization is a very challenging problem —you can
not write an ideal compiler: there is always room for
improvements

• The course will teach you many techniques and tools
that you can use in other areas

• You will gain a better understanding of how a compiler
works and what to expect of the code generated by
compilers

• You will learn how to work with a code base which is
too big for a single person to grasp and you learn how
to do test-based development and perf. evaluation

• It is fun!

